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Abstract

In this paper, six error indicators obtained from dual boundary integral equations are used for local estimation, which is an essential
ingredient for all adaptive mesh schemes in BEM. Computational experiments are carried out for the two-dimensional Laplace equation. The
curves of all these six error estimators are in good agreement with the shape of the error curve. The results show that the adaptive mesh based
on any one of these six error indicators converges faster than does equal mesh discretization.q 1999 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The numerical method can be utilized to solve the
governing equation of a problem especially when the
exact solution is not easy to obtain. However, the discretiza-
tion process, which transforms a continuous system into a
discrete system with finite number of degrees of freedom,
results in errors. The discretization error is defined as the
difference between the exact solution and the numerical
approximation of the governing equation. Obtaining a reli-
able error estimation [1–12] is very important in order to
guarantee a certain level of accuracy of the numerical result,
and is a key factor of the adaptive mesh procedure [3–6,13–
17]. Thus, estimation of the discretization error in the
Boundary Element Method (BEM) is worthy of study.

The h-refinement [5,6], p-refinement [5,18] and r-refine-
ment schemes [5] have been recently used to improve
numerical accuracy. In the h-refinement scheme, the total
number of elements increase, but the order of the interpola-
tion function remains unchanged. As the global matrix must
be reformulated after mesh refinement, the computational
cost becomes very high. In this way, the efficient remesh
tactics are required when h-refinement scheme is adopted.
The adaptive tactics for h-refinement are generally referred
to as the reference value method [5], in which the element
mesh is refined where the error is larger than the prescribed
reference value. This method provides a facile error criter-
ion to determine which elements should be divided into

more partitions by considering the integral equation at the
sampling point.

A large number of studies on adaptive BEM have been
done by Kamiya et al. [4] using sample point error estima-
tion. However, the error stems not only from the discretiza-
tion procedure, but also from the mismatch of the
collocation points on the boundary. Zarikian et al. [7] and
Paulino et al. [8,9] used pointwise error estimation to study
the convergency of the interior problem by using the dual
BEM. Both the first (singular integral equation) and second
(hypersingular integral equation) kind of formulation of
BEM can independently determine the unknown boundary
data for the problem without degenerate boundary [19]. The
difference in the solutions obtained from these two methods
can be used as an index of error estimation. This provides a
new guide for remeshing without the mismatch of the collo-
cation points on the boundary in the sample point error
method. By creating more divisions in the boundary mesh
where the estimated error is large, the exact error will be
reduced more efficiently.

In this paper, dual boundary integral equations are
utilized to find a reliable error estimator. The estimated
error is defined as the residue [10]. The residue is based
on the imbalance of the energy, which is calculated by
substituting the solution of the unknown boundary data
obtained from the first kind of direct BEM previously and
known boundary data into the hypersingular integral repre-
sentation. Two numerical examples are performed for two-
dimensional problems of the Laplace equation with the
Dirichlet and mixed boundary conditions using the
BEPO2D program [19].
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2. Review of a posteriori pointwise error estimator for
the boundary element method

Considering a two-dimensional Laplace equation, as the
one below,

72u�x� � 0; x [ D �1�

whereD is the domain, andu(x) is the potential function, the
first kind of BEM (direct BEM) for this problem can be
written as

pu�x� � C:P:V:
Z

B
T�s; x�u�s�dB�s�2

Z
B

U�s; x�t�s�dB�s�;

x [ B;

�2�
whereB is the boundary andU(s,x) is a fundamental solu-
tion and can be expressed as

U�s; x� � lnr ; �3�

in which r is the distance betweenx and s, T(s,x) is the
directional derivative in thens direction, wherens is the
outnormal vector ats i.e. T�s; x� � 2U�s;x�

2ns
; t(x) is the flux

i.e. t�x� � 2u�x�
2nx

wherenx is the outnormal vector atx and
C.P.V. means the Cauchy Principal Value. Taking the
normal derivative of Eq. (2) with respect to thenx direction
results in the second kind representation of BEM (hyper-
singular integral equation) as follows:

pt�x� � H:P:V:
Z

B
M�s; x�u�s�dB�s�

2 C:P:V:
Z

B
L�s; x�t�s�dB�s�; x [ B; �4�

whereL(s,x) is the directional derivative in thenx direction
of U(s,x); (i.e. L�s; x� � 2U�s; x�=2nx) M(s,x) is the direc-
tional derivative in the nx direction of T(s,x); i.e.
M�s; x� � 22U�s; x�=2nx2ns) and H.P.V. denotes the Hada-
mard Principal Value.

For an interior problem, Paulino et al. [8,9] employed
the direct BEM to solve the unknown boundary data,
uUT, in the Neumann problem andtUT in the Dirichlet
problem, and then substituteduUT or tUT into the hyper-
singular integral equation. Inequality occurs in Eq. (4) as
follows:

ptUT�x� ± H:P:V:
Z

~B
M�s; x�uUT�s�dB�s�

2 C:P:V:
Z

~B
L�s; x�tUT�s�dB�s�; x [ ~B; �5�

where ~B is the approximate boundary after discretization
of B. One can define the residuee(x) as the unbalance

energy term,

1�x� � 2ptUT�x�1 H:P:V:
Z

~B
M�s; x�uUT�s�dB�s�

2 C:P:V:
Z

~B
L�s; x�tUT�s�dB�s�; x [ ~B: �6�

The unequal relationship in Eq. (5) indicates that the
exact solution has not been obtained. Ifue(s) and te(s) repre-
sent the exact solution, which is assumed to also be valid
everywhere on the approximate boundary~B i.e., the discre-
tization error is neglected, then

0� 2pte�x�1 H:P:V:
Z

~B
M�s; x�ue�s�dB�s�

2 C:P:V:
Z

~B
L�s; x�te�s�dB�s�; x [ ~B: �7�

Substracting Eq. (7) from Eq. (6), we obtain

1�x� � 2p{ tUT�x�2 te�x�} 1 H:P:V:
Z

~B
M�s; x�{ uUT�s�

2 ue�s�} dB�s�

2 C:P:V:
Z

~B
L�s; x�{ tUT�s�2 te�s�} dB�s�; x [ ~B:

�8�
Define the notations

Eu�s� � uUT�s�2 ue�s�; Et�s� � tUT�s�2 te�s�;
Et�x� � tUT�x�2 te�x�:

�9�

For a Dirichlet problem,ue is equal touUT on the specified
boundary; then, Eq. (8) can be reduced to

1�x� � 2p{ tUT�x�2 te�x�}

2 C:P:V:
Z

~B
L�s; x�{ tUT�s�2 te�s�} dB�s�; x [ ~B:

�10�
In contrast, for a Neumann problem,te is equal totUT on

the specified boundary, and Eq. (8) can be expressed as

1�x� � 2p{ tUT�x�2 te�x�} 1 H:P:V:
Z

~B
M�s; x�{ uUT�s�

2 ue�s�} dB�s�; x [ ~B:

�11�

3. New version of a posteriori pointwise error estimator
for the boundary element method

The first and second kind of the direct BEM formulation
provide a good basis for evaluating the discretization error
on the boundary since both equations can yield an approxi-
mate solution. Dual boundary integral equations provide us
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with two constraints for all the boundary data [20]; the first
and second kind of BEM formulations are shown as
follows:

puUT�x� � C:P:V:
Z

~B
T�s; x�uUT�s�dB�s�

2
Z

~B
U�s; x�tUT�s�dB�s�; x [ ~B �12�

ptLM�x� � H:P:V:
Z

~B
M�s; x�uLM�s�dB�s�

2 C:P:V:
Z

~B
L�s; x�tLM�s�dB�s�; x [ ~B: �13�

DefineuuUT�x�2 uLM�x�u andutUT�x�2 tLM�x�u as a pair of
new error estimators. We investigate this new error estima-
tor uuUT�x�2 uLM�x�u or utUT�x�2 tLM�x�u for comparison
with both the error estimatore(x) and exact errorE(x)
defined by Paulino et al. [8,9].

According to the definition,e(x) in [8] is

1�x� � 2ptUT�x�1 H:P:V:
Z

~B
M�s; x�uUT�s�dB�s�

2 C:P:V:
Z

~B
L�s; x�tUT�s�dB�s�; x [ ~B: �14�

For a Dirichlet problem, Eq. (14) can be rewritten as

1�x� � 2ptUT�x�1 H:P:V:
Z

~B
M�s; x�uUT�s�dB�s�

2 C:P:V:
Z

~B
L�s; x�tUT�s�dB�s�

1 C:P:V:
Z

~B
L�s; x�tLM�s�dB�s�

2 C:P:V:
Z

~B
L�s; x�tLM�s�dB�s�; x [ ~B �15�

after an addition and subtraction technique. Using Eq. (13),
Eq. (15) becomes

1�x� � 2p{ tUT�x�2 tLM�x�}

2 C:P:V:
Z

~B
L�s; x�{ tUT�s�2 tLM�s�} dB�s�; x [ ~B:

�16�

For a Neumann problem, Eq. (14) can be similarly rewrit-
ten as

1�x� � 2ptUT�x�1 H:P:V:
Z

~B
M�s; x�uUT�s�dB�s�

2 C:P:V:
Z

~B
L�s; x�tUT�s�dB�s�

1 H:P:V:
Z

~B
M�s; x�uLM�s�dB�s�

2 H:P:V:
Z

~B
M�s; x�uLM�s�dB�s�; x [ ~B: �17�

Using Eq. (13), Eq. (17) yields

1�x� � 2p{ tUT�x�2 tLM�x�}

1 H:P:V:
Z

~B
M�s; x�{ uUT�s�2 uLM�s�} dB�s�; x [ ~B:

�18�

Comparing both Eq. (10) with Eq. (16) and Eq. (11) with
Eq. (18), it can be found thatEt(x) and Eu(x) as defined by
Paulino et al. [8,9] are, respectively, {tUT�x�2 tLM�x�} and
{ uUT�x�2 uLM�x�} ; if the discretization procedure is
employed.
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4. Six types of error estimators

In this section, we shall summarize six kinds of
error estimators using the dual boundary integral
formulation.

I. The proposed error estimate,e(x), is defined as the
error which arises when the approximate solution obtained
from the UT method is substituted into Eq. (4), as shown
below:

1�x� � 2ptUT�x�1 H:P:V:
Z

~B
M�s; x�uUT�s�dB�s�

2 C:P:V:
Z

~B
L�s; x�tUT�s�dB�s�; x [ ~B: �19�

II. The exact error,Eu(x) or Et(x), defined by Paulino et al.
[8,9], which has been verified to beuuUT�x�2 uLM�x�u or
utUT�x�2 tLM�x�u is obtained by Eq. (8):

1�x� � 2pEt�x�1 H:P:V:
Z

~B
M�s; x�Eu�s�dB�s�

2 C:P:V:
Z

~B
L�s; x�Et�s�dB�s�; x [ ~B: �20�

As e(x) is specified by Eq. (19),Eu(x) and Et(x) can be
computed.

III. By using {tUT�x�2 tLM�x�} instead ofe(x) in Eq. (20),
the modified exact error,EM

u ; in the Neumann problem and
EM

t in the Dirichlet problem can be obtained by the

following expression:

{ tUT�x�2 tLM�x�}

� 2pEM
t �x�1 H:P:V:

Z
~B
M�s; x�EM

u �s�dB�s�

2 C:P:V:
Z

~B
L�s; x�EM

t �s�dB�s�; x [ ~B

�21�

since {tUT�x�2 tLM�x�} can be specified by theUT method
and theLM method.

It is difficult to derive a mathematical relationship
between the exact and estimated error, but it is easy to
calculate the error between the exact solution and the solu-
tion determined by the dual boundary integral formulation if
the problem has a closed-form solution.

IV. If the exact solution for the problem is available, a
comparison can be made between the exact and estimated
error. The pointwise error estimator is defined asutUT�x�2
te�x�u for the Dirichlet problem anduuUT�x�2 ue�x�u for the
Neumann problem, respectively.

V. EA
UT represents the error which replaces the exact solu-

tion in theUT method, as follows:

EA
UT�x� � 2p{ tUT�x�2 te�x�} 1 H:P:V:

Z
B

M�s; x�{ uUT�s�

2 ue�s�} dB�s�

2 C:P:V:
Z

B
L�s; x�{ tUT�s�2 te�s�} dB�s�; x [ ~B:

�22�
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VI. EA
LM denotes the error which replaces the exact solu-

tion in theLM method, as follows:

EA
LM�x� � 2p{ tLM�x�2 te�x�} 1 H:P:V:

Z
B

M�s; x�{ uLM�s�

2 ue�s�} dB�s�2 C:P:V:
Z

B
L�s; x�{ tLM�s�

2 te�s�} dB�s�; x [ ~B:

�23�
All of the above six error estimators will be examined to

deal with the error curve.

5. Adaptive tactics and measure of errors

The role of the adaptive tactical procedure is to determine
the region where the elements should be refined. This algo-
rithm is very strongly dependent on error estimation and the
mesh refinement scheme. The reference value, error conver-
gency and equilibrium criterion methods [5] have been
popular adaptive tactics for the h-refinement scheme [3–
6]. In the case of the reference value method, elements are
refined when their errors are larger than the prescribed refer-
ence value. Denoting the error at the elementi by li, the
reference value�l may be defined as

�l � Average ofli �24�

or

�l � h × max�li��0 , h , 1�: �25�
In this paper, the former value in Eq. (24) is chosen

because in the latter value in Eq. (25), it is difficult to specify
the value ofh adequately.

As the error estimator and adaptive tactics can be
obtained, the self adaptive mesh refinement process can be
implemented. The flowchart of the self adaptive mesh
refinement is shown in Fig. 1. Based on the reference
value method for the self adaptive technique, the minimum
number of elements can be obtained under the requirement
of error tolerance. Thus, the measure of error must be speci-
fied. Although many popular adopted measure of error have
been used, e.g.,

1. Pointwise error,
2. Max norm:iu 2 uhi � maxa#x#buu�x�2 uh�x�u;
3. L2 norm: iu 2 uhi � {

Rb
a uu 2 uhu2dx} ; and

4. Energy norm:

iu 2 uei �
Zb

a

Xm
i�0

u
diu
dxi 2

diue

dxi udx

( ) 1
2
;

the L2 norm along the boundary in energy sense has been
adopted in this paper.
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Fig. 3. The six types of error estimators.



6. Two numerical examples

A benchmark example of test No. 2 in Boundary
Elements Abstracts [21] is considered in Fig. 2. Chen et
al. [22] have modified the interior program, BEPO2D, to
solve the exterior problem. In this example, the geometrical
shape is a unit circle governed byx2

1 1 x2
2 � 1:

The exterior problem satisfies the Laplace equation as
follows:

72u�r ; u� � 0;1 , r , ∞; 0 , u , 2p �26�
with the boundary condition

u�r ; u� � f �u� for r � 1; �27�
where

f �u� �
1:0; if 0 , u , p

21:0; if p , u , 2p:

(
�28�

The closed-form solution has been obtained as [13]

u�x1; x2� � 2
p

tan21 2x2

x2
1 1 x2

2 2 1

 !
; �29�
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Fig. 4. Nine types of adaptive mesh.

Fig. 5. The comparison of the error using theL2 norm in different refine-
ment schemes for adaptive mesh and equal mesh.



and the potential gradients are

2u
2x1
� 2

p

24x1x2

�x2
1 1 x2

2 2 1�2 1 4x2
2

�30�

2u
2x2
� 2

p

2�x2
1 1 x2

2 2 1�2 4x2
2

p�x2
1 1 x2

2 2 1�2 1 4x2
2

: �31�

The initial mesh is divided into 16 elements. Bases on the
Dual Boundary Element Method (DBEM) and using the
BEPO2D program, which use the constant element scheme,

the error estimators can be found. The six types of error
estimators are shown in Fig. 3. The main feature of this
Fig. 3 is that the six types of error estimators can predict a
consistent shape of the error curve. This figure also shows
that any one of the six kinds of error estimators can be
adopted as an error indicator in the refinement scheme
because the analytical solution obtained from the prescribed
boundary value is utilized inutUT�x�2 te�x�u; which is one of
the six types of error estimators. For simplicity, only one
error estimator is considered. Based on the adaptive tech-
nique, the nine element meshes are shown in Fig. 4. This
result indicates that theadaptivetechniquecanbesuccessfully
applied to find the optimum element mesh of the problem. In
Fig. 3, utUT�x�2 tLM�x�u is employed as an error indicator to
construct the refinement scheme. Moreover, the measure of
error using theL2 norm by both the adaptive technique and
the equal mesh tactics are shown in Fig. 5. These results
indicate that a better convergence for adaptive refinement
can be obtained compared to equal mesh refinement.

In order to extend the Dirichlet problem to mixed type
problem, a L-shape interior problem is considered. The
governing equation and boundary condition are shown in
Fig. 6. The initial mesh is divided into 6 elements. Based
on the dual formulation, the error tracking curve can be
obtained from uuUT�x�2 uLM�x�u and utUT�x�2 tLM�x�u in
Fig. 7, which is one of the reliable error estimators. Using
adaptive technique, mesh of adaptive iteration process are
shown in Fig. 8. Further, the measure of the error usingL2

norm by both adaptive technique and equal mesh tactics is
shown in Fig. 9. The result also indicates that a better
convergence for adaptive technique can be obtained than
uniform mesh does.
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Fig. 6. L-shape problem.

Fig. 7. Error tracking curve for L-shape problem.



7. Conclusions

The dual boundary element method has been applied to
construct the error estimators. Six types of error estimators
have been described for tracking the pointwise error.
uuUT�x�2 uLM�x�u and utUT�x�2 tLM�x�u; are suggested to be
adopted in this paper, since they can be obtained directly
from DBEM. Thus, error estimation has been successfully
implemented by using DBEM. The exact error,Eu(x) and
Et(x), defined by Paulino et al. [8,9] has been proven to be

uuUT�x�2 uLM�x�u and utUT�x�2 tLM�x�u; respectively. The
value of Eu(x) or Et(x) is really not an exact error, since
exact solution is not compared with; however, it is also
another kind of error estimator in discrete system. The
exact error is difficult to define. An exterior problem with
two singular points has been used to show the faster conver-
gence obtained using the adaptive mesh which is one of six
error estimators, as compared to the convergence obtained
using equal mesh discretization. Also, a mixed type L-shape
problem was considered.
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Fig. 8. Adaptive iteration process for L-shape problem.
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