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Analytical derivations for one-dimensional
eigenproblems using dual boundary element
method and multiple reciprocity method

J.T. Chen* & F.C. Wong

Department of Harbor and River Engineering, Taiwan Ocean University, Keelung, Taiwan

In this paper, MRM (multiple reciprocity method) and DBEM (dual boundary element
method) are combined to solve one-dimensional eigenproblems. It is found that the
hypersingular equation (LM method) for MRM provides an additional constraint to
determine the eigenfunctions in case of failure using the singular equation (UT)
method only. Also, augmented eigenvalues can be deleted by employing dual
equations. The hypersingular equation of DBEM (LM equation) plays an important
role in determining the eigenvalues and eigenmodes. Four numerical examples are
given to verify the validity of the present formulation. © 1997 Elsevier Science

Limited.
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1 INTRODUCTION

The dual boundary element method (BEM) has been applied
in boundary value problems with degenerate boundary'~>,
corner problem®, exterior problem’ and error estimation for
adaptive mesh generation®. By combining the conventional
BEM and hypersingular integral equation, many problems
can be solved more directly and efficiently. The roles of
hypersingularity in BEM is shown in Fig. 1.

For a Helmholtz equation, the complex fundamental solu-
tion has been employed to solve the eigenproblems®. To
avoid the computation in the domain of complex number,
the multiple reciprocity method (MRM) has been employed
to solve the Helmholtz problem'®~'%, In this algorithm, the
Helmbholtz equation is treated as a Poisson equation with an
external source. Therefore, the fundamental solution of the
Laplace equation is considered. However, the domain inte-
gral is present owing to the integration of the external
source. MRM can transform this domain integral into
boundary integrals iteratively such that the domain cell is
not needed. In the literature, the conventional singular inte-
gral equation (UT equation) has been used only in MRM',
The role of the hypersingular integral equation (LM
equation) in MRM is not clear to the author’s knowledge.

In this paper, the role of the hypersingular integral
equation for one-dimensional eigenproblems using MRM
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is demonstrated. The augmented eigenvalues and failure
in determining the eigenmodes using the conventional
MRM will be discussed analytically, and such difficulties
will be solved by using the hypersingular integral equation.
Finally, four example problems will be solved analytically
using DBEM and MRM.

2 PROBLEM STATEMENT AND ANALYTICAL
DERIVATIONS

Consider a one-dimensional eigenvalue with the following
governing equation

du(x
dx(2)+>\u(x)=0 )
where A and u(x) denote the eigenvalue and eigenmode
respectively.

Four cases of boundary conditions are considered as
follows:

Case 1, u(0) = 0 and u(1) = 0 (Dirichlet B.C.)

Case 2, t(0) = 0 and #«(1) = 0 (Neumann B.C.)
Case 3, u(0) = 0 and (1) = 0 (Robin B.C.)
Case 4, u(1) = 0 and #0) = 0 (Robin B.C.).
where
du(x)
[(.’C()): dx ‘x:xo
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Consider an auxilliary system with a fundamental solu-
tion satisfying

d’U (x,s)

__dxz_ = 5(){ — S) (2)
where U(x,s) is a fundamental solution as

Ulx, s) = lx — sl = U9, 5) 3)

By employing Green’s third identity, we have

Jn(u(x)VzU(x, 5) — U(x, $)V2U(x)) d©

. aU(x,s)
- L(u(x) on

where Q and I' denote the domain and boundary respec-
tively, and r is the normal vector on the boundary.

For simplicity, the one-dimensional case of unitary length
is considered. Eqn (4) is reduced to

oU
—Ulx,s) E) dr 4)

I
JOVZ U9, s)u(x) dx

dUO(x, 5)

1
= J’o U9, )V2u(x) dx + [u(x) o

du(x), -
— U, 5) = 0

By transforming the domain intergal term on the right-
hand side of the equal sign in eqn (5), we have

1
DY = L)U(O)(x, $V2u(x) dx

1
= vau(“(x, HBY dx

5O dUV(x, 5)

|
=| UV, 5V dx
L (x,$) +I e

6)

s _,

- U(l)(x’ S) dx ]lx:0

where
VU (x,5) = UOx,5)
B =Vu(x) = — hu(x)
By transforming the domain integral term on the right-hand

side of the equal sign in eqn (6), we have

1
p® =J U, )V dx
RAN(E

1
= jovz UP(x, s)b" dx

1 ) 2)
=J U@ (e, )V dx 4 [ 9 0
0 dx
(1
U5 %z

Roles of hypersingularity in boundary element method
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Fig. 1. The role of hypersingularity in the boundary element method.
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where

V2UO(x,5) = UV (x, 5)

b =V = — N(V2u(x)) = (= N u(x)

Repeating the above process, many boundary terms will
appear except one remainder of the domain integral as
follows:

N G+ )
S dU X, 5 ; db -
D(0)= Z [b(/) dx( )_ U(H—U(JC,S)E]'i:(I)
=0

+Ry4 (8)

where Ry, is a remainder term, and the body source term
and remainder term are found to be

B (x) = (=N Du(x)
d¥V(x)

- (=N D' )

1
Ry, = JOU(N+ Dix, )V26™ dx

The primary and secodary field for u(s) and #(s) can be
expressed as
u(s) = (u(x) T (x, 5) = UV (x, 5)r(x)
N )
L : db -
+ D BTV, 5) = UV, ) =112
=0 dx

+RN+1 (9)

1(s) = {u(x)M O (x, s) — LO(x, 5)t(x)

N , b
+ 2 MY D5~ 19 ) =S

i=0
+R N+ (10)

where Ry, is the derivative of Ry, ; with respect to s, and
the explicit forms for the kernel functions are shown in
Table 1 and are defined as

_ U i, 9))

, G+
L9 D (x, 5) = HUY™ (x,5))
as

U D, )}
- dxds

Eqns (9) and eqn (10) construct the dual equations for the
MRM.

By moving the field point close to the boundary, the dual
BEM is derived as follows:

MY D(x,5)

N
Tou—Upt= Y (TN u— UM 1) a1
i=1
and
N
Myu—Lot=D MMNu—LN 1) (12)

i=1

The explicit forms of eqn (11) and eqn (12) can be found to

be
—-791,0%) u(0)
1-T91,17) | u(1)
[U90,0%) —U©1,07)] [ «0)
LU90,17) —u©u,17)] L)

1+790,0%)
790,17)

=S

_(7)\)[’-#17-(/-#1](0’0-%) (—)\)j+1T(j+1)(1,0+)

—(=NTITON0,17) (=a TN,y
] u(0)
)
_ZN:O

— (=Nt 0,0%) (=N T'UTPa,07)

__(_)\)i-%—lU(j-é—])(O’l—) (—AY+IUU+”(1,1_)

1(0)
13)
{t(l)}

T(/+ 1)(x’ S)
ox
Table 1. Explicit forms for the kernel functions
U™ (x,s) Tﬁﬂ)(x,s) L'”“(x,x) M (x,s)
xX>s x <s xX>s x<s x> s x<s x> x<s
; ; ; 1 1A+
1 Ir¥3 1 Ir¥? 1 p¥+? 1 Ir¥t? 1 1r¥+? 305Dt j=0
—— — - = — —— )j !
2(2j+3)! 2(2j+2)! 2(2j+2)! 2(2j+2)! 22j+2)!

0 j=-1
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and
[M(O)(O, ot )

-M91,0)] [u(©)
MOw0,17) —MOP1,17)| )

-1+290,0%) —19(1,0%) £(0)
—+L9a, 17y L

L90,17)
)\)j+1M(i+1)(l,O+)
)\)j+lM(i+1)(1,1—)

=SV,
— (=N 'MUD0,0% (-
[—(—V“M“”m,r)(—
u(0)
{u(l)}
S,
—(=NTILID0,07) (=AY 'LV D(,0M)
[ —(=N*FLIN0,17) (=LY ")}

{“)}
(14)
(1)

where u and ¢ are column vectors of the boundary data.
Substltutmg “the values of the kernel functions shown in
Table 1 into eqn (11) and eqn (12), we have

1 -1 -1
3 {um)} 0 {t(O)}
LI B S5 SN PR IR G
2 2 2
v L(=N"
(O Z‘=°E(2j+2)! {u(o)}
en 1= u(l)
Z":05(21'+2)z 0
[ v 1(=NT!
0 2 02 Q2j+3)! {I(O)}
v (=N (1)
_Z"=°E(2j+3)! 0
(15)
and
-1 1
[o 0} {u(O)} 5 3 {t(O)}
0 0] LuD) 1 =1 {«D
2 2
v L(=NT!
0 2 oGty {u(O)}
- S L=+ . u(1)

=02°@2ji+ 1)

sy =N
0 2o gran

N 1(— VAR
2 s G 0

t(0)
o)
t(1)

After substituting the four cases of boundary conditions, the
dual BEM has the dual matrices of UT and LM equations.

For Case 1 with B.C. u(0) = 0 and u(1) = 0, we haveUT
equation

A)’+l
0 —( + 300! T

(1+Z,N YH 0
0@2j +3)'

#0) 0
Lo 1o}
(1) 0
LM equation

——(1+ZN )\)’+1

1
2 )

_~(1+ZN )IH 1
G+ 2

#0) 0
= (18)
«1) 0
For Case 2 with B.C. #0) = 0 and #(1) = 0, we have UT
equation

1 v (=N v“
2 _%IJ’Z’ TR

y N !
_( +200 "G+ 2

i ~10)

= (19)
u(1) 0

LM equation

(=N
0 —(HZ’N TR

_lZ/’Y (=N 0
240=0"2; 1 1!

u(0) 0
= 20)
SN



One-dimensional eigenproblems 29

For Case 3 with B.C. u(0) = 0 and #(1) = 0, we have

UT equation

0 _1 ZN ("' )1+l
T iz gyy

v N -1
—( +Z, (2 +3)' >

10) 0
PR
u(1) 0

LM equation

_ L lyw N
2 =@+ 1!

_( LS, (=N"" ),+1 0
(2j +2)'

1(0) 0
u(1) 0
For Case 4 with B.C. u(1) = 0 and #0) = 0, we have

UT equation
-1 N )}+I
2 ( + Z’ (2 + 3)'

7( +3V, (=X )’+1 0
(2]+2)'

{ ()} { }
(23)
(1) 0

LM equation

N )\))+l

0 ——(1+Z, (2 eI
v (=N )’H 1
"* + 200 "G+ 2

u(O)} {0}
= (24
{ H(1) 0

3 ANALYTICAL SOLUTIONS BY DBEM AND MRM

According to eqns (17)—(24), it is found that only three
terms involving series are present as shown below:

v (=N on (NP e (VT
20 (2j+3)!’Z’=° i+2)V 2% O 2i+ 1)
(25)

The series forms in eqn (25) can be found to have a closed

form as follows:

. (=N siny/A

1+ 7 T+ (26)
- -\ i+ 1

1+Z;':o((2j+)12)! =cosv/A @n
—\ +1

>i 0((21 +Y1), —Vsiny/A @8)

Therefore, eqns (17)—(24) can be expressed as follows:

Case 1.UT equation

0 l(sm\/—
")
1
0 (1)

{ 0 }
(29)
0

1 sm\/_
2T

LM equation

. | ]
T [ RC
1 1 | 1o
|-V 5]

Case 2.UT equation
[1 -1

3 SreosvA| {u(O)}_{O} an
—c_l 08V A 1 u(1) 0

L 2 2 i
LM equation

1 .
0 —-3 )\sm\/i {u(O)}_{O}
L%\/Xsin\/i 0 u(l) 0

(32)

Case 3.UT equation

— 1

0 ECOS\/X +0) o N
1sim/A -1 w1y [~ |0 &)
Lz I 2

LM equation
1

1 .
A A S
%cosﬂ 0 u(l) 0
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Table 2. Table 2 Eigensolutions for the Dirichlet problem (case 1)

Case 1

Dirichlet problem u(0) = 0, (1) = 0

uUT

LM

Eigenvalues (A)

sin \/X

(nm)?

Eigenequations =0 (a) COS\/X+ 1=0
VA (b) cosy/A—1=0
Boundary eigenvector{#(0), #(1)} X {, =13 {1, 13
Reason for failure in determining eigenmodes Null matrix OK.
Case 4.
N .
UT equation _ Z (_)\)(;+1){l(l—s)21+zu(l)
) - = 2 (2j+2)
-1 — 1sinvV/A
-5 > & | (w0 0 -1, 42
\/X = (35) "(-—2—') mu(o)}
i 1) 0 J :
—cosﬁ 0 N 25j+3
2 D N VAT At AT
LM equation e 2 (2j+3)!
[ 1 2ji+3
0 - —cosﬁ u(0) 0 _ LS HO
1 21 { (1)}2{0} 6 QETHr®
. 1
=4/ Asiny/A = 1 1—5)? —t
[ 2 VA 2 =§((1—>\( 2|S) ey 4'” +.u(l)

By combining the UT and LM equations from egns (29)—
(36) for the four cases, the trivial solutions for the boundary
eigenvectors can be dealt with when the UT or LM equa-
tion is only used for cases 1 and 2. Also, the augmented
eigenvalues and eigenequations can be deleted for cases 3
and 4. The analytical solutions for the eigenequations and
eugenvalues are shown in Tables 2, 3, 4, and 5 for cases 1,
2, 3 and 4 respectively. After the eigenvalues and boundary
eigenvectors are determined, the eigenmodes in eqn (9) can
be derived as follows:

N
)= D (=N"TV0n, u(x)

j=-1

— U9 D, )0} 2o

N
= > (=N, spu(1) — TV (0, 5)u(0))

j=-1

N
=3 (=N, )1y — U0, )1(0))

j==1

2 4
Ky 28
+(1 —>\5+)\ ZT+)M(O)}

s)5
!

(-9
!

1
- 5{((1—5)-)\ 3

3 —
et =D

NATRCL
—(s— §+ 5"‘---)[(0)}

= cos(vV/A(1 = )u(1) + cos(v/As)u(0))

2
sin(V/A1—5)) = sin(y/s)
V. VA

By substituting the homogeneous boundary conditions in
the four cases, where their corresponding eigenvalues and
corresponding boundary eigenvectors are shown in Tables
2-5, we can obtain the exact form of the eigenmodes as
shown in Table 6.

1

o

(1) 1(0}} 37

Table 3. Eigensolutions for the Neumann problem (case 2)

Case 2

Neumann problem #0) = 0,#1) =0

LM

Eigenvalues (A\)

Eigenequations

(a) COS\/X-F 1=0

(nm)*

— VAsiny/A=0

(b) cosy/A—1=0

Boundary eigenvector{u(0), u(1)}
Reason for failure in determining eigenmodes OK.

1,- 1 @1, ® X

Null matrix
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Table 4. Eigensolutions for the
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Robin problem (case 3)

Case 3 Robin (mixed) problem
w0 =0,(1)=0
uT LM
Eigenvalues (A) @n—yx
- 2
( 5 )
Eigenequations Correct cosx/)_\ =0 cos \/X =0
Augmented sm\/\éx =0 - )\sin\/x =0
Boundary eigenvector {(=n+t, _(_2n;_1)7r} (=1t M}
{u(2), H0)} 2
Table 5. Eigensolutions for the Robin problem (case 4)
Case 4 Robin (mixed) problem
u(1) =0, t(O) =0
uT LM
Eigenvalues (X\) @n— 17,
2
Eigenequations Correct cosx/—): =0 cosﬁ =0

Augmented

Boundary eigenvector

(u(0), «(1)}

sinvh_ — hsiny/A=0

A
Y- n @n—Dr

L=y =25 (L= ==

4 RESULTS AND DISCUSSIONS

1. Tables 2-5 show the analytical solutions for the
eigenvalues and eigenmodes. It is found that the UT
equation alone cannot determine the eigenmodes for
case 1 with the Dirichelet problem as shown in Table
2. However, the LM equation alone also cannot deter-
mine the eigenmodes for case 2 with the Neumann
problem as shown in Table 3.

2. For mixed type problems of cases 3 and 4, augmented
eigenvalues are present. After combining the UT and

LM equations, the corresponding eigenmodes are
found to be trivial for the augmented eigenvalues.
The analytical solutions are shown in Tables 4 and 5.

3. After combining the UT and LM equations, the eigen-
values and boundary eigenmodes can be determined
easily. The eigensolutions for the four cases are sum-
marized in Table 6. After substituting the eigenvalues
into eqn (9), the eigenmodes are as shown in Figs 2-5
for cases 1-4 respectively.

4. Although only four boundary data are treated as
the degrees of freedom to describe the problems,

Table 6. Eigensolutions for the four cases

Case 1 2 3 4

Y (n7)* (nm)* (2n — DHa/2)? ((2n — Nw/2)?
u(0) 0" I 0 !
" n (—1nnt! 0

Bound ode “) 0 =D

oundary m — *
Y ) | 0 2n—-Dmw 0

n * 2 Iy 2n—Dm

(1) (=1 0 0 (=1 —s

u(x) sin(nwx) cos(nmx) sin((2a — 1)ax/2) cos((2n — 1)mwx/2)

“The given B.S.s.
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analytical solutions can be derived by combining
DBEM and MRM.

S CONCLUDING REMARKS

In this paper, we have constructed dual equations for MRM
to solve the one-dimensional eigenproblem analytically. It
has been found that the hypersingular equation of the dual
equations plays an important role in determining the eigen-
solutions. After combining this equation, the augmented
eigenvalues and the failure in determining the eigenmodes
by employing the conventional MRM only are solved.
Further reasearch is being conducted on the dual approach
with regard to acoustic problems with incomplete partitions
using DBEM and MRM. Also, a complete MRM is being
investigated'*.
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