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A dual integral formulation for the interior problem of the Laplace equation with
a smooth boundary is extended to the exterior problem. Two regularized versions
are proposed and compared with the interior problem. It is found that an
additional free term is present in the second regularized version of the exterior
problem. An analytical solution for a benchmark example in ISBE is derived
by two methods, conformal mapping and the Poisson integral formula using
symbolic software. The potential gradient on the boundary is calculated by using
the hypersingular integral equation except on the two singular points where the
potential is discontinuous instead of failure in ISBE benchmarks. Based on the
matrix relations between the interior and exterior problems, the BEPO2D
program for the interior problem can be easily reintegrated. This benchmark
example was used to check the validity of the dual integral formulation, and
the numerical results match the exact solution well.
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INTRODUCTION

A dual integral formulation for crack problems was
developed in 1986' and published in 1988;2 furthermore,
it was extended to the Laplace equation with a degener-
ate boundary.3’4 This numerical implementation was
termed the dual boundary element method (DBEM)
by Portela et al.,’> and a large number of DBEM
papers were published in this decade, e.g. Refs 4, 6-9.
Three versions of dual boundary integral equations
were suggested in Ref. 10. These formulations had
been mainly applied to interior problems.!~>'®!" How-
ever, an exterior problem frequently occurs in the
descriptions of many engineering problems, so the
ability to handle this situation is not trivial. The exterior
problem introduces an infinite boundary, and whether
the integral along this infinite boundary vanishes or
not in the third version of dual boundary integral
equations will be investigated.

In this paper, the three versions of dual boundary
integral equations for the interior problem in Ref. 10
are extended to the exterior problem, and the difference
between the interior and exterior problems on the
influence matrix will be discussed. An example with
series-form and closed-form solutions is shown to
check the validity of the present DBEM formulation,
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and the results of the DBEM solution are achieved by
modifying the program, BEPO2D, for the interior prob-
lem from the original interior to the exterior problem
since the relations between the influence matrix of the
interior problem and that of the exterior problem can
be found. Also, the potential gradient on the boundary
point is determined by the second equation of dual inte-
gral equations instead of failure in ISBE benchmarks.'2

REVIEW OF DUAL BOUNDARY INTEGRAL
EQUATIONS FOR INTERIOR PROBLEMS

Chen and Hong'® derived three versions of the dual
boundary integral equations for interior problems as
follows:

Version I (unregularized form):

ru(x) = CPV L T (s, x)u(s) dB(s)
- RPVJ U (s, x)1(s) dB(s) (1)
B
nt(x) = HPV L M (s, x)u(s) dB(s)

- CPV LLi(s, x)t(s) dB(s) 2)
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where x is on the boundary B, u and ¢ are the potential
and flux, U’, T?, L' and M' are the four kernels in the
dual integral equations for the interior problems, and
RPV, CPV and HPV denote the Riemann principal
value, Cauchy principal value and Hadamard principal
value, respectively.

Version II (regularized form with respect to u):

0=RPV L T'(s, x)[u(s) — u(x)] dB(s)
—RPV L U'(s, x)2(s) dB(s) (3)
mt(x) = CPV LM"(S, x)[u(s) — u(x)] dB(s)

—CPV L Li(s, x)t(s) dB(s) @)
Version III (regularized form with respect to ¢):
0= RPVJ Ti(s, x)[u(s) — u(x)
B
—u'(x)r;5; — t(x)r; 7] dB(s)
_RPV JB U5, %)[t(s) — ' (x)ms5s — 1 (x)mii dB(s)
(5)
0= RPVJ M(s, x)[u(s) — u(x)
B
— ' (X)r;5; — 1 (x)r;7;] A B(s)
_RPV L Li(s, %)[t(s) — ' ()5 — 1 (x)ng7i] dB(s)
(6)

where r; = s; — x;, u’ denotes the tangent derivative of
u along boundary B, n; and 7; are the ith components
of the outnormal vector on s and on x, and §; is the ith
component of the tangent vector on x. It must be
noted that the free terms of the third version at the
left hand side of the equalities in eqns (5) and (6)
vanish. However, this is not the case as is easily seen
in the exterior problem which will be elaborated on
later.

DUAL BOUNDARY INTEGRAL EQUATIONS FOR
EXTERIOR PROBLEMS

Extending eqns (1)-(6) of the interior problem to the
exterior problem by considering the regularity condition
at infinity for the integral on the infinite boundary B_,"
we have:

Version I (unregularized form):

nu(x) = CPV JB T°(s,x)u(s) dB(s)

_RPV L U*(s, x)t(s) dB(s) (7)
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nt(x) = HPV L M®(s, x)u(s) dB(s)

- CPV JB L%(s, x)t(s) dB(s) (8)

where the superscript ‘¢’ denotes the exterior problem.

Version II (regularized form with respect to u):

0 = RPV L (s, x){u(s) — u(x)] dB(s)
—RPV JB US(s, )1 (s) dB(s) 9)
nt(x) = CPV L M (s, x)[u(s) — u(x)] dB(s)

- CPV JB L®(s,x)t(s) dB(s) (10)
Version III (regularized form with respect to ¢):
27u(x) = RPV L T°(s, x)[u(s) — u(x)
— W ()15, — ()] dB(s)
- RPVJ U®(s, x)[t(s) — u'(x)n;5;
B
— t(x)m;7;] dB(s) (11)
2nt(x) = RPV JB M®(s, x)u(s) — u(x)
— o' (x)r;5; — t(x)r;7;;] dB(s)
- RPVJ L(s,x)[t(s) — v’ (x)m;5;
B

— t(x)n; ;) dB(s) (12)

Comparing eqns (1)—(6) with eqns (7)—(12), it is found
that the free terms are different for version III between
the interior (eqns (5) and (6)) and exterior problems
(eqns (11) and (12)) although they are the same for the
other two versions.

Proof of eqn (11):

Setting a reference solution as

u(X) = u(x) + riu ;(x) (13)
where r; = X; — x;, we have

Viu, (%) =0 (14)

Also, u(X) satisfies the Laplace equation, i.e.

Viu(x)=0 (15)

Subtracting eqn (14) from eqn (15), the function
u(X) — u,(X) also satisfies the Laplace equation as
follows:

V(%) — (%) = 0 (16)

Based on the theory of dual integral equations for an
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exterior problem, we have

2lu(®) — ()] = j

T (s, X)[u(s) — ur(s)] dB(s)
B+B,,

- J U(s, X[t (s) — t:(s)] dB(s)
B+B,,
(17)

Let x approaches x, eqn (17) reduces to

2efu(x) (] = | T(00)) = (9] B

- jM U(s,0)[t(5) — t(5)] dB(s)
(18)

Since u(X) is equal to u,(X) as x approaches X in eqn
(13), we have

0], T0lu(s) —u(] 4B

—j U (s, %)[1(5) — t(s)] dB(s) (19)
B+B,,

It should be noted that integrations [p.p T°(s,x) x
[u(s) — ur(s)|dB(s) and [g, 5 U*(s,x)[t(s) — £:(s)] dB(s)
do not vanish although u(s) approaches u.(s) and #(s)
approaches #,(s) since the kernels 7(s, x) and U*(s, x)
are both singular. For the exterior problem, the domain
D is enclosed by the boundaries B and B,,. Considering
the contribution of integration over B,,, we have

jB T(s, 2)[u(s) — s(s)] dB(s)

= | Us(s,x)[t(s) = te(s)]dB(s)

JBy

= [, TG0 - U0(0)] B

=- D{[U,':f(s,X)ur(S)],z — (U (s, )ur,(5)],:} dD(s)

=—| Ufiul(s)dD(s)
D

__ "D 216(x — 5)ur(s) dD(s)

= —2mu(x) = —2mu(x) (20)

Equation (11) is therefore proved. By taking the
derivative with respect to eqn (11), we have eqn (12).

RELATIONS OF THE INTERIOR AND EXTERIOR
PROBLEM

The linear algebraic equations for an interior problem
discretized from the dual boundary integral equations
can be written as

(Tl {ug} = (Uit} (21
(M {ug} = [Lpgl{t} (22)

where {u,} and {¢,} are the boundary potential and
flux, and the subscripts p and g correspond to the labels
of the collocation element and integration element,

respectively.
For the exterior problem, we have
[Tpeq]{uq} = [U;q]{tq} (23)
[M;q]{uq} = [L;q]{tq} (24)

The influence coefficients of the four square matrices
(U], [T), [L] and [M] can be represented as

Up = RPVJ U(s,,x,) dB(s;) (25)
Bq
Ty = Tpg — 2mbpg = —Tpg
+ CPV J T (s4,%,) dB(s,) (26)
Bq
Ly, = #pq + 2mbpg = Ty
+ CPVI L(s4,x,) dB(s,) (27)
B‘l
M,, = HPVJ M (s, x,) dB(s,) (28)
B

q

where B, denotes the gth element and §,, =1if p=g,
otherwise it is zero; Tp and T, differ by a jump term
—2n6,, while L,, and L,, differ by a jump term 2m6y,.
The explicit form will be derived in the following
section. According to the dependence of the outnormal
vectors in these four kernel functions for the interior

(a) X2 T

¢ ;: n(x)

T )

X1
Jeometﬁcal node
o physical node
nondegenerate boundary

(b) Q (Xc.¥r)

0o

\ .

(0.5L,0) :5 = (0.5L.0)
t
S =0

Fig. 1. (a) Boundary element discretization. (b) Coordinate
transformation.
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e : node

x : collocation point

(a)

interior problem
n

e : node

x : collocation point

®

Fig. 2. (a) Boundary element mesh along the circular boundary. (b) Boundary element connectivity for the interior problem.
(c) Boundary element connectivity for the exterior problem.

and exterior problems, their relationships can be easily

found: - ~Ts, fp#g
T, = e 31
Upy = Uy, (29) " {T;zp ifp=4q Gy
e i _ [—Ly ifp#gq 1
Mi _ e qu_ IS if p= ( )
=M (30) b ifp=g¢
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Fig. 2.

CALCULATION OF POTENTIAL GRADIENT ON
THE BOUNDARY POINT

Before solving for the potential on the interior
point, the potential gradient on the interior point,
and the potential gradient on the boundary point, all
the boundary unknowns should be solved for by
either eqn (23) of the U,T method or eqn (24) of
the L, M method since no degenerate boundary is
present.

To determine the influence coefficient in eqns (23)
and (24), we first define the components of the normal
vectors as the form

ny(s) = sin(6), ny(s) = — cos(8) (33)
R(x) =sin(g),  a(x) = —cos(@) (34)

as shown in Fig. 1(a). Then, the inner and cross products
are

n(x) - n(s) = cos(¢—6)
= cos(¢) cos(#) + sin(¢) sin(8)
=My +ny iy (35)
n(s) x n(x) - e, = sin(¢ — )
= sin(¢) cos(#) — cos(¢) sin(6)
= —fyny + myn (36)

Using the following transformation as shown in Fig.

exterior problem

e : node

x : collocation point

contd.

1(b),
{x,} _ [ co§(0) sin(#) } { X| — 8 } (37)
Yy —sin(f) cos(8) ] | x3 — s,
The explicit forms of eqns (25)—(28) are shown below:
Uy, =vlogVel +y} —v+y, tan‘l(v/y,)lzz(iggz’fx’
(38)
Tpy = tan"l(v/y,)’zjigézxf’xr (39)
L,, = —cos(é—6)tan”' (v/y,)
—0Ssin(g — ) log(v? +37)[ 22057, (40)

tan"'(vfy,) @ ]
+— 5
yr Ve + yr

M,, = cos(¢ — ) [

1

— vy si —0) ———
)rsm(¢ )Uz +y$

-1
tan (v/y) v=0-SL—x,
‘“_,—r_ “1:~0<5Lix, (41)
Jr

where L is the length of the element. In calculating
the above limiting values for a singular element, the
L’Hospital rule, inverse triangular relations and the
jump function should be considered as follows:

—cos(¢ — )

im —— = 42
.Plno tan~!(x) (42)

tan~'(x) + tan"'(1/x) = 7/2 (43)
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. _ —0sL
yhgl  tan Hwlhlose=m (44)

Therefore, the Cauchy principal value and Hadamard
principal value can be easily determined.

For the potential gradient in the x direction on the
boundary point, we can determine the potential gradient
in the x direction by

Ou(x,) o -

WTXI*—=MPquq‘qutq (45)
where u, and t, are all the boundary data, including the
boundary conditions and unknown boundary data,
which have been solved by eqns (23) or (24), and LY,
and MI,"; are determined by eqns (40) and (41) after
substituting ¢ = 7/2. In a similar way, the potential
gradient in the y direction is determined by
Ou(x,)

- ¢
L My u, — Lo, (46)

2

where ¢ in Lj, and M}, are set to be .

AN ILLUSTRATIVE EXAMPLE WITH AN
ANALYTICAL SOLUTION AND NUMERICAL
IMPLEMENTATION

A benchmark example of test No. 2 in Boundary
Elements Abstracts,”” two dimensional steady-state
heat conduction with a circular hole in an infinite
domain, is considered. The exterior problem satisfies
the Laplace equation as follows:

Viu(r,0) =0, 1<r<oo, 0<8<2r (47)
with the boundary condition
u(r,0) = £(6), forr=1 (48)
1.2
angle
I + 30 by UT method
<> 30 by LM method
I:l 60 by UT method
0.8 — O & by LM method
pr AN
< 90 by UT method
- PAGIE by LM method
Z n \ EXACT
i \@\
'—
£
0.4 — \E\
0.0 T ‘ T I
0.0 2.0 4.0 6.0

RADIUS

Fig. 3. Potential distribution along 30, 60 and 90° by using the
U, T and L, M methods.

where
1-0 f0<f<n
6) = ' 49
16 {—1-0, ifr<6<2rm “9)

According to the Poisson integral formula for an
exterior domain, the integral representation for the
solution can be expressed as

1 -1
6 = —
u(r,0) L 12+ 7% — 2rcos(d — 8)

£(0)de’, r>1

T 2r
(50)
Substituting the boundary condition of eqn (41) into the

Poisson formula and integrating using symbolic math
software, the exact solution can be obtained as

u(xl,x2)=%tan‘1( 2% ) (51)

xf+x%—1

and the potential gradients are

Ou 2 —4x1x,

—~_=z 52

Ox; 7w (x}+x3—1)* +4x} 2
2 p—

Ou _22xi+x3-1)—4x (53)

Oxy 7 (x4 x2— 1) + 4x3

To check the exact solution of eqn (50), a bilinear
transformation in conformal mapping is also employed
to confirm the exact solution. The two processes of
conformal mapping are shown below:

z—1
=— 54
Wy Z+1 (54)
wy = In(w;) (55)
where z, w; and w, are complex functions.
1 .
7
= 0 — « * - -
E //_ﬁfgo———ﬂ
a er//i/
é N ) angle
(? / g 30° by LM method
< -1 — 30° by UT method
= J‘ 60° by LM method
O 60° by UT method
4 A\ o by LM method
{‘r 90° by UT method
——— EXACT
2 { T
0 2 4 6
RADIUS

Fig. 4. Potential gradient in the x, direction along 30, 60 and
90° by using the U, T and L, M methods.
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Substituting z by x; + x,i into w, in eqn (54), we
have

_x%+x§—1+2x2i

w
1)+ 2

(56)

Since w; is on the unit circle, eqn (55) can be reduced to
wy = iarg(w)) (57)

where arg denotes the argument of a complex number.
Therefore, the solution of u(x;,x,) in eqn (51) can be
derived again.

In eqns (52) and (53), it is easily found that the poten-
tial gradient at the boundary points (1,0) and (—1,0)
does not exist since the potential discontinuity is present
near these two points. Also, a series solution has been
presented in Ref. 12 as follows:

u(r,0) = ag + i (a, cos(nf) + b, sin(nd))r ™"

n=1
where

ao_—_anz()
2 n
bu= (1 = (~1Y]

Since more than 40 terms were needed to reach the
convergence found in Ref. 12, the solution is not
adopted in the following numerical calculations.

In numerical implementation, two alternatives are
suggested to modify the program, BEPO2D, for an
interior problem from interior problems to exterior
problems: change the connectivity of the boundary ele-
ment as shown in Fig. 2, or modify the program using

04 ————

X2 -GRADIENT
—1
"
§

-0.8 t T T : T

0 2 4 6
RADIUS

Fig. 5. Potential gradient in the x, direction along 30, 60 and
90° by using the U, T and L, M methods.

eqns (31) and (32). Both alternatives result in the
same influence coefficients. Therefore, only one numeri-
cal result will be shown.

RESULTS AND DISCUSSION

Based on the three versions for the exterior problem, the
linear algebraic equations are found to be the same. The
numerical example is test problem no. 2 in ISBE bench-
marks for steady state heat conduction for the exterior
problem. The 24 boundary elements are shown in Fig.
2. The potential distributions along 30, 60 and 90° are
shown in Fig. 3, and the boundary element solution
agrees with the exact solution very well. Also, in Figs
4 and 5, the numerical results of the potential gradient
in the x; and x, directions along 30, 60 and 90° for
the interior point are satisfactory. Furthermore, the
potential gradients in the x and y directions on the
boundary point are determined by eqns (45) and (46)
and are shown in Figs 6 and 7, respectively. All the
above DBEM results were obtained by using the U, T
or L, M methods. Both methods agree with the exact
solution. It is found that oscillation occurs near the
zero angle in Figs 6 and 7 due to the singular point at
(1,0). The potential flux approaches infinity at these
two points, (1,0) and (—1,0) in the (x,y) coordinate
system as eqns (45) and (46) reveal, since potential
discontinuity is present at the two points. However,
calculation of the potential gradient at the other points
along the circular boundary is carried out instead of
failure in Ref. 12. The normal fluxes on the r=1
boundary, and the » = 2 and r = 3 artificial boundaries

0

X1-GRADIENT
A
l

T T T T
40 80 120
ANGLE
Fig. 6. Potential gradient in the x; direction on the circular
boundary by using the U, T and L, M methods.
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2
B RADIUS=1
4+ BEMby LMmethod
E1— - ¢ BEMby UT method
w —— EXACT
(@]
< _
o
O
[
< 0 —
.
N ’ ?Q‘meaA¢A¢¢4...m
singular point
<
1 ‘ I I
0 40 80 120

ANGLE

Fig. 7. Potential gradient in the x, direction on the circular
boundary by using the U, T and L, M methods.

=

0

The phenomenon of heat radiation

Fig. 8. Normal flux along the r = 1,2 and 3 boundaries.
are shown in Fig. 8. It is found that the larger distance r
is, the smaller is the normal flux obtained. This result
obeys the law of heat balance.

CONCLUSIONS

Three versions of dual integral formulations for the

exterior problems have been proposed. It has been
found that the free term for the third version is different
from that of the interior problem. The relations of the
linear algebraic equations for the interior and exterior
problems have been discussed. Two alternatives have
been incorporated into the program, BEPO2D, for
the interior problem to solve the exterior problem. A
benchmark example of test No. 2 in Boundary Elements
Abstracts has been used to show the validity of the
present formulations. Also, the failure to determine the
potential gradient on the boundary point has been dealt
with by the proposed dual formulations.
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