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Abstract

In this study, a boundary formulation for calculating moments of an arbitrary closed planar region is proposed instead of calculating
moments using the domain integral. The Gauss’ divergence theorem is used to transform moments of area into boundary integrals. Three
examples are demonstrated to show the validity of the proposed method. Results obtained from the boundary formulation are compared with
analytical solutions, and good accuracy is obtained.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Evaluation of the domain integral of an arbitrary closed
planar region is a fundamental problem in various fields of
engineering and applied science. The area of an arbitrary
closed region is important in surveying [1]. The geometric
center of an arbitrary closed region is of great importance
for two-dimensional dynamics [2] as the planar motion of a
rigid body can be decomposed into two parts: the linear
motion of the mass center and the rotational motion about
the mass center. The second moment of an arbitrary two-
dimensional closed region is also meaningful in dynamics
[2] and in the mechanics of materials [3]. The polar moment
of the area is useful in 2-D planar rigid body dynamics when
the angular acceleration is related to the resultant moment
about the center [2]. The second moment of a cross-
sectional area about its neutral axis appears in the formula-
tion of the bending problem of an Euler–Bernoulli beam.
The shear stress acting on the cross-section of a beam is also
related to the moment of area [3]. The torsional rigidity is
calculated using a domain integral in the Prandtl formula-
tion for the Saint–Venant torsion problem, and the bound-
ary formulation of the torsional rigidity has been proposed
[4,5]. When the Poisson’s equation is solved using the
boundary element method, a domain integral exists in the
formulation. Several kinds of domain integrals can be trans-
formed into a boundary integral, e.g. when the body force

distribution is a constant body force, centrifugal force or
thermal loading [6]. However, general transformation
from a domain integral with an arbitrary body force function
into a boundary integral has not been proposed to the best of
authors’ knowledge.

To evaluate the domain integral of an arbitrary closed
planar region, finite discretization of the domain is tradition-
ally used. To avoid the complexity of domain discretization,
it is quite promising to employ an easier discretization
process if the domain integral can be transformed into a
boundary integral formulation. This is quite similar to the
original idea of BEM, which tries to solve the boundary
value problem by discretizing boundary alone, developed
by Kinoshita and Mura [7] in their pioneer works. Of course,
not all the domain integrals of arbitrary functions can be
transformed into boundary integrals. However, some func-
tions (for example, the moments of area presented in this
article) can be transformed. This concept, which transforms
a domain integral into a boundary integral, has been
employed in the multiple reciprocal method (MRM) [8–
12] in boundary element analysis for acoustic problems
and many other related problems.

Consider a closed planar regionD bounded by the boundary
G as shown in Fig. 1; the moments of area defined as follows:
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where n and m are non-negative integers,Mn
x is the n-th

moment of area with respect to thex-axis, Mn
y is the n-th

moment of area with respect toy-axis, Mnm
xy is the cross

moment of area andMn
P is the n-th polar moment of area

with r defined as the distance from the origin.
Applications of moments of area have appeared in many

engineering fields. Several commonly used applications are
described below. The area of a closed planar region can be

calculated from Eqs. (1a) or (1b) by lettingn be zero. In
surveying, the so-called area integrator can be used to calcu-
late the area of a closed region by means of the coordinates
of boundary points. However, the method employed is
different from which we propose here, which will be elabo-
rated on later. The coordinates of the geometric center,
� �x; �y�; for a closed planar region are known to be

�x�
R

D x dDR
D dD

; �2a�

�y�
R

D y dDR
D dD

: �2b�

It is clearly seen in Eqs. (2a) and (2b) that the coordinates
of the geometric center are obtained by dividing the first
moment of area by the zeroth moment of area.

In dynamics, the moments of inertia for a homogeneous
planar region are defined as

Ixx ; r
Z

D
y2 dD; Ixy � Iyx � r

Z
D

xy dD and Iyy

� r
Z

D
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wherer is the mass density function. It can be easily found
that Eqs.(1a), (1b) and (1c) are required in order to calculate
the terms in Eq. (3).

In mechanics of materials, the bending stress in an Euler–
Bernoulli beam as shown in Fig. 2 is formulated as

sxx � My
Izz

; �4�

where the neutral plane of the beam is thex–z plane
(i.e.y� 0),s xx is the bending stress,M is the moment acting
on the cross-section andIzz is the second moment of area
with respect to thez-axis.

To calculate the shear stress in an Euler–Bernoulli beam
with a rectangular cross-section as shown in Fig. 2, the
following is used:

t � VQ
Izzb

; �5�

where V is the resultant shear force acting on the cross-
section,Q is the first moment of the shaded area,A, in
Fig. 2 (i.e. Q� R

A y dA) with respect to thez-axis, t is
the shear stress andb is the width of rectangular cross-
section.

The applications mentioned earlier all require the calcu-
lation of moments of area. To transform a planar domain
integral into a boundary integral, two theorems, the Gauss’
divergence theorem and the Stokes’ theorem [13], may be
useful. In this study, the Gauss’ divergence theorem is used
to transform the moments of area from a domain integral
into a boundary integral, and the discretization formulation,
which uses the line element scheme is also derived. Finally,
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Fig. 1. A closed planar region.

Fig. 2. A beam problem.



three examples are illustrated to show the validity of this
proposed formulation.

2. Boundary integral formulation of moments of area

Consider a planar closed regionD on thex–y plane with
boundaryG, where the outnormal vector on the boundary is
denoted as�n (shown in Fig. 1); the domain integrals of the
moments of area can be transformed into boundary integrals
as follows.

First considern� 0 in Eq. (1a) (orn� 0 in Eq. (1b)); the
zeroth moment of area is simply the area. We haveZ
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Z
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in which Gauss’ divergence theorem is used.
Now consider thatn is a non-zero positive integer in Eq.

(1a) or (1b)); we haveZ
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Therefore, the following equation can be derived:Z
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Similarly, we can deriveZ
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For the cross moment of area defined in Eq. (1c), the
following equation can be obtained whenm ± 0:Z
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Therefore, we haveZ
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If n ± 0, the cross moment of area can be also represented asZ
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For then-th polar moment, we haveZ
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Finally, we haveZ
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3. Discretization formula using the line element scheme

The moment of area can be expressed in terms of the
boundary integration as shown in the preceding section. In
the numerical implementation, the boundary integral, which
can be viewed as

R
G f �x; y� dG, is obtained by an approxi-

mated summation after the discretization process. In
general, the so-called shape function is used to approximate
the unknown kernel functionf(x,y) in which method the
value of the unknown kernel function at any point (x,y)
inside the element is approximated by the summation of
the products of shape function values and nodal values of
the unknown kernel function. In the case we study here, the
kernel itself is always a known function; therefore, it is not
necessary to approximate the kernel. However, the bound-
ary we encountered may be approximated by the shape
function. Consider them-th order element (m $ 1) to
approximate the boundary, in order to describe them-th
order polynomial 2-D curve in thex–y plane, it requires
m(m 1 3)/2 nodes in one element. The shape functions
can be set up asm(m 1 3)/2 2 1 order polynomials of the
local coordinates by requiring that the component of shape
function corresponding to the nodek of the element should
become 1 when the local coordinates matches the very
value of nodek and become zero when the local coordinate
s matches values of other nodes except nodek. This means
that the coordinate of points on the element can be
expressed as:

x�s� �
X
K

NK�s�xK ; �15�

y�s� �
X
K

NK�s�yK ; �16�
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where the summation overK means to have the summation
for all the nodes inside this element,NK(s) is the component
of the shape function corresponding to theK-th node and
(xK, yK) is the coordinate of theK-th node. According to this
algorithm, the integral then can be written as

X
a

Z
f �x�sa�; y�sa��Ja dsa; �17�

wherea is the element label andJa is the Jacobian value of
the mapping from the global coordinate (x, y) to the local
coordinate values.

For simplicity, only the line element (first order element)
is given here. Now consider the element shown in Fig. 3; the
angle between the positivex-axis and the circulation vector,
which is the position vector from thej-th node to the (j 1 1)-
th node, isu j. If we set the local coordinates� 0 atj-th node
ands� 1 at (j 1 1)-th node, the shape function then can be
written as

N �
Nj�s�

Nj11�s�

" #
�

1 2 s

s

" #
: �18�

In addition, the value ofJa � Lj whereLj is the element
length for j-th element.

The outnormal vector on this element,knj , can be denoted
as

knj � �sinuj ;2cosuj�; �19�

whereu j can be calculated from

uj � cos21 xj11 2 xj

Lj
; �20�

in which xj is thex component for thej-th node.
From the definition of shape function, we have

x� { �1 2 s�xj 1 sxj11} �21�
and
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Therefore,r � ���������

x2 1 y2
p

can also be expressed as a function
of the local coordinates.

After discretization on the boundary withN elements, Eq.
(6) can be written asZ

D
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Similarly, we haveZ
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from Eqs. (8) and (9).
Further, the cross moment of area can be found asZ

D
xnym dD � 21

m1 1

XN
j�1

(
cosuj

Ln1m11
j

Xn
k�0

Xm1 1

l�0

 
n

k

!

×
 

m1 1

l

!
ak

j c
l
jb

n2k
j dm112l

j
�0:5Lj�k1l11 2 �20:5Lj�k1l11

k 1 l 1 1

)
;

�26�
where

n

k

 !
� n!

k!�n 2 k�! ; aj � �xj11 2 xj�;

bj � 0:5Lj�xj11 1 xj�; cj � �yj11 2 yj�
and

dj � 0:5Lj�yj11 1 yj�:
Similarly, Eq. (12) can be rewritten asZ

D
xnym dD � 1

n 1 1

XN
j�1

(
sinuj

Ln1m11
j

Xn1 1

k�0

Xm
l�0

 
n 1 1

k

!

×
 

m

l

!
ak

j c
l
jb

n112k
j dm2l

j
�0:5Lj�k1l11 2 �20:5Lj�k1l11

k 1 l 1 1

)
:

�27�

W. Yeih et al. / Engineering Analysis with Boundary Elements 23 (1999) 611–617614

Fig. 3. Notations related to the integration of an element.



To evaluate the polar moment of area, we define
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j ;
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j ;
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Then, the following integral forms can be used in the calcu-
lation:
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For the boundary formulation of the polar moment of

area, the integral in each element involves
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in which the integral can be performed using the formulae
listed above. Finally, we haveZ

D
rn dD �

XN
j�1

Kj : �29�

4. Demonstrated examples

Three examples will be given to show the validity of the
proposed method.

Example 1. A semicircular region with radiusr as shown
in Fig. 4 is considered. To calculateIxx �

R
D y2 dD we can

use Eq. (8) to get

Ixx � 1
6

Z
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u
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0

� pr4

8
;

whereC is the integration path along the bottom edge of the
semicircular region andS is the integration path along the
circular arc of the semicircular region. The value obtained
using the proposed method is exactly the same as the
analytical solution. Numerical results for different element
numbers onS are tabulated in Table 1. It is not surprising
that the numerical values converge to the exact solution as
the number of element increases.

Example 2. A parabolic spandrel is considered as shown
in Fig. 5. In order to calculate the geometric center, we first
calculate the area of this region as

A�
Z

D
y0 dD
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Fig. 4. A semicircular region for Example 1.

Table 1
Ixx for a semicircular region with radiusr � 1

Elements on the semicircular arc 10 20 50 100 500
Du (degrees) 18 9 3.6 1.8 0.36
Ixx � p /8(0.393): analytical 0.380 0.389 0.392 0.393 0.393
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Then the first moment with respect to thex-axis andy-axis
can be calculated asZ

D
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andZ
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Therefore, the coordinate of the geometric center can be
found as

�x�
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D x dD
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� 3a
4
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A

� 3h
10

:

The numerical results for different element numbers on the
parabolic arc are tabulated in Table 2. Good convergence is
obtained as the number of element increases.

Example 3. A square region is considered as shown in
Fig. 6. To calculateIxy �

R
D xy dD; we can evaluate it using

Eq. (11) and getZ
D

xy dD � 1
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Z
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Fig. 5. A parabolic spandrel for Example 2.

Table 2
Coordinates of the geometric center for a parabolic spandrel witha� 1,k�
1 andh � 1

Elements on the parabolic arc 10 20 40 100 500
Dx 0.1 0.05 0.025 0.01 0.002
�x� 0:75 0.744 0.748 0.750 0.750 0.750
�y� 0:3 0.300 0.300 0.300 0.300 0.300

Fig. 6. A square region for Example 3.

Table 3
Ixy for a square region

Elements 4 8 16 20 32
Element length 1.0 0.5 0.25 0.2 0.125
Ixy � 0.25 0.25 0.25 0.25 0.25 0.25
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x�2dx�

� 1
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:

Numerical results obtained using the equal-length element
mesh are tabulated in Table 3. It is found that the results
match the analytical value very well even when only four
elements are used. As the formula listed in Eq. (26) and
other discretized formulae are based on the line element,
the result will be exact when a polygon is considered.

5. Integration of an analytical function in a planar region

It is well known that an analytic function,h(x,y), can be
expanded into a Taylor’s series with the expansion center at
the origin, which has the following form:

h�x; y� �
X∞
m�0

X∞
n�0

hmnx
myn

: �30�

Then the area integral ofh(x,y) can be evaluated numeri-
cally usingZ

D
h�x; y� dD ù

XN
m�0

XN
n�0

hmn

Z
D

xmyn dD; �31�

provided that the higher order terms could be neglected.
Depending on the values ofn andm, the domain integrals
in Eq. (31) can be transformed into boundary integrals easily
by using Eqs.(6), (8), (9), (11) and (12). Therefore, the
proposed method is useful in evaluating the area integral
for an analytical function and especially for an irregular
shape domain. Further, the proposed method is valid for
1-D, 2-D and 3-D cases. In 1-D cases, the Gauss divergence
theorem simply reduces to integration by parts.

6. Conclusions

In this study, the general boundary integral formulae for
the moments of area have been derived analytically using

Gauss’ divergence theorem. Formulae for the finite discre-
tization using the line elements have also been derived.
Three examples involving analytical derivation and numer-
ical implementation have been given to show the validity of
the proposed method. The area integral for an analytical
function can be evaluated using the boundary integral
formulation while employing the Taylor’s series expansion
of the analytical function.
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