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Abstract

The dual boundary element method in the real domain proposed by Hong and Chen in 1988 is extended to the complex variable dual

boundary element method. This novel method can simplify the calculation for a hypersingular integral, and an exact integration for the

in¯uence coef®cients is obtained. In addition, the Hadamard integral formula is obtained by taking the derivative of the Cauchy integral

formula. The two equations (the Cauchy and Hadamard integral formula) constitute the basis for the complex variable dual boundary integral

equations. After discretizing the two equations, the complex variable dual boundary element method is implemented. In determining the

in¯uence coef®cients, the residue for a single-order pole in the Cauchy formula is extended to one of higher order in the Hadamard formula.

In addition, the use of a simple solution and equilibrium condition is employed to check the in¯uence matrices. To extract the ®nite part in the

Hadamard formula, the extended residue theorem is employed. The role of the Hadamard integral formula is examined for the boundary

value problems with a degenerate boundary. Finally, some numerical examples, including the potential ¯ow with a sheet pile and the torsion

problem for a cracked bar, are considered to verify the validity of the proposed formulation. The results are compared with those of real dual

BEM and analytical solutions where available. A good agreement is obtained. q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

For scalar or vector potential problems, the analyst may

encounter problems with a singularity; nevertheless, the

singular behavior is often ignored in numerical methods in

the expectation that the error will be limited to the vicinity

of the singularity. However, it is essential for the employed

formulation to be capable of describing the singular beha-

vior when the singularity arises from a degenerate bound-

ary, for example, the sheetpile design in seepage problems

where the singularity dominates the force exerted on the

sheet piles as shown in Fig. 1 [1], and in the determination

of the stress intensity factor for a cracked bar under torsion

in fracture mechanics as shown in Fig. 2 [2], where the

strength of the singularity is the very value to be sought.

Mathematically speaking, the two problems have a degen-

erate boundary. In this regard, it may be recalled that an

insurmountable dif®culty in the use of conventional BEM

crack (sheetpile) modeling stems from a mathematical

degeneracy in the BEM formulation when both upper and

lower crack (sheetpile) surfaces lie in the same location. The

equations for the points at the upper surface of the crack

(sheetpile) are dependent on and even identical to those at

the lower, and, as a consequence, the formulation is insuf®-

cient to secure a unique solution. Undeniably, it results in an

in®nite number of solutions. In a numerical calculation, this

is evident in a vanishing determinant or algebraic singular-

ity of the coef®cient matrix of the discretized equations. In

the ®nite element approach, to tackle the degenerate bound-

ary problems, special treatments, such as the quarter point

rule, have been used, or special singular or hybrid elements

have been developed. For examples, MSC/NASTRAN

provides the capabilities of singular CRAC3D and

CRAC2D elements for crack problems, but for the potential

problems with a singularity, no counterparts have been

developed for the above-mentioned commercial program

to the authors' knowledge [1,3].

In recent decades, the boundary element method has

evolved into be a widely accepted tool as a solution for

the engineering problems. The easy data preparation due

to the one-dimension reduction, compared to the FEM,

makes it attractive for practical use. However, for problems

with singularity arising from a degenerate boundary, it is

well known that the coincidence of the boundaries gives rise

to an ill-conditioned problem. The subdomain technique
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with arti®cial boundaries has been introduced to ensure a

unique solution for the Laplace equation [4] and Navier

equation [5], respectively. The main drawback of the tech-

nique is that the deployment of arti®cial boundaries is arbi-

trary and, thus, cannot be implemented easily in an

automatic procedure. In addition, the model creation is

much more troublesome than in the single-domain

approach. To tackle such degenerate boundary problems,

dual integral formulations have been proposed, e.g. for

potential/seepage/Darcy ¯ows around cutoff walls/sheet-

piles [6], for crack problems [7±12], for screen impinging

in acoustics [2,13±17], and for thin air foils in aerodynamics

[18]. Using the dual integral formulations, all the aforemen-

tioned boundary value problems can be made well posed

and can be solved ef®ciently in the original single domain. A

review article on dual BEM can be found in Ref. [19].

However, all the above formulations were done in the real

domain. Owing to the dif®culty in calculating the Hadamard

principal value that requires much effort to solve; another

approach is desired [21]. The complex variable boundary

element method (CVBEM) has been developed to solve

potential problems [20]. For example, applications in aero-

dynamics [22], elasticity [23], corner problem [24], plate

[25], external ¯ow [26] and torsion bar [27] can be easily

found. All the above mentioned papers focus on problems

with a nondegenerate boundary. For such problems, the

Cauchy integral formula constructs the integral representa-

tion for the solution of the primary ®eld. The irregular inte-

grals can be more easily determined in the complex domain

than in the real domain. However, two disadvatanges will

occur if only the Cauchy integral formula is employed in the

CVBEM. One is in transforming the boundary conditions

[28], and the other is the limitation of applications to

problems with a degenerate boundary. After differentiation,

the Hadamard integral formula can represent the solution for

the secondary ®eld and can overcome the two disadvantages

for the conventional CVBEM.

In this paper, the complex variable dual boundary

element method based on the formulation of the dual inte-

gral equations is employed by constructing the Hadamard

integral formula from the derivative of the Cauchy integral

formula. This avoids both the above mentioned two disad-

vantages. A constant element scheme is used, and the

closed-form formulas for the in¯uence coef®cients are

determined. The general purpose program CVDBEM

(Complex Variable Dual Boundary Element Method) was

developed to analyze the seepage ¯ow under a dam with

sheetpiles and torsion problems for a cracked bar. Several

examples are furnished, and the boundary element solutions

are compared with results obtained using real dual BEM and

analytical solutions where available. Also, the rank de®-

ciency obtained using the equations in the real and the

imaginary parts is investigated using the singular value

decomposition technique. This technique is employed to

solve the overdeterminated system of the matrix. The

boundary effect is also discussed in this paper.

2. Dual integral formulation in the complex domain

In this study, we focus on boundary value problems for

scalar potential. The governing equation and boundary

conditions are shown below. The governing equation

7 2u�x; y� � 0; �x; y� in D; �1�
where D is the domain and the boundary conditions are

u�x; y� � �u; �x; y� on Bu �2�

2u�x; y�
2n

� �t; �x; y� on Bt; �3�

in which u is the potential, Bu the boundary with Dirichlet

data, Bt the boundary with Neumann data, and n is the

outnormal direction on the boundary and B � Bu 1 Bt:

In order to extend the problem solvable in the domain of a

real variable to one solvable in the domain of a complex

variable, we construct a complex function, w(z), from u(x,y)

by means of

w�z� � u�x; y�1 iv�x; y�; �4�
where z � x 1 iy is a complex variable and i2 � 21:
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Fig. 1. Classical problem of seepage ¯ow with a sheet pile under a dam.

Fig. 2. Classical problem of torsion problem for a cracked bar.



By the Cauchy integral formula [29], we have

2piw�z� �
Z

B

w�t�
�t 2 z� dt; z [ D; �5�

where B is the considered boundary. By differentiating Eq.

(5) with respect to z, we obtain [30,31]

2piw 0�z� �
Z

B

w�t�
�t 2 z�2 dt; z [ D: �6�

Eqs. (5) and (6) are termed the dual complex variable

boundary integral equations for domain points, which are

different from those of the real variable case [32] as follows:

2pu�x� �
Z

B
{T�s; x�u�s�2 U�s; x�t�s�} dB�s�; x [ D �7�

2pt�x� �
Z

B
{M�s; x�u�s�2 L�s; x�t�s�} dB�s�; x [ D; �8�

where t � 2u=2n; U(s, x), T(s, x), L(s, x) and M(s, x) are the

four kernel functions. By moving the point z to the bound-

ary, we can derive the dual complex variable boundary inte-

gral equations for boundary points as follows [33]:

piw�z� � CPV
Z

B

w�t�
�t 2 z� dt; z [ B �9�

piw 0�z� � HPV
Z

B

w�t�
�t 2 z�2 dt; z [ B; �10�

where CPV and HPV are the Cauchy and the Hadamard

principal values, respectively. The de®nitions of CPV and

HPV in the complex domain are similar to those in the real

case of dual boundary integral equations as follows:

pu�x� � CPV
Z

B
T�s; x�u�s� dB�s�

2
Z

B
U�s; x�t�s� dB�s�; x [ B �11�

pt�x� � HPV
Z

B
M�s; x�u�s� dB�s�

2CPV
Z

B
L�s; x�t�s� dB�s�; x [ B: �12�

By choosing the equation for the real part in Eq. (5), we

have

2pu�x� �
Z

B

2{ln�r�}
2n

u�s� dB�s�2
Z

B

2{ln�r�}
2t

v�s� dB�s�;
�13�

where 2/2n denotes the normal derivative and 2/2t is the

tangential derivative. By integrating by parts for the second

term on the right-hand side of the equal sign and employing

the Cauchy±Rieman equations as follows:

2v

2t
� 2u

2n
�14�

2
2v

2n
� 2u

2t
; �15�

we can derive Eq. (7) in the real dual model. Similarly,

v(x, y) also satis®es the same integral equations since u and v

are both harmonic functions. In the case of problems with

boundary conditions of the Neumann type, it is necessary to

construct the representation for the normal ¯ux, t, in terms

of a complex formulation. Using the following relations for

the real part and imaginary part for w 0(z):

Re{w 0�z�} � 2u

2x
�16�

Im{w 0�z�} � 2
2u

2y
; �17�

we have the alternative form for the second equation in the

dual model as

t � Re�w 0�z��n1 2 Im�w 0�z��n2; �18�
where w 0(z) can be obtained from Eq. (10), and Re{´} and

Im{´} denote the real part and imaginary part, respectively.

3. Discretization of the complex dual boundary integral
equations

Using the constant element scheme for w(z) along bound-

ary B, we can discretize Eqs. (9) and (10) in the following

forms:

piw�zp� �
Z

B

w�t�
�t 2 zp� dt �

XN
q�1

Z
Bq

1

�tq 2 zp� dtqw�tq� �19�

piw 0�zp� �
Z

B

w�t�
�t 2 zp�2

dt �
XN
q�1

Z
Bq

1

�tq 2 zp�2
dtqw�tq�;

�20�
where Bq is the qth boundary element and N denotes the

number of boundary elements. The in¯uence coef®cients

can be de®ned as

C1
pq ;

Z
Bq

1

�tq 2 zp� dtq �21�

C2
pq ;

Z
Bq

1

�tq 2 zp�2
dtq: �22�

For the regular element, no singularity occurs, and the

closed-form integral formula can be obtained as follows:Z
Bq

1

�tq 2 zp� dtq � ln�tq 2 zp�utq�t2
q

tq�t1
q

�23�

Z
Bq

1

�tq 2 zp�2
dtq � 21

�tq 2 zp� utq�t2
q

tq�t1
q
; �24�

where the selected branch cut does not intersect the consid-

ered domain, t1
q and t2

q are the two end points for the qth

J.T. Chen, Y.W. Chen / Engineering Analysis with Boundary Elements 24 (2000) 671±684 673



boundary element. For the singular and hypersingular

integrals, we derive the Cauchy principal value and Hada-

mard principal value using the surrounding technique as

follows:

CPV
Z

Bq

1

�tq 2 zp� dtq � 0 �25�

HPV
Z

Bq

1

�tq 2 zp�2
dtq � CPV

Z
Bq

1

�tq 2 zp� dtq 2
2

1
; �26�

where CPV and HPV are de®ned as

CPV
Z

B

f �t�
�t 2 z� dt � lim

1!0

Z
B 2 B1

f �t�
t 2 z

dt �27�

HPV
Z

B

f �t�
�t 2 z�2 dt � d

dz

Z
B 2 B1

f �t�
t 2 z

dt

� �

� lim
1!0

Z
B 2 B1

f �t�
�t 2 z�2 dt 2

2

1
f �z�

� �
�28�

in which B1 is small detour path and the last term,

2
2

1
f �z�

comes from the Leibnitz differentiation.

After discretizing Eq. (9), we have

C1R
pq

..

.
2C1I

pq

¼ ¼

C1I
pq

..

.
C1R

pq

2666664
3777775

2N£2N

uq

¼

vq

8>><>>:
9>>=>>;

2N£1

�
0

¼

0

8>><>>:
9>>=>>;

2N£1;

�29�

where

C1
pq � CPV

Z
Bq

1

�tq 2 zp� dtq 2 pidpq �30�

C1R
pq � Re�C1

pq� �31�

C1I
pq � Im�C1

pq�; �32�

in which dpq � 1 if p � q; otherwise is zero. In a similar

way, Eq. (18) can be discretized to get the following alge-

braic equation:

��n1C2R
pq 2 n2C2I

pq�..
.
2 �n1C2I

pq 1 n2C2R
pq ��N£2N

uq

¼

uq

8>><>>:
9>>=>>;

2N£1

� {pitp}N£1; �33�

where

C2
pq � HPV

Z
Bq

1

�tq 2 zp�2
dtq �34�

C2R
pq � Re�C2

pq� �35�

C2I
pq � Im�C2

pq�: �36�

After constructing the linear algebraic Eqs. (29) and (33),

we can assemble them into the following form:

C1R
pq

..

.
2C1I

pq

¼ ¼

C1I
pq

..

.
C1R

pq

¼ ¼

�n1C2R
pq 2 n2C2I

pq� ..
.

2�n1C2I
pq 1 n2C2R

pq �

26666666666664

37777777777775
3N£2N

uq

¼

vq

8>><>>:
9>>=>>;

2N£1

�

0

¼

0

¼

tppi

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
3N£1:

�37�

Substituting the known boundary conditions of u and t, we

have

�A�{x} � {y}; �38�

where [A] is the assembled matrix, {x} is the unknown

vector, and {y} is the known vector derived from the bound-

ary conditions. Since the complex formulation is consid-

ered, Eq. (38) is overdeterminated. The least squares

method or SVD technique can be employed to solve the

overdeterminated algebraic equation (38).

4. Use of a simple solution and a test of the equilibrium
condition

Since a constant potential can be a solution for w(z), we

have the solution

w�z� � c1 1 c2i �39�

t � 0: �40�

J.T. Chen, Y.W. Chen / Engineering Analysis with Boundary Elements 24 (2000) 671±684674



Substituting Eqs. (39) and (40) into Eq. (37), we have

C1R
pq

..

.
2C1I

pq

¼ ¼

C1I
pq

..

.
C1R

pq

¼ ¼

�n1C2R
pq 2 n2C2I

pq� ..
.

2�n1C2I
pq 1 n2C2R

pq �

26666666666664

37777777777775
3N£2N

c1

¼

c2

8>><>>:
9>>=>>;

2N£1

�

0

¼

0

¼

0

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
3N£1:

�41�

Since c1 and c2 can be arbitrary, the four matrices,

�C1R
pq �; �C1I

pq�; �n1C2R
pq 2 n2C2I

pq�;

and

�2�n1C2I
pq 1 n2C2R

pq ��;

all have eigenvalues of zero and eigenvectors of

{1¼1¼1}N£1: In other words, the rank of the four matrices

must be equal to or smaller than N 2 1; and the sum of all

the elements in each row for the four matrices is zero.

Fig. 3 shows that almost a zero value can be obtained for

J.T. Chen, Y.W. Chen / Engineering Analysis with Boundary Elements 24 (2000) 671±684 675

Fig. 3. The sum of each row in the in¯uence matrix. Fig. 4. The sum of each column in the in¯uence matrix.

Fig. 5. Flow without a degenerate boundary.
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Fig. 6. Potential distribution for Case 1: (a) u ®eld by complex dual BEM; (b) u ®eld by real dual BEM; (c) v ®eld by complex dual BEM.



the L-shape potential problem of Case 2, which will be

elaborated later.

If the length of all the elements are equal, the equilibrium

condition should be satis®ed as follows:Z
B

t�s� dB�s� � 0: �42�

After substituting the tp in Eq. (33) into Eq. (42), we ®nd that

the sums of each column in the two matrices

�n1C2R
pq 2 n2C2I

pq� and �2�n1C2I
pq 1 n2C2R

pq ��;
are zero theoretically. Since the BEM is derived from the

energy form instead of the equilibrium equation, some

numerical errors will be present when the test of the equili-

brium condition is used. It is found that a large residual of

the equilibrium condition in Eq. (42) appears near the corner

in an L shape as shown in Fig. 4, where the numerical errors

in the solution are usually very large. This index provides a

guideline for obtaining a better solution by employing the

adaptive mesh [34,35].

5. On the rank of the in¯uence matrices

For problems without a degenerate boundary, we have the
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Fig. 7. Velocity distribution for Case 1: (a) real dual BEM solution; (b) complex dual BEM solution.



ranks for the following eight matrices:

rank�C1R
pq � � N 2 1 �43�

rank�C1I
pq� � N 2 1 �44�

rank C1R
pq

..

.
2C1I

pq

� �
N£2N
� N �45�

rank C1I
pq

..

.
C1R

pq

� �
N£2N
� N �46�

rank

C1R
pq

¼

C1I
pq

26664
37775

2N£N

� 2N �47�

rank

2C1I
pq

¼

C1R
pq

26664
37775

2N£N

� 2N �48�

rank

C1R
pq

..

.
2C1I

pq

¼ ¼

C1I
pq

..

.
C1R

pq

2666664
3777775

2N£2N

� 2N 2 2 �49�

rank

C1R
pq

..

.
2C1I

pq

¼ ¼

C1I
pq

..

.
C1R

pq

¼ ¼

�n1C2R
pq 2 n2C2I

pq� ..
.

2�n1C2I
pq 1 n2C2R

pq �

26666666666664

37777777777775
3N£2N

� 2N;

�50�
where N is the number of boundary elements.

For problems with a degenerate boundary, we have more

dependent rows since the constraint equations obtained by
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Fig. 8. Flow without a degenerate boundary and with an L-shaped corner

singularity.

Fig. 9. Potential distribution for Case 2.



collocating the points on the both sides of the degenerate

boundary are the same. To obtain suf®cient constraint equa-

tions, Eq. (18) plays an important role in the dual CVBEM.

6. Numerical results and discussions

6.1. Case 1: ¯ow without a degenerate boundary

The governing equation and boundary conditions are

shown in Fig. 5. The exact solution is

u�x1; x2� � x1: �51�
Based on the CVDUAL program, the potential distribution

is shown in Fig. 6(a) for u ®eld. For comparison, the u is also

solved by using real dual BEM (BEPO2D program) [1] and

is shown in Fig. 6(b). Good consistency can be obtained

except in the corner. The imaginary part, v ®eld, by the

complex dual BEM is also shown in Fig. 6(c). The velocity

distribution is shown in Fig. 7(a) and (b) using the real and

complex dual BEM, respectively. The velocity gradients in

Fig. 7(b) are directly determined according to Eq. (18)

rather than through the numerical differentiation in the

conventional CVBEM [20].

6.2. Case 2: ¯ow without a degenerate boundary but with a

L-shaped corner singularity

The governing equation and boundary conditions in the

L-shaped domain are shown in Fig. 8. The potential distri-

bution is shown in Fig. 9 and compares well with those in

Ref. [36]. Also, the results of the sums in the rows and

columns for the in¯uence matrices, obtained using a simple

J.T. Chen, Y.W. Chen / Engineering Analysis with Boundary Elements 24 (2000) 671±684 679

Fig. 11. Potential distribution for Case 3: (a) real dual BEM solution; (b) complex dual BEM solution.

Fig. 10. Flow with a degenerate boundary of a sheetpile.
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Fig. 12. Potential gradient in the x direction beneath the sheetpile for Case 3. Fig. 13. Potential gradient in the y direction beneath the sheetpile for Case 3.

Fig. 14. Velocity distribution for Case 3: (a) real dual BEM solution; (b) complex dual BEM solution.



solution and the equilibrium condition, respectively, are

shown to be near zero in Figs. 3 and 4.

6.3. Case 3: ¯ow with a degenerate boundary of a sheetpile

Cases 1 and 2 are problems without a degenerate bound-

ary. For problems with a degenerate boundary, the conven-

tional CVBEM fails, and the dual approach is employed to

obtain a unique solution. In the following two cases, a

degenerate boundary is present. Case 3 is the ¯ow ®eld

with a sheetpile. The governing equation and boundary

conditions are shown in Fig. 10. Eq. (37) in conjunction

with the singular value decomposition technique is

employed to enable the overdeterminated matrix to have a

pseudo-inverse. The potential distribution is shown in Fig.

11(a) and (b) by using the real and complex dual BEM,

respectively.

The difference between them cannot be distinguished

easily by naked eyes except for the results near the bound-

ary. The velocities in the x-direction and the y-direction

beneath the sheetpile are shown in Figs. 12 and 13, respec-

tively. The boundary effect for the velocity shown in the

®gures occurs in the same way if the real dual BEM is used.

Moreover, the analytical solution obtained using the Chris-

toffel transformation in Ref. [4] and the results obtained

using the real dual BEM are both compared with the present

solution. The velocity distribution is shown in Fig. 14(a) and

(b) by using the real and complex dual BEM, respectively. A

good agreement is thus found.

6.4. Case 4: torsion problem with a degenerate boundary of

crack

For the Saint±Venant torsion problem of a cracked bar,

the governing equation and boundary conditions for the

potential can be formulated as shown in Fig. 15. The analy-

tical solution in polar coordinates can be found in Ref. [37]

J.T. Chen, Y.W. Chen / Engineering Analysis with Boundary Elements 24 (2000) 671±684 681

Fig. 16. Potential distribution for Case 4: (a) complex dual BEM solution;

(b) exact solution; (c) real dual BEM solution.

Fig. 15. Torsion problem for a cracked bar.



and is shown below:

u�r;f� � 32
a2

p

X1
n�0

r

a

� ��2n11�=2
2

r

a

� �2

�2n 1 1��16 2 �2n 1 1�2�

� sin
�2n 1 1�f

2
1

r2

2
; �52�

where (r, f ) is the polar coordinate, a the crack length, and

the diameter of the torsion bar is 2 cm. The potential

distribution obtained using the complex dual BEM is

shown in Fig. 16(a) and compares well with the exact solu-

tion shown in Fig. 16(b) obtained using Eq. (52). In addi-

tion, the results obtained using the real dual BEM are shown

in Fig. 16(c) for comparison (Table 1). Table 2 indicates that

the complex-variable BEM results are better than those of

real-variable BEM after comparing the exact solution. It is

also found that the error near the crack tip is larger than that

of other region.

7. Conclusions

The dual integral formulation in the domain of a

complex variable has been presented here. It has

been con®rmed that the developed program, CVDUAL,

J.T. Chen, Y.W. Chen / Engineering Analysis with Boundary Elements 24 (2000) 671±684682

Table 1

Comparisons of real dual BEM and complex dual BEM

Domain Real [32] Complex

State u(x1, x2) w�z� � u�x1; x2�1 iv�x1; x2�

Governing equation 7 2u�x1; x2� � 0 7 2w � 0

Dirichlet BC u � �u u � Re{w�z�} � �u

Neumann BC t � 2u

2n
� �t

t�Re{w 0�z�}n12Im{w 0�z�}n2� �t

Dual boundary

integral equations for domain points
2pu�x� �

Z
B

T�s; x�u�s� dB�s�2
Z

B
U�s; x�t�s� dB�s� w�z� � 1

2pi

Z
B

w�t�
�t 2 z� dt

2pt�x� �
Z

B
M�s; x�u�s� dB�s�2

Z
B

L�s; x�t�s� dB�s� w 0�z� � 1

2pi

Z
B

w�t�
�t 2 z�2 dt

Dual boundary integral equations for

boundary points
pu�x� � CPV

Z
B

T�s; x�u�s� dB�s�2
Z

B
U�s; x�t�s� dB�s� w�z� � 1

pi
CPV

Z
B

w�t�
�t 2 z� dt

pt�x� � HPV
Z

B
M�s; x�u�s� dB�s�2 CPV

Z
B

L�s; x�t�s� dB�s� w 0�z� � 1

pi
HPV

Z
B

w�t�
�t 2 z�2 dt

Matrix from T ~u � U~t
�C1�

~u

~v

( )
� {0}

M ~u � L~t
�C2�

~u

~v

( )
� {~t}

Linear algebraic equation Ax � y Ax � y

Table 2

Potential values of u(x,0), 21 , x , 0 using complex dual BEM and real

dual BEM

Position (x, y) Analytical

solution

CDBEM

(error, %)

RDBEM

(error, %)

(0.0, 0.0) 0.0000 0.0000 (0.0) 0.0000 (0.0)

(20.1, 0.0) 0.2037 0.1008 (50.5) 0.3110 (52.7)

(20.2, 0.0) 0.2764 0.2070 (25.1) 0.3549 (28.4)

(20.3, 0.0) 0.3267 0.2753 (15.7) 0.3867 (18.4)

(20.4, 0.0) 0.3654 0.3263 (10.7) 0.4119 (12.7)

(20.5, 0.0) 0.3969 0.3672 (7.5) 0.4326 (9.0)

(20.6, 0.0) 0.4235 0.4014 (5.2) 0.4501 (6.3)

(20.7, 0.0) 0.4463 0.4306 (3.5) 0.4653 (4.2)

(20.8, 0.0) 0.4663 0.4561 (2.2) 0.4786 (2.6)

(20.9, 0.0) 0.4841 0.4787 (1.1) 0.4904 (1.3)

(21.0, 0.0) 0.5000 0.5000 (0.0) 0.5000 (0.0)



is acceptable through comparison with the analytical

solution and real dual BEM. The hypersingularity

in the domain of a complex variable can be easily

determined for problems with a degenerate boundary.

It has been found that the BEM in the context of the

present formulation is particularly suitable for the

problems with singularity arising from a degenerate

boundary. For a potential problem with singularity,

dual BEMs (real or complex) are superior to FEM

not only in terms of data preparation but also in

terms of accuracy. In engineering practice, since

model creation requires the greatest amount of effort, the

present dual BEM, which avoids the development of an

arti®cial boundary, is strongly recommended for industrial

applications.
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