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Abstract

The spectral properties for the six kernels (influence matrices) in the dual boundary integral equations (dual BEM) are investigated for the
Laplace and Helmholtz equations of a circular domain. Based on the two-point functions for the six kernels of single layer, double layer,
normal derivatives of single and double layer potentials, tangent derivatives of single and double layer potentials, they can be expressed in
degenerate kernels. Using the analytical properties of circulants, the spectral properties are studied exactly in a discrete system for a circular
cavity when a uniform constant element scheme is adopted. After considering the number of degrees of freedom for the discrete system to be
infinite for continuous system, the spectral properties of continuous system can be obtained. The relation for the influence matrices between
the interior and exterior problems is addressed. Also, the condition number for the matrices and the orders of the pseudo-differential operators
are examined. Finally, the properties of Calderon projector in discrete formulation are derived and are demonstrated analytically by an
example of circular domain. Also, numerical results using the dual BEM program are performed to check the identities for the Calderon

projector. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Dual boundary integral equations as well as dual bound-
ary element method (DBEM) was developed by Chen [1].
Many applications for the engineering problems were done,
e.g. those with Hermite polynomial element [2], degenerate
boundaries [1,3,4], corners [5], the construction of a
symmetric matrix [6], the improvement of condition
numbers [7], the construction of an image system [7], the
tangent flux or hoop stress calculation on the boundary, an
error indicator in an adaptive BEM [8], fictitious (irregular)
eigenfrequencies in an exterior problem [9], spurious roots
in a multiple reciprocity method (MRM) [10,11], real-part
BEM [12,13], imaginary-part BEM [14,15], and degenerate
scale problem in BEM [16]. Nevertheless, the mathematical
aspects for the theory of dual boundary integral equations as
well as dual BEM were not studied thoroughly for the
researchers in engineering community. For an analytical
study, the degenerate kernel is a powerful technique since
it can separate the field point and the source point in the
kernel. For example, Chen [9] applied the dual series model
to study why fictitious frequency occurs for exterior
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problems using boundary element method. Also, Kuo et
al. [12] employed the degenerate kernels and circulants to
find the spurious solutions analytically and matched well
with numerical results. In the Chen and Zhou’s book [17],
the theory of pseudo-differential operator and Calderon
projector were used to study the kernels for the dual formu-
lation. In mathematical point of view, the dual formulation
is nothing new in the concept of Calderon projector [18].
The Calderon projector can construct the relations among
the four kernels in the dual formulation. Recently, Amini
[19] derived many original and interesting results of the
explicit analytical expressions for the elements of boundary
integral operators in a continuous system. To the authors’
best knowledge, no example in the discrete system has been
discussed on the Calderon projector and on the orders of
pseudo-differential operators. For a circular geometry
problem, it may be possible to examine all the properties
since circulant matrices have analytical forms for spectral
properties [20,21].

In this paper, we will employ the degenerate kernels in
the dual formulation to study the spectral properties for
discrete systems analytically and numerically, respectively.
An example with a circular geometry will be considered to
have the influence matrices in terms of circulants [20,21].
The spectral properties obtained by Amini [19] will be
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examined and some incorrect results will be discussed. Both
the Laplace and Helmholtz problems will be taken into
considerations. In addition, the condition number will be
determined. Finally, the properties of Calderon projector
in a discrete system will be demonstrated analytically and
numerically.

2. Degenerate kernels in dual formulation for the
Laplace and the Helmholtz equations

For the one-dimensional Laplace equation, we can
express the four kernel functions of dual formulation in
the degenerate forms as follows:
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where U, T, L and M are the four kernels in the dual formu-
lation [7], and
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It is found that the two-point functions for the four kernels

in Egs. (1)-(4) are separated. Only two terms in the series
are required to represent the kernels. Similarly, for the two-
dimensional Laplace equation, we have
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where r is the distance between x and s, s = (R, 0) and x =
(p, ¢) as shown in Fig. 1, the superscripts ‘i’ and ‘e’ denote
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the interior (p < R) and exterior (p > R) domains, respec-
tively. It is also found that the two-point ((p,¢) and (R,0))
functions for the four kernels in the two-dimensional case
can be separated since cos(m(6 — ¢)) = cos(mb)cos(me) +
sin(m)sin(md). Four arguments (R,0) for s, and (p,¢) for x
in the four kernels of Eqgs. (6)—(9) can be separated.
Mathematically speaking, the four kernels can be writ-
ten in degenerate forms. The number of terms in the
series is infinite for the two-dimensional case instead of
two terms for the one-dimensional case. For clarity, a
potential distribution for the U kernel of point source is
shown in Fig. 2 using the degenerate expression in two
different coordinate systems, (Py,¢1) and (P,,¢,). The two
results match well to obey the objectivity, i.e. frame of
indifference is satisfied for the expansion expression as
shown in Fig. 2.

Similarly, extending the Laplace equation to the
Helmholtz equation, the same degenerate kernels can
Fig. 1. The definitions of p, 6, ¢, a and R. be obtained. For the one-dimensional Helmholtz equation,

Laplace fundational solution : (where s=(R,0) , x=(p,9) )
U(s,x)=Inr=1In \/[p cos(¢) — Rcos(@)] +[ psin(¢) - Rsin(9)]

Ui(s,x)=lnR—i;11—(%)’”cos[m(9—¢)] , R>p

U‘(s,x)=lnp—i:%(§)’” cos[m(@—¢)] , p>R

00 > X

Fig. 2. Potential distribution using degenerate kernels of two different coordinate systems.
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In this case, only one term in the series is required for the
degenerate expressions. Similarly, for the two-dimensional
Helmbholtz equation, the real-part kernel functions can be

expressed as
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where Re means the real part, J,, and Y, are the mth order
Bessel functions of the first and second kind, and H(()l) is the

zeroth order Hankel fu

nction of the first kind.

For the imaginary-part kernels, we can decompose the

four kernels into
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where Im denotes the imaginary part. By combining the real
with imaginary parts together, the complex-valued kernels
can be expressed in degenerate forms.

3. Spectral properties for the influence matrices in the
dual formulation for the Laplace and Helmholtz
equations using constant element scheme of a circular
boundary

Suppose the boundary is circular. Then, the influence
matrix for the U kernel can be expressed as

[ ap ap  ay -+ An—p don—q ]
AHN—1 ap ap -+ dyy-3 dyN—2
[U]=| %~-2 don-1 Qo " don—4 GoN-3 22)
L a4 a as -t dyn— ap

if 2N constant elements scheme is adopted for the
circular problem [12,14]. This matrix [U] is found to

be a circulant due to rotational symmetry. By employ-
ing the mean-value theorem, the element in [U] matrix
is
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the eigen properties for circulants [20], the eigenvalue

A; can be derived as follows:
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By employing the properties of symmetric circulants
[20,21], we can derive the eigenvalues of the four kernels
using U®, T%, L and M* kernels to avoid the jump terms for
interior problems. Therefore, we have
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Fig. 3. The condition numbers for the four influence matrices.
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p

All the above spectral properties are useful for the direct
BEM with a fictitious boundary since R is greater than p for
the exterior problems as shown in Fig. 1.

For the direct BEM with p = R, the spectral properties for
the four kernels reduce to

27RInR, [=0

A= R 30
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where the superscripts on A; denote the corresponding
kernels, respectively. It must be noted that the double
roots occur when A_;=A;, [=1,2,...,(N — 1). There-
fore, the determinant for the influence matrices can be
derived as

det[K] = AO)\N(/\I)\Z"'AN—I)()\—I)\—I”A—(N—I))

= DoAy(\As Ay ) (34)
where K may be U, T, L. or M. The condition numbers
for the matrices are shown in Fig. 3. Also, the tangent
derivative properties for the single and double layer
potentials, L' and M' [5] are discussed as follows:
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The eigenvalues for L'(s,x) are derived, we have
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For the tangent derivative of double layer potential, we
have
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Table 1
The orders of pseudo-differential operators in the dual formulation (all the influence matrices have the dimensions of (2N + 1) by (2N + 1))

Order of A Rank
pseudo-differential
operator
U(s, x) -1 27RInR, 1= 0; —m(R/l), 1 =1,2,3,...,.N 2N,R=1;2N+1,R# 1
T(s,x) 0 0,l=0;, —m,[1=1,2,3,...N 2N
L(s, x) 0 2m l=0;7,1=1,2,3,...,.N 2N + 1
M(s, x) 1 0,l=0; w(/R),l=1,2,3,...,N 2N
L'(s,x) 0 7Ri, [ >0;0,1=0; —7Ri, | <0 2N
M'(s,x) 1 0,l=0; —InR, 1= 1,2,3,...,N 2N

The eigenvalues can be obtained as shown below

20
A= JO [cos(l(8 — ) + i sin(l(0 — H)IM'(s,x)R d(6 — ¢)

0, =0
| -tmR, 1=1,2,3,..,N
(38)
According to the eigenvalues for the six kernels, we

have the orders of pseudo-differential operators as
shown below:

0,(U)=—1, H'B)—H"'B), A,— 0( ! ) (39)

m

0,T)=0, H'B)—H®B), A,—O0() (40
0,L)=0, H®B—H®B, \,—O0(1) 1)
o,M)=1, HB—H 'B), A,—O0m “2)
0,(LY=0, H'B—H®B), I, —01) 43
o,MY=1, HB—H'B), A,—O0m) 44

where H'(B) denotes the Sobolev space of rth order on
the boundary B [17]. The results are summarized in
Table 1. After comparing the results with those of
Ref. [19], some errors in his paper for /\,T in Eq. (31)
can be found.

Similarly, for the fundamental solution (F*Inr) of
biharmonic operator, we have the order of pseudo-
differential operator as shown below

U'(s,x) = [(p cos ¢ — Rcos 6)” + (psin ¢ — Rsin 6)°][In R — > %(

U(s,x) = Plnr=

U(s.x) = [(pcos ¢ — R cos 0)” + (psin ¢ — Rsin 6)’][ln p — > %(

By moving the field point to the boundary, we have

U(s,x) = r* Inr = R* In R[2 — 2 cos(8 — )]

+ R*[2 — 2 cos(6 — ¢>)][ - Z lcos(n(@ - d)))] (46)
n

n=1

After lengthy derivation, the eigenvalues for the influence
matrix can be derived as shown below

A7R*In R + 2aR®, [=0

3
— 3 — 2R3 - +
Y 27R’ In R 2 7R, = *1 7)

2R

=1 | = otherwise

The order of pseudo-differential operator for the U kernel
of the circular plate is
1
A, — Ol —
" ( m? )

4. Calderon projector in the dual formulation for the
Laplace and Helmholtz equations — discrete system for
a circle

O,(U)= -3, H'(B)— H®B),

In order to verify the property of the Calderon projector
for the circular Laplace problem, we redefine the normal-
ized fundamental solution as

1
U(s,x) = %ln r

)mew—@m R>p

m=1

°lx =l®

y%mww—¢m,p>R

m=1

(45)
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When R approaches p, the four kernels reduce to

U'(s,x) = InR _ i Z lcos(m(a— ), p—R
1 1 2 2m mm
U@, x) = —1In = —Inr(Ry2 — 2 cos(0 — ¢)) = (48)
2 2 . mR 1 &1 N
U(s,x) = — — — —cos(m(O— ®), p—R
2 2qr =
- 1 _
o T'(s.x) = Z cos(m(B = #) = ;— + Z (0= ¢) = 2mm), p—R
a m=— 00
T(s,x) = R ﬁ (ifdp#0)= e . . )
T(s0) = =5~ Z cos(m(® = ) = J— ~ WZ_OO 8((0 — ¢) — 27m), p—R
(49
aU 1
Lis,x)= — = —— (if ¢ #
(s, %) op  4mR if ¢ # 0)
< > 1 _
L(s,x)= =52 > costm(® = ) = ;— — Z 8(6—¢)—2mm),  p—R
= - S (50)
Lo(s,x) = Z cos(m(f — ¢)) = i m;m 8(0— ¢) —2am), p—R
M'(s,x) = 0— ), p—R
2y B (50 = 5 m; mcos(m(6 = b)), p
M(s,x) = = = (629
apaR 87TR2 SiIl2 u € 1 - +
2 M5, ) = o— > moosm(6 = ), p—R
TR =
By observing the difference between the T and L kernels, to find [7,22]
the diagonal terms for the influence matrix have the jump (U] = [U°] (54)
terms *1/2. For the influence matrix of 7" kernel, we
have [M'] = [M®] (55)
Copamse (1 2 [T'] = [L7] (56)
[T, = J —t — 8((6 — 0)
J] _(1/2)A¢{47TR 2R m;w [Te] — [Ll] (57)
d) By defining the two matrices, [T] and [L]
- 277771)R}d0 (j no sum) = 2 5 (52) 1 1 1
" i i
[T} =[L]=[T]~ Sl = [T*] + S =L+ -
where A¢ = @/N. The explicit form for the element of 1
[T] matrix is =[L°] — E[I]
58
81 o
L= we have
T, = 4 2’ (53)
Ad y (11 1 117
FEa
1 11 11
This result for a circular boundary is different from that of Ad
a straight element where the Cauchy principal value is zero [T]=[L]= o (59)
instead of A¢/4. The reason is that the approximation of 111 11
boundary contour is different. According to the explicit
forms for the four kernels in the dual frame, it is obvious [ 1 1 1 - 1 1]
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Since a symmetric circulant for the influence matrices can
be reserved for a circular problem, we can prove the four
properties of the Calderon projector as folows:

~ LI+ (TP = (UM =0 (60)
[UJ[L] = [TI[U] 61)
[M][T] = [LI[M] (62)
— LI+ L = MIUT =0 (63)

Using Eq. (58), the first and fourth identities can be

rewritten as

[T'[T°] = [U][M]

[L][L¢] = [M][U]

(64)

(65)

Based on the circulant property, we can decompose the

matrices into

[U'] = [U°] = [@][D,][®] (66)
[M'] = [M°] = [®][D,,][®] "' (67)
[T'] = [L] = [®][D][®] ' = [@][D,][®] ™" (68)
[T°] = [L'] = [®][D;][®] ' = [®ID,][®] " (69)

where D is the diagonal matrix composed by its eigenvalues

and the transformation matrix, ®, is

o (TN emN=DIN

1 1

o AN 1n2
1 e771(2N /N e71'1(2N 1)°/N

The diagonal elements for the four matrices, D, are

(70)

RInR, 1=0
MY = R (71)
-—, 1=1,23,...(N—1),N
21
[ 1, 1=0
)\}T' 1
50 =123 (N- DN
AT = (72)
0, I=0
AT = 1
—=, 1=1,23,...(N—1),N
L 2

r 0 1=0
AT — |
! —5. [=123 (N -DN
A = 73
1, 1=0 (73)
AT =1
7 =123 (N-D.N
0, 1=0
N=1 1=1,2,3,...,(N—1),N 7%
2R3 - E) 9 LEEER] k)

It is found that Eqs. (71)—(74) show the adjoint prop-
erties of the influence matrices for the interior Neumann
and exterior Dirichlet problems as mentioned by
Kupradze [23]. For the Laplace problem, the four iden-
tities for Calderon projector can be easily proved as
shown below:

First identity:

[®][D7:][D7][@] ' = [®][D,1[D,1[P] '

o B
—1
4
= [®] _T‘ (@] (75)
—1
i 7
Second identity:
[®][D,1[D,][®@] ' = [®][D,][D,][P] '
- _
ER ln R
0
= [®] 0 [@] (76)
- 0_
Third identity:
[®][D,1[D/][®@] ' = [@][D,][D,,][®] "
| lR InR ]
2
0
= [®] 0 (@] (77)
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Fourth identity:

[®][D,1[D.][®] ' = [@][D,][D,][P] '

-0 —

= [®] — [D]! (78)

-1
L 4
To demonstrate the validity, an error index using the
Frobenius norm

12
m n 2

A= | DD layl
i=1 j=1

where ||A|| is the measure of the residuals for the identities.
Based on the numerical experiments using the dual BEM,
the four residues are shown in Fig. 4.

Similarly, we can extend the Laplace equation to the
Helmbholtz equation. Redefining the fundamental solution
for the Helmholtz equation, we have

—iH}" (kr)

U(s,x) = )

(79)

The real-part kernels can be expressed in terms of
degenerate forms as follows:

_:g
U(s,x) = Re{ﬁof(kr)}

00

V0= Y Ik kR) cosim = #), R > p

m=— 0o

0o

Us.0= > hukRIY, (k) costm(®— ), p> R

m=—

(80)

Is x):Re{;iM}

4 R

0

T(sx)= > %kJm(kp)Y;n(kR) cos(m(0— ), R>p

m=-— 00

=9

T (s.x)= > %kJ;,l(kR)Ym(kp) cos(m(6 — @), p>R

m=— 00

1)

Ls x):Re{;iM}

4 ap

[

D= > koY, kR) costm(®— $), R > p

[

Ea0= Y KR ko) cosim(®— @), p> R

(82)
—i 9*HY" (kr)
M(s,x) = Red — — 2=
(5,%) e{ 4 9poR

00

Mi(s, )= > %kzjﬁ,,(kp)Yﬁ,,(kR) cos(m(— @), R>p

m=— 00

M(s,x)= > %kzjlm(kR)Y’m(kp) cos(m(6— ¢)), p>R

m=— oo

(83)

The series in Eqgs. (80)—(83) becomes uniformly
convergent (U), piecewise convergent (7,L) and diver-
gent (M) when the field point moves to the boundary
with p — R™ from the exterior domain or p — R~ from
the interior domain. If the constant element scheme is
used, the diagonal terms of the influence matrix also
have the jump terms of *=1/2. For the coefficient matrix
of T' kernel, we have

o0

T's0= %kfm(kpm(km cos(m(6 — ¢))

m=— oo

D> Y+ 1Y) cos(m(6 — ¢)

m &)

[oe]

+ g D UnY i = T Y,) cos(m(0 — ¢))

m=— oo

" 1
=T.00.0) + 5550~ ¢)

T+ T1°
2

1
+ ﬁéﬁ(@ — ¢), (84)

and

. A¢/2 1
T = T + — — OR
T} J AM{ 0.0+ 5550 - 0) }d@

1 . 1
= E([lej] +[T;D) + 3 (j no sum) (85)

where A¢ = @/N, and T,(6,¢) is a regular function.
The Wronskian of the Bessel functions has been
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Fig. 4. The norms for the four identities of Calderon projector.

employed as shown below

2
WU, Y,) =Y, — Y, Jh = —R (86)

in deriving Eq. (84). Also the identity

o0

> cos(me) =27 i 8(¢p — 2m) (87)

m=— 0o m=— oo

in the generalized function [24] was used. For the
Helmholtz equation, the influence matrices for the four
kernels also satisfy Eqgs.(54)—(57). By observing the
difference between [Ti] and [T°], we redefine

[T;]=[T] = [L] = [T'] = S0 = [T + S (1]
—Li+II—Le—II (88)
=L+ M =[L]- S0

In a similar way for the Laplace equation, the four
matrices also satisfy the four indentities of Calderon projec-
tor as shown in Eqgs.(60)—(63). The first and fourth identities

can also be reduced to

[T'][T¢] = [U][M] (89)

[L'][L¢] = [M][U] (90)

Since all the matrices are circulants, they can be
decomposed into

[U'] = [U°] = [®][D ][] 1)
[M'] = [M*] = [®][D,,][®] ' (92)
[T'] = [L°] = [@][D][®@] ' = [®][D,][P] ' (93)

[T°] = [L'] = [@][D7-][@] ' = [®][D,][®] (94)

S oo 1 _
[T,]= 5([T] +[T°]) = E[CP]([DTi] + [DyD[@] ' (95)
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s=(R,6)

o

dB
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Fig. 5. The infinitesimal arc length with a center of curvature for a general boundary.

where the elements for the diagonal matrices, D, of the four
kernels are

R
AU = %J](kR)YI(kR), [=0,1,2,3,....(N — 1),N (96)

/\ET‘J — LMJI(kR)y;(kR), 1=0,1,2,3,...,(N — 1),N
AT 2
AT = %MJQ(kR)Yl(kR), 1=0,1,2,3,...,(N — 1),N
o7
AELi] — W_]de‘];(kR)Yl(kR)’ [=0,1,2,3,....,(N = 1),N
)\[L] — 2
A= #Jz(kR)Yﬁ(kR), [=0,1,2.3,...(N=D),N
(93)
k*R
MM = T2 TR (kR), 1=0,1,2.3,...(N = 1).N

99)

The first and fourth identities can be proved as shown
below

[@][D i ][D7][®] " = [®][D,][D,][®]

TR
4

[ JoYoT oY
LYY,

(@] ' o (@]
INVNI Y

LYY |
(100)

[®][D,1[D.][®] ' = [@][D,,1[D,][P] '

TR
T4

[ 70Y0J0Y o
LY JhY

INYN Yy

InJiyh |
(101)

For the second identity, we have
" 1 _
[UI[L] = [U][T,] = §[¢]([DU][DTi] + [DyI[DrD[P]

1 _
[®]([D7<][Dy] + [D51[DyDIP] " = [T][U]

(102)

(S

In the same way, the third identity can be proved.

Through a circular example, the theory of pseudo-differ-
ential operator in the dual formulation can be easily under-
stood by engineers. Although this paper deals with the
circular case, it can be extended to an arbitrary boundary.
For the general boundary, the center of curvature can be
constructed for the infinitesimal arc length as shown in
Fig. 5. Degenerate kernels can be employed in the local
region of circular boundary for the analytical study. If the
boundary is straight, the curvature is zero. Based on the
degenerate kernels, the fast multipole BEM was success-
fully applied to deal with some problems [25,26].

5. Conclusions

In this paper, the spectral properties for the boundary
integral equations were studied for the two-dimensional
circular problems. Both the Laplace and Helmholtz
equations were considered. The six kernels for the single
layer, double layer, their normal derivatives and tangent
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derivatives were all addressed. The orders of pseudo-differ-
ential operators, eigenvalues and eigenvectors were all
determined using the analytical properties for the circulants.
Also, the properties of Calderon projector in the dual formu-
lation are examined numerically in discrete system using
constant element scheme.
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