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Abstract

In this paper, the dual integral formulation for the modified Helmholtz equation in solving the propagation of oblique incident wave

passing a thin barrier (a degenerate boundary) is derived. All the improper integrals for the kernel functions in the dual integral equations are

reformulated into regular integrals by integrating by parts and are calculated by means of the Gaussian quadrature rule. The jump properties

for the single layer potential, double layer potential and their directional derivatives are examined and the potential distributions are shown.

To demonstrate the validity of the present formulation, the transmission and reflection coefficients of oblique incident wave passing a thin

rigid barrier are determined by the developed dual boundary element method program. Also, the results are obtained for the cases of wave

scattering by a rigid barrier with a finite or zero thickness in a constant water depth and compared with those of experiment and analytical

solution using eigenfunction expansion method. Good agreement is observed. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The boundary element method (BEM), sometimes

referred to as the boundary integral equation method, is

now establishing a position as an actual alternative to the

finite element method in many fields of engineering. The

dual boundary element method (DBEM), or the so-called

dual boundary integral equation method (DBIEM) devel-

oped by Hong and Chen [23], is particularly suitable for the

problems with a degenerate boundary. Mathematically

speaking, the hypersingular integral equation was first

formulated by Hadamard [22] to treat the cylindrical wave

equation by the spherical means of descent. In the mean-

time, Mangler derived the same mathematical form in

solving a thin airfoil problem [35]. The improper integral

was then defined by Tuck [47] as the ‘Hadamard principal

value (HPV)’. In aerodynamics, it was termed the

‘Mangler’s principal value’ [35]. Such a nonintegrable

kernel naturally arises in the dual integral formulation

especially for the problems with a degenerate boundary, e.g.

crack problems in elasticity [22,23,43], Darcy flow around a

cutoff wall [20], the aerodynamic problem of a thin airfoil

[48], electromagnetic wave impinging on an antenna [41]

and acoustic wave impinging on a screen [8,11,12,18,46,

49]. The thin water barrier considered in the present paper is

also one case of degenerate boundary. The dual formulation

also plays important roles in some other problems, e.g.

corner problems [14], adaptive BEM [3,28], degenerate

scale problems [4,5], spurious eigenvalues of an interior

problem [9,10,50], and fictitious frequencies of an exterior

problem [6]. A general application of the hypersingular

integral equation in mechanics was discussed in Ref. [37],

and a review article on the DBEM was presented in Ref. [7].

Combining the conventional integral equation, e.g. the

Green’s Identity or Somigliana Identity, with the hypersin-

gular integral equation, we call the two equations ‘dual

integral equations’ according to the symmetry and transpose

symmetry properties of the kernels [21,23]. From the above

point of view, the definition of the dual integral equations is

quite different from the conventional one used in crack

elastodynamics by Buecker [2]. The dual equations in the

present paper are independent with respect to each other for

the undetermined coefficients in the discrete system. The

dual integral equations defined by Buecker resulted from the

same equation but by collocating different points.

The present formulation has a total of four kernel functions,

which makes possible a unified theory encompassing

different schemes, various derivations and interpretations.
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For crack problems, a detailed derivation can be found in

Ref. [23]. The order of singularity for the kernel in the

normal derivative of the double layer potential is stronger

than that of the Cauchy type kernel by one. The paradox of

the nonintegrable kernel is introduced due to the illegal

change of the integral and trace operators from the

viewpoint of the dual integral formulation. In order to

ensure a finite value, Leibnitz’s rule should be considered in

the derivative of Cauchy principal value (CPV) so that the

boundary term of positive infinity can be included to

compensate for the minus infinity. In the last two decades,

many researchers have paid attention to regularization

techniques [45] for hypersingular and nearly hypersingular

integrals. Therefore, the value for the finite part can be

determined by means of regularization techniques. Based on

the theory of dual integral equations, the DBEM has been

implemented [15,16]. The dual integral representation for

the Laplace equation was proposed in Ref. [15] and a

general purpose program, BEPO2D, was developed. Also,

the program for crack problems has been developed by

Hong and Chen [23]. Portela extended to solve the crack

growth problems [43]. For the Helmholtz equation, the dual

formulation was developed by Chen and Chen [12]. In the

same way, the acoustic problem of the Helmholtz equation

with a screen was also solved successfully using the DBEM

program [12]. To the authors’ best knowledge, the DBEM

for the modified Helmholtz equation of a thin breakwater

subject to oblique water wave was not constructed.

Prediction of wave interactions has been studied pre-

viously by a number of authors for many kinds of

configuration of a water barrier on the basis of linear wave

diffraction theory [17,29,38]. Many analytical and numerical

solutions have been developed on the basis of the eigenfunc-

tion expansion method [24,32–34,44] and the BEM [25,30,

31,39,42,51], respectively. Following the theory of dual

integral equations and BEPO2D program developed by Chen

and Hong [15,16], the DBEM program has been modified to

solve the water wave problem of normal incident water wave

past a submerged thin barrier by Yueh and Tsaur [51]. The

reflection and transmission of oblique incident water wave

past a submerged barrier with a finite width were studied using

the conventional BEM under the linear wave theory [30]. In

these references, the incident angle of wave, shape of barrier,

barrier height, width and slope under various wave conditions

have been considered. Nowadays, submerged breakwaters are

often constructed to protect a harbor from waves of the open

sea. The primary function is to reduce the wave energy

transmitted through it and to have the advantages of allowing

water circulation, fish passage, providing economical protec-

tion. A suitable arrangement of a thin barrier may act as a good

model for a breakwater. The effect of such an arrangement on

incident wave can be studied by using the DBEM, assuming

linear theory for the thin breakwater.

In this paper, we will construct the dual integral

formulation for solving the problems of oblique incident

wave passing a ‘thin’ water barrier, which is similar to the

acoustic problem with a screen [12] and torsion problem

with a cracked bar [13]. Physically speaking, there is no zero

thickness breakwater in the real world. But a finite thickness

can be modeled as a zero thickness mathematically after

comparing the wavelength and the thickness of breakwater.

In the literature, a thin breakwater and cutoff wall have been

modeled by a zero thickness, by Farina et al. [19] and Lafe

et al. [27]. Therefore, thin water barrier and screen can be

seen as degenerate boundaries. The governing equation

considered here is the modified Helmholtz equation for

oblique incident wave passing a thin water barrier instead of

the Helmholtz equation for acoustic wave impinging on a

screen. The rigid boundary condition of a thin barrier will be

considered. All the improper integrals for the kernel

functions (UT in the singular equation, LM in the

hypersingular equation) encountered in the dual integral

equations using constant element will be reformulated into

regular integrals by integrating by parts and will be

calculated by the Gaussian quadrature rule. The constant

element used in the present paper is a zeroth order boundary

element. In aerodynamics, zeroth order boundary element

so-called panel method is very popular, e.g. USAERO and

PANAIR programs. Since the C1 continuity of density

function in the hypersingular equation is required [26,36],

use of the linear element results in an unbounded potential.

Also, the corner needs special treatment. These two reasons

lead us to use the constant element. The roles of

hypersingular integral equation in the DBEM for the

problems with a degenerate boundary (thin barrier) will be

examined. For the kernels in the dual formulation, we will

extend our experiences of the dual formulation on the

Laplace equation [16], Helmholtz equation [12] and Navier

equation [23] to the modified Helmholtz equation and will

examine the potential properties of the four kernel

functions. After discretizing the dual integral equations, a

DBEM program will be developed to solve the propagation

of oblique incident wave passing a thin barrier with a finite

or zero thickness. The results will be compared with those of

experiment and analytical solution by using the eigenfunc-

tion expansion method.

2. Dual integral formulation for the scattering wave

problem with a thin water barrier (a degenerate

boundary)

Consider a vertical thin barrier parallel to the z-axis as

shown in Fig. 1. A wave train with a frequency s propagates

towards the barrier with an angle u in a constant water depth

h. Assuming inviscid, incompressible fluid and irrotational

flow, the wave field may be represented by the velocity

potential Fðx; y; z; tÞ which satisfies the Laplace equation as

72Fðx; y; z; tÞ ¼ 0: ð1Þ

According to the uniformity of the water depth in the z-axis
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and the periodicity in time, the potential Fðx; y; z; tÞ of fluid

motion can be expressed as:

Fðx; y; z; tÞ ¼ fðx; yÞeiðlz2stÞ ð2Þ

where l ¼ k sinðuÞ and k is the wave number which satisfies

the dispersion relation:

s2 ¼ gk tanhðkhÞ; ð3Þ

in which g is the acceleration of gravity. The unknown

function, fðx; yÞ; describes the fluctuation of the potential

on the xy plane. Substitution of Eqs. (2) into (1) yields the

modified Helmholtz equation as follows:

72fðx; yÞ2 l2fðx; yÞ ¼ 0; ðx; yÞ in D; ð4Þ

where D is the domain of interest. The boundary conditions

of the interested domain are summarized as:

1. The linearized free water surface boundary condition:

›f

›y
2

s2f

g
¼ 0: ð5Þ

2. Seabed and breakwater boundary conditions:

›f

›n
¼ 0; ð6Þ

where n is boundary normal vector.

3. Radiation condition at infinity:

lim
x!1

x1=2 ›f

›x
2 ikf

� �
¼ 0: ð7Þ

4. The boundary conditions on the fictitious interfaces:

For the infinite strip problem, the domain can be divided

into three regions after introducing two pseudo-bound-

aries on both sides of the barrier, x ¼ ^l; as shown in

Fig. 1. The potential in the region I without energy loss

can be expressed as:

fð1Þðx; yÞ ¼ ðeihðxþlÞ þ R e2ihðxþlÞÞ
coshðkðh 2 yÞÞ

coshðkhÞ
ð8Þ

where the superscript of f denotes the region number, R

is the reflection coefficient and h ¼ k cosðuÞ: The

potential in the region III without energy loss can be

expressed as:

fð3Þðx; yÞ ¼ T eihðx2lÞ coshðkðh 2 yÞÞ

coshðkhÞ
; ð9Þ

where T is the transmission coefficient.

The boundary conditions on the fictitious interfaces are

fð1Þð2l; yÞ ¼ fð2Þð2l; yÞ ð10Þ

›fð1Þ

›x

�����
x¼2l

¼
›fð2Þ

›x

�����
x¼2l

ð11Þ

fð3Þðl; yÞ ¼ fð2Þðl; yÞ ð12Þ

›fð3Þ

›x

�����
x¼l

¼
›fð2Þ

›x

�����
x¼l

: ð13Þ

According to Eqs. (8)–(10) and (12), we can derive the

reflection and transmission coefficients as follows:

R ¼ 21 þ
k

n0 sinhðkhÞ

ð0

2h
fð2Þð2l; yÞcoshðkðh 2 yÞÞdy

ð14Þ

Fig. 1. Definition sketch of the water scattering problem of oblique incident wave past a rigid thin-barrier.
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T ¼
k

n0 sinhðkhÞ

ð0

2h
fð2Þðl; yÞcoshðkðh 2 yÞÞdy ð15Þ

where

n0 ¼
1

2
1 þ

2kh

sinhð2khÞ

� �
:

The first equation of the dual boundary integral equations

for the domain point can be derived from the Green’s third

identity [30]:

2pfð~xÞ ¼
ð

B
Tð~s; ~xÞfð~sÞdBð~sÞ2

ð
B

Uð~s; ~xÞ
›fð~sÞ

›n~s

dBð~sÞ;

~x [ D; ð16Þ

where x̃ is the field point ð~x ¼ ðx; yÞÞ; s̃ is the source point,

and Tð~s; ~xÞ is defined by

Tð~s; ~xÞ ;
›Uð~s; ~xÞ

›n~s

; ð17Þ

in which n~s denotes the normal vector at the boundary point

s̃, and Uð~s; ~xÞ is the fundamental solution which satisfies

72Uð~x; ~sÞ2 l2Uð~x; ~sÞ ¼ dð~x 2 ~sÞ; ~x [ D: ð18Þ

In Eq. (18), dð~x 2 ~sÞ is the Dirac-delta function. After taking

normal derivative with respect to Eq. (16) for a thin barrier

problem, the second equation of the dual boundary integral

equations for the domain point is derived:

2p
›fð~xÞ

›n~x

¼
ð

B
Mð~s; ~xÞfð~sÞdBð~sÞ2

ð
B

Lð~s; ~xÞ
›fð~sÞ

›n~s

dBð~sÞ;

~x [ D; ð19Þ

where

Lð~s; ~xÞ ;
›Uð~s; ~xÞ

›n~x

; ð20Þ

Mð~s; ~xÞ ;
›2Uð~s; ~xÞ

›n~x ›n~s

; ð21Þ

in which n~x represents the normal vector of x̃. The explicit

forms for the four kernel functions are shown in Table 1. By

moving the field point x̃ in Eqs. (16) and (19) to the

boundary, the dual boundary integral equations for the

boundary point can be obtained as follows:

pfð~xÞ ¼ CPV
ð

B
Tð~s; ~xÞfð~sÞdBð~sÞ

2 RPV
ð

B
Uð~s; ~xÞ

›fð~sÞ

›n~s

dBð~sÞ; ~x [ B; ð22Þ

p
›fð~xÞ

›n~x

¼ HPV
ð

B
Mð~s; ~xÞfð~sÞdBð~sÞ

2 CPV
ð

B
Lð~s; ~xÞ

›fð~sÞ

›n~s

dBð~sÞ; ~x [ B; ð23Þ

where RPV is the Riemann principal value, CPV is the

Cauchy principal value and HPV is the Hadamard

(Mangler) principal value.

It must be noted that Eq. (23) can be derived simply by

applying a normal derivative operator with respect to Eq.

(22). Differentiation of the CPV should be carried out

carefully by using Leibnitz’s rule. The commutative

property provides us with two alternatives for calculating

the HPV in a similar way used for crack problems [23]. For

the problem including a normal boundary S and degenerate

boundaries Cþ and C2 on the both sides of a thin barrier, i.e.

B ¼ S þ Cþ þ C2; Eqs. (22) and (23) can be reformulated

as follows.

For ~x [ S; Eqs. (22) and (23) become

pfð~xÞ ¼ CPV
ð

S
Tð~s; ~xÞfð~sÞdBð~sÞ

2 RPV
ð

S
Uð~s; ~xÞ

›fð~sÞ

›n~s

dBð~sÞ

þ
ð

Cþ
Tð~s; ~xÞDfð~sÞdBð~sÞ

2
ð

Cþ
Uð~s; ~xÞ

X ›fð~sÞ

›n~s

dBð~sÞ ð24Þ

p
›fð~xÞ

›n~x

¼ HPV
ð

S
Mð~s; ~xÞfð~sÞdBð~sÞ

2 CPV
ð

S
Lð~s; ~xÞ

›fð~sÞ

›n~s

dBð~sÞ

þ
ð

Cþ
Mð~s; ~xÞDfð~sÞdBð~sÞ

2
ð

Cþ
Lð~s; ~xÞ

X ›fð~sÞ

›n~s

dBð~sÞ; ð25Þ

where

Dfð~sÞ ; fð~sþÞ2 fð~s2Þ ð26Þ

X ›f

›n
ð~sÞ ;

›f

›n
ð~sþÞ þ

›f

›n
ð~s2Þ: ð27Þ

For ~x [ Cþ; Eqs. (22) and (23) reduce to

p
X

fð~xÞ ¼ CPV
ð

Cþ
Tð~s; ~xÞDfð~sÞdBð~sÞ

2 RPV
ð

Cþ
Uð~s; ~xÞ

X ›fð~sÞ

›n~s

dBð~sÞ

þ
ð

S
Tð~s; ~xÞfð~sÞdBð~sÞ2

ð
S

Uð~s; ~xÞ
›fð~sÞ

›n~s

dBð~sÞ;

ð28Þ
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pD
›fð~xÞ

›n~x

¼ HPV
ð

Cþ
Mð~s; ~xÞDfð~sÞdBð~sÞ

2 CPV
ð

Cþ
Lð~s; ~xÞ

X ›fð~sÞ

›n~s

dBð~sÞ

þ
ð

S
Mð~s; ~xÞfð~sÞdBð~sÞ2

ð
S

Lð~s; ~xÞ
›fð~sÞ

›n~s

dBð~sÞ;

ð29Þ

whereX
fð~sÞ ; fð~sþÞ þ fð~s2Þ ð30Þ

D
›f

›n
ð~sÞ ;

›f

›n
ð~sþÞ2

›f

›n
ð~s2Þ: ð31Þ

Eqs. (26), (27), (30) and (31) indicate that the unknowns on

the degenerate boundary double, and that the additional

hypersingular integral equation, Eq. (19), is correspondingly

necessary, i.e. the dual boundary integral equations can

provide us with sufficient constraint relations for the

doubled boundary unknowns on the degenerate boundary.

3. On the four kernel functions and their potentials

The four kernel functions, Uð~s; ~xÞ; Tð~s; ~xÞ; Lð~s; ~xÞ and

Mð~s; ~xÞ; in the dual integral equation shave different orders

of singularity when x̃ approaches s̃. The order of singularity

and the symmetry properties for the four kernel functions

and the continuous properties of the potentials across the

boundary resulting from the four kernel functions are

summarized in Table 1. In Table 1, not only the normal

derivatives for the single and double layer potentials, but

also the tangential derivatives are considered. For the

regular elements, no special treatment is needed since the

Gaussian quadrature rule can be directly employed. Without

loss of generality, the four improper integrals for the

singular elements obtained by using constant element

scheme after coordinate transformation can be formulated

into the following regular integrals:

(1) Uð~s; ~xÞ kernel:

diagð½U�Þ ¼ i lim
e!0

ð0:5l

20:5l
Dð1Þ

0 ðl
ffiffiffiffiffiffiffiffiffi
s2 þ e2

p
Þds

¼ i lim
e!0

(ð2
ffiffi
e

p

20:5l
Dð1Þ

0 ðllslÞds

þ
ð ffiffi

e
p

2
ffiffi
e

p ð2iÞlnðl
ffiffiffiffiffiffiffiffiffi
s2 þ e2

p
Þds þ

ð0:5lffiffi
e

p Dð1Þ
0 ðlsÞds

)

¼ i lim
e!0

(ð2
ffiffi
e

p

20:5l
Dð1Þ

0 ðllslÞds þ 0 þ
ð0:5lffiffi

e
p Dð1Þ

0 ðlsÞds

)

¼ i

(
Dð1Þ

0

 
ll

2

!
l 2 l

ð0:5l

20:5l
Dð2Þ

1 ðllslÞlslds

)
; ð32Þ

T
ab

le
1

T
h
e

p
ro

p
er

ti
es

o
f

th
e

k
er

n
el

fu
n
ct

io
n
s

fo
r

th
e

m
o
d
ifi

ed
H

el
m

h
o
lt

z
eq

u
at

io
n

K
er

n
el

fu
n

ct
io

n
K
ð ~s
;
~xÞ

U
ð ~s
; ~x
Þ

T
ð ~s
;
~xÞ

L
ð ~s
; ~x
Þ

M
ð ~s
;
~xÞ

E
x

p
li

ci
t

fo
rm

s
U
ðs
;x
Þ
¼

iD
ð1
Þ

0
ðl

rÞ
T
ðs
;x
Þ
¼

2
il

D
ð2
Þ

1
ðl

rÞ
y i

n
i

r
L
ðs
;x
Þ
¼

il
D

ð2
Þ

1
ðl

rÞ
y i
�n

i

r
M
ðs
;x
Þ
¼

2
il

( l
D

ð1
Þ

2
ðl

rÞ

r2
y i

y j
n

i
�n

j
þ

D
ð2
Þ

1
ðl

rÞ

r
n

i
�n

i)

O
rd

er
o

f
si

n
g

u
la

ri
ty

O
ðl

n
rÞ

w
ea

k
O
ð1
=
rÞ

st
ro

n
g

O
ð1
=

rÞ
st

ro
n
g

O
ð1
=
r2
Þ

h
y

p
er

si
n

g
u

la
r

S
y

m
m

et
ry

U
ð ~x
; ~s
Þ

L
ð ~x
; ~s
Þ

T
ð ~x
; ~s
Þ

M
ð ~x
; ~s
Þ

D
en

si
ty

fu
n

ct
io

n
y
ð ~s
Þ

›
f
=
›
n

f
›
f
=
›
n

f

P
o
te

n
ti

al
ty

p
e

S
in

g
le
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y
er

D
o
u
b
le
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y
er

N
o
rm

al
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er

iv
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e

o
f

si
n
g

le
la

y
er

N
o
rm

al
d
er

iv
at

iv
e

o
f

d
o
u
b
le

la
y
er

ð K
ð ~s
; ~x
Þ y
ð ~s
Þd

B
ð ~s
Þ

co
n

ti
n

u
it

y
ac

ro
ss

b
o

u
n

d
ar

y

C
o
n

ti
n

u
o

u
s

D
is

co
n

ti
n

u
o

u
s

D
is

co
n

ti
n

u
o
u

s
P

su
ed

o
-c

o
n

ti
n

u
o

u
s

Ju
m

p
v

al
u

e
N

o
ju

m
p

2
p
f

2
p
ð›
f
=
›
n
Þ

N
o

ju
m

p

P
ri

n
ci

p
al

v
al

u
e

R
ie

m
an

n
C

au
ch

y
C

au
ch

y
H

ad
am

ar
d

D
ð1
Þ

n
ðl

rÞ
is

th
e

fi
rs

t
k
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d

o
f

n
th

o
rd

er
m

o
d

ifi
ed

H
an

k
el

fu
n

ct
io

n
,
�n

i
an

d
� t i

d
en

o
te

th
e

it
h

co
m

p
o

n
en

t
o

f
n

o
rm
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d
ta

n
g
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t
v
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to

rs
o

n
x̃,

re
sp

ec
ti

v
el

y
.
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where i2 ¼ 21; diagð½U�Þ denotes the diagonal

element of the influence matrix [U ] (which will be

elaborated on later in Eq. (36)), Dð1Þ
0 ðlsÞ is the first kind

of the zeroth order modified Hankel function, l is the

element length and the coordinate of the collocation

point x̃ is (0,0).

(2) Tð~s; ~xÞ kernel:

diagð½T�Þ ¼ il lim
e!0

ð0:5l

20:5l
Dð2Þ

1 ðl
ffiffiffiffiffiffiffiffiffi
s2 þ e2

p
Þ

effiffiffiffiffiffiffiffiffi
s2 þ e2

p ds

¼ il lim
e!0

ð ffiffi
e4

p

2
ffiffi
e4

p

2ið1Þ

l
ffiffiffiffiffiffiffiffiffi
s2 þ e2

p
effiffiffiffiffiffiffiffiffi

s2 þ e2
p ds

¼ lim
e!0

arctan
s

e

����
ffiffi
e4

p

2
ffiffi
e4

p ¼ p; ð33Þ

where Dð2Þ
1 ðlsÞ is the second kind of the first order

modified Hankel function and [T ] is the influence

matrix (which will be elaborated on later in Eq. (37)).

(3) Lð~s; ~xÞ kernel:

diagð½L�Þ ¼ il lim
e!0

ð0:5l

20:5l
Dð2Þ

1 ðl
ffiffiffiffiffiffiffiffiffi
s2 þ e2

p
Þ

2effiffiffiffiffiffiffiffiffi
s2 þ e2

p ds

¼ lim
e!0

2 il
ð ffiffi

e4
p

2
ffiffi
e4

p

2ið1Þ

l
ffiffiffiffiffiffiffiffiffi
s2 þ e2

p
effiffiffiffiffiffiffiffiffi

s2 þ e2
p ds

¼ 2p ð34Þ

where [L ] is the influence matrix (which will be

elaborated on later in Eq. (38)).

(4) Mð~s; ~xÞ kernel:

diagðMÞ ¼ 2il lim
e!0

ð0:5l

20:5l
l

Dð1Þ
2 ðl

ffiffiffiffiffiffiffiffiffi
s2 þ e2

p
Þ

s2 þ e2
ð2eÞ

� ð2eÞ þ
Dð1Þ

2 ðl
ffiffiffiffiffiffiffiffiffi
s2 þ e2

p
Þffiffiffiffiffiffiffiffiffi

s2 þ e2
p ds

¼ 2il

(
2 2Dð2Þ

1

 
ll

2

!
þ l

"
Dð1Þ

0

 
ll

2

!
l

2 l
ð0:5l

20:5l
Dð2Þ

1 ðllslÞlslds

#)
; ð35Þ

where Dð1Þ
2 ðlsÞ is the first kind of the second order

modified Hankel function and [M ] is the influence

matrix (which will be elaborated on later in Eq. (39)).

After the above manipulations, the improper integrals,

including weak ðUð~s; ~xÞÞ; strong ðTð~s; ~xÞ; Lð~s; ~xÞÞ and

superstrong ðMð~s; ~xÞÞ singularities, reduce to regular

integrals and are calculated using the Gaussian

quadrature rule.

The potentials of the six kernel functions, Uð~s; ~xÞ; Tð~s; ~xÞ;
Lð~s; ~xÞ; Mð~s; ~xÞ; Ltð~s; ~xÞ and Mtð~s; ~xÞ in Table 1, induced by

the constant singularity source distributed along the

boundary from ~s ¼ ð20:5; 0Þ to ~s ¼ ð0:5; 0Þ are shown in

Fig. 2 for value of l ¼ 0:01: The behavior of the single layer

potential (Uð~s; ~xÞ kernel), the double layer potential (Tð~s; ~xÞ
kernel), the normal derivative of the single layer potential

(Lnð~s; ~xÞ kernel), the normal derivative of the double layer

potential (Mnð~s; ~xÞ kernel), the tangential derivative of the

single layer potential (Ltð~s; ~xÞ kernel) and the tangential

derivative of the double layer potential (Mtð~s; ~xÞ kernel) are

all shown in the figures where only real part is considered. It

is found that the asymptotic behavior of the real part of the

kernels for the modified Helmholtz equation in Fig. 2 is

similar to that of the Laplace equation in Refs. [15,16] as

expected. The continuous behaviors of the single layer

potential (Uð~s; ~xÞ kernel) and the normal derivative of the

double layer potential (Mð~s; ~xÞ kernel) are displayed in this

figure. The jump behaviors across the boundary connected

from ~s ¼ ð20:5; 0Þ to ~s ¼ ð0:5; 0Þ can be observed for the

double layer potential (Tð~s; ~xÞ kernel) and the normal

derivative of the single layer potential (Lð~s; ~xÞ kernel). Also,

the dipole and quadrapole source structures are found. By

employing the singular solutions, the strength of the

Fig. 2. Contours of the real-part potentials resulting from the six kernel

functions for l ¼ 0:01:
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singularity can be determined by satisfying the boundary

conditions.

4. Dual boundary element method for a thin barrier

By discretizing Eqs. (22) and (23) using boundary

elements, we can obtain the transcendental equation as

follows:

½ �TijðlÞ�{fj} ¼ ½UijðlÞ�
›f

›n

� �
j

� �
;

½MijðlÞ�{fj} ¼ ½ �LijðlÞ�
›f

›n

� �
j

� �
;

where the elements of the four influence matrices are

UijðlÞ ¼ RPV
ð

Bj

Uð~sj; ~xiÞdBð~sjÞ; ð36Þ

�TijðlÞ ¼ 2pdij þ CPV
ð

Bj

Tð~sj; ~xiÞdBð~sjÞ; ð37Þ

�LijðlÞ ¼ pdij þ CPV
ð

Bj

Lð~sj; ~xiÞdBð~sjÞ; ð38Þ

MijðlÞ ¼ HPV
ð

Bj

Mð~sj; ~xiÞdBð~sjÞ; ð39Þ

in which l is imbedded in the elements of each matrix, ~xi is

the ith collocation point, dBð~sjÞ is the jth integration element

and Bj denotes the jth boundary element. After combining

the dual equations on the degenerate boundary when x̃

collocates on Cþ or C2; the singular system of the four

Fig. 3. Two alternative approaches.

Fig. 4. The boundary element mesh for the first example.

Fig. 5. The reflection and transmission coefficients versus kh for u ¼ 08 ðb=h ¼ 1Þ (example 1).
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influence matrices are desingularized. Since either one of

the two equations, UT or LM, for the normal boundary S can

be selected, two alternative approaches, UT þ LM and

LM þ UT in Fig. 3, are proposed.

The UT þ LM method employs the following equation:

TiSjS
TiSjCþ

TiSjC2

TiCþ jS
TiCþ jCþ

TiCþ jC2

MiCþ jS
MiCþ jCþ

MiCþ jC2

2
6664

3
7775

fjS

fjCþ

fjC2

8>><
>>:

9>>=
>>;

¼

UiSjS
UiSjCþ

UiSjC2

UiCþ jS
UiCþ jCþ

UiCþ jC2

LiCþ jS
LiCþ jCþ

LiCþ jC2

2
6664

3
7775

›f
›n jS

›f
›n jCþ

›f
›n jC2

8>>><
>>>:

9>>>=
>>>;
; ð40Þ

where iS and iCþ denote the collocation points on the S and

Cþ boundaries, respectively, and jS and jCþ denote the

element ID on the S and Cþ boundaries, respectively. Also,

LM þ UT method can solve the degenerate boundary

problem by using

MiSjS
MiSjCþ

MiSjC2

TiCþ jS
TiCþ jCþ

TiCþ jC2

MiCþ jS
MiCþ jCþ

MiCþ jC2

2
6664

3
7775

fjS

fjCþ

fjC2

8>><
>>:

9>>=
>>;

¼

LiSjS
LiSjCþ

LiSjC2

UiCþ jS
UiCþ jCþ

UiCþ jC2

LiCþ jS
LiCþ jCþ

LiCþ jC2

2
6664

3
7775

›f
›n jS

›f
›n jCþ

›f
›n jC2

8>>><
>>>:

9>>>=
>>>;
: ð41Þ

The main difference between Eqs. (40) and (41) is the

constraint obtained by collocating the points on the normal

boundary (S ), using the UT and LM equations, respectively.

5. Illustrative examples

To demonstrate the validity of the dual integral

formulation, two examples are given as follows.

5.1. Example 1: a barrier with finite thickness

An example given by Abul-Azm [1] with geometry

Fig. 6. The reflection and transmission coefficients versus kh for u ¼ 758

ðb=h ¼ 0:5Þ (example 1).

Fig. 7. The reflection and transmission coefficients versus u for kh ¼ 1:5

ðb=h ¼ 1Þ (example 1).

Fig. 8. The error index, e%, versus kh for u ¼ 08 ðb=h ¼ 1Þ (example 1).

Fig. 9. The error index, e%, versus the number of elements for the higher

wave number (kh ¼ 5; b=h ¼ 1) (example 1).
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shown in Fig. 4 is considered. According to several

numerical experiments, the 20 m length of each pseudo-

boundary is adopted which is double of water depth. In this

case, the width to length ratio ðb=hÞ is 1 or 0.5, and the

submergence ratio ðd=hÞ is 0.75. The boundary mesh of the

scattering water wave problem is shown in Fig. 4. By using

the formulations (UT method or LM method alone), the

reflection and transmission coefficients are plotted against

kh for the normal incident wave, u ¼ 08 in Fig. 5 ðb=h ¼ 1Þ

and u ¼ 758 in Fig. 6 ðb=h ¼ 0:5Þ: The reflection and

transmission coefficients are plotted versus the angle of

incidence (u ) for kh ¼ 1:5 as shown in Fig. 7 ðb=h ¼ 1Þ:
The results correlate well with the eigenfunction expansion

method by Abul-Azm [1]. The error index, e% ¼ ðR2 þ

T2 2 1Þ100%; for conservation of energy between the

numerical solution and analytical solution, versus kh for

u ¼ 08 is plotted in Fig. 8, respectively. To see the

sensitivity analysis of results due to numerical parameters

particularly for the case of higher wave number, the error

index, e%, is plotted versus number of elements for the

higher wave number ðkh ¼ 5Þ as shown in Fig. 9. Two

methods, UT and LM formulations, were employed. It is

found that the results of these two methods match well

except on the region of the higher wave number. The

discrepancy of Fig. 5 in the range of higher wave number

between the eigenfunction expansion and our results can be

attributed to the same number of boundary elements for all

the cases of different wave numbers in our method. The case

of higher wave number needs more number of elements in

the BEM to improve the better result or to employ higher-

order element. However, the eigenfunction expansion

method does not need boundary elements.

5.2. Example 2: a thin barrier

An example given by Losada et al. [34] is considered.

According to several numerical experiments, the 20 m

length of each pseudo-boundary is adopted which is double

of water depth. The submergence ratio ðd=hÞ is 0.7 and the

barrier is modeled as zero thickness, i.e. the boundary of

barrier is degenerate. The boundary mesh is shown in

Fig. 10. The two methods (UT method or LM method alone)

will fail as the thickness becomes zero or near zero. Dual

formulation is the key to solve the problem. To understand

the ill-conditioned behavior of the algebraic equation due to

the near-zero thickness, b, the solutions with different

thicknesses are plotted in Fig. 11. Oscillation phenomenon

is found. By employing the dual formulation, the reflection

and transmission coefficients are plotted against kh for u ¼

08 in Fig. 12. The results were compared with those of the

eigenfunction expansion method by Losada et al. [34] and

the experimental data by Ogilvie et al. [34,40]. Good

agreement among the three solutions was found. The

reflection and transmission coefficients are plotted versus

Fig. 10. The boundary element mesh for the second example.

Fig. 11. The reflection and transmission coefficients versus kh with different thicknesses for u ¼ 08 (example 2).
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the angle of incidence (u ) for kh ¼ 2:136 as shown in

Fig. 13. The two solutions, UT þ LM and LM þ UT

approaches, match well with the eigenfunction solution.

The error index, e%, versus kh for u ¼ 08 is plotted in

Fig. 14, respectively. To see the sensitivity analysis of

results due to numerical parameters particularly for the case

of higher wave number, the error index, e%, is plotted

versus the number of elements for the higher wave number

ðkh ¼ 5Þ as shown in Fig. 15. Two methods, UT and LM

formulations, were employed. It is found that the results of

two methods match well except on the region of the higher

wave number. The discrepancy of Fig. 12 in the range of

higher wave number between the eigenfunction expansion

and our results can be attributed to the same number of

boundary elements for all the cases of different wave

numbers in our method. The case of higher wave number

needs more number of elements in the BEM. However, the

Fig. 12. The reflection and transmission coefficients versus kh for u ¼ 08 (example 2).

Fig. 13. The reflection and transmission coefficients versus u for kh ¼ 2:136

(example 2).

Fig. 14. The error index, e%, versus kh for u ¼ 08 (example 2).

Fig. 15. The error index, e%, versus the number of elements for the higher

wave number ðkh ¼ 5Þ (example 2).
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eigenfunction expansion method does not need boundary

elements.

6. Conclusions

The dual integral formulation for the boundary value

problem of the modified Helmholtz equation for solving the

propagation of oblique incident wave passing a thin barrier

(a degenerate boundary) has been derived in this paper. The

properties of the potentials resulting from the four kernel

functions in the dual integral equations have been examined,

and their potential distributions have also been given. A

DBEM program has been developed to solve for the water

scattering problem passing a barrier. Two illustrative

examples, a finite thickness and zero thickness barriers,

have been successfully solved using the proposed DBEM,

and the results were compared well with those obtained

using analytical solutions and experiments.
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