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Abstract

In this paper, a meshless method for solving the eigenfrequencies of clamped plates using the radial basis function (RBF) is proposed. The

coefficients of influence matrices are easily determined by the two-point function. By employing the RBF in the imaginary-part fundamental

solution, true eigensolutions instead of spurious one are obtained for plate vibration. In order to obtain the eigenvalues and boundary modes

at the same time, singular value decomposition technique is utilized. Two examples, circular and rectangular clamped plates, are

demonstrated to see the validity of the present method.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In numerical methods, mesh generation of a compli-

cated geometry is always time consuming in the stage of

model creation for engineers in dealing with the engineer-

ing problems by employing the finite difference method

(FDM), finite element method (FEM) and boundary

element method (BEM). In the last decade, researchers

have paid attention to the meshless method without

employing the concept of element. The initial idea of

meshless method dates back to the smooth particle

hydrodynamics (SPH) method for modeling astrophysical

phenomena [1]. Several meshless methods have also been

reported in the literature, for example, the domain-based

methods including the element-free Galerkin method [2],

the reproducing kernel method [3], and boundary-based

methods including the boundary node method [4], the

meshless local Petrov–Galerkin approach [5], the local

boundary integral equation method [6], the radial basis

function (RBF) approach [7–12], and the boundary knot

method (BKM) [13–16].

Integral equations and BEM have been utilized to solve

the interior and exterior boundary value problems for a

long time. Several approaches, e.g. complex-valued BEM

[17,18], dual reciprocity method (DRM) [19], particular

integral method [20], multiple reciprocity method (MRM)

[21–23], the real-part BEM [24,25] and imaginary-part

BEM [26], have been developed for eigenproblems. To

solve eigenproblems by using the complex-valued BEM,

the influence coefficient matrix would be complex

arithmetics [17]. Therefore, Tai and Shaw [27] employed

only the real-part kernel to solve the eigenvalue problems

and to avoid the complex-valued computation in sacrifice

of occurrence of spurious eigenvalues. The computation of

the real-part kernel method or the MRM [23,27,28] has

some advantages, but it still faces both the singular and

hypersingular integrals. To avoid the singular

and hypersingular integrals, De Mey [29] used imagin-

ary-part fundamental solution to solve the eigenproblems.

At the same time, De Mey also found the spurious

eigensolutions but he did not study them analytically. For

the dynamic analysis in BEM, the readers can consult Refs.

[30–32]. Kang et al. proposed the non-dimensional
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dynamic influence function (NDIF) method to solve

eigenproblems of membranes [33,34], acoustic cavities

[35], and plates [36]. Later, Chen et al. commented that the

NDIF method is a special case of imaginary-part BEM

after lumping the distribution of density function for

membrane vibrations [37], acoustics [38] and plates

vibration [39]. Nevertheless, spurious eigensolutions are

inherent in the imaginary-part BEM, real-part BEM and

MRM. Instead of using the net approach [35], the double-

layer potential approach was employed to avoid the

occurrence of spurious eigenvalues [38,40]. An extension

to three-dimensional (3D) cavities [41] was done. Numeri-

cally speaking, the spurious eigensolutions result from the

rank deficiency of the coefficient matrix. This implies

the fewer number of constraint equations making the

solution space larger. Mathematically speaking,

the spurious eigensolutions for interior problems and

fictitious frequency for exterior problems arise from the

same source of “improper approximation of the null space

of operator”.

In this paper, we will employ the imaginary-part

fundamental solution as RBF to solve the plate vibration

problems. The main difference between the present

formulation and the method of fundamental solution is

that we adopt only the imaginary-part fundamental

solution instead of employing the complex-valued kernel.

In solving the problem numerically, elements are not

required and only boundary nodes are necessary. Both

the collocation and source points are distributed on the

boundary only. Besides, the kernel function is composed

of two-point function, which is a kind of RBF. RBF or

distant function depends only on the radial distance of

the two points, while a two-point function may depend

on the normal vectors of the two points. The difference

between the present method and the NDIF method will be

emphasized in selecting the interpolation bases. The

difference between the Chen’s method–boundary knot

method (BKM) [14] and our paper as well as the NDIF

method is that BKM also employs the DRM to handle

inhomogeneous source term and has in depth analysis

and extensive use of various general solution to 2D and

3D Helmholtz, Laplace, diffusion and convection–diffu-

sion problems as shown in Ref. [16]. The occurrence of

spurious eigenvalues will be discussed. For the special

case of circular plate, the eigensolutions will be

analytically derived in the discrete system by using

circulants. In addition, the true eigenvalues for a circular

plate will be derived exactly by approaching the discrete

system to the continuous system using the eigenspectrum

of circulants [42]. By employing the degenerate

kernel and Fourier series expansion, the interior modes

will be derived analytically. Two examples, circular and

rectangular plates subject to clamped boundary con-

ditions, will be demonstrated to see the validity of the

present formulation.

2. Meshless formulation using radial basis function

of the imaginary-part fundamental solution

The governing equation for a free flexural vibration of a

uniform thin plate is written as follows

7
4wðxÞ ¼ l4wðxÞ; x [ V; ð1Þ

where w is the lateral displacement, l4 ¼ v2r0h=D; l is the

frequency parameter, v is the circular frequency, r0 is

the surface density, D is the flexural rigidity expressed as

D ¼ Eh3=12ð1 2 n2Þ in terms of Young’s modulus E; the

Poisson ratio n and the plate thickness h; and V is the

domain of the thin plate.

The radial basis function (RBF) is defined by

Gðx; sÞ ¼ wðls 2 xlÞ; ð2Þ

where x and s are the collocation and source points,

respectively. The Euclidean norm ls 2 xl is referred to as

the radial distance between the collocation and

source points. The two-point function ðwðls 2 xlÞÞ is

called the RBF since it depends on the radial

distance between x and s: By considering the imagin-

ary-part fundamental solution ðWðs; xÞ ¼ Im{ði=8l2Þ �

ðHð2Þ
0 ðlrÞ þ Hð1Þ

0 ðilrÞÞ}Þ [43] for the plate vibration.

After adopting the imaginary-part kernel, the displace-

ment and slope can be represented by

wðxÞ ¼
X2N

j¼1

Wðsj;xÞAðsjÞþ
X2N

j¼1

Qðsj;xÞBðsjÞ; x[V; ð3Þ

uðxÞ ¼
X2N

j¼1

W 0ðsj;xÞAðsjÞþ
X2N

j¼1

Q0ðsj;xÞBðsjÞ; x[V; ð4Þ

where AðsjÞ and BðsjÞ are the generalized unknowns at sj;

2N is the number of source points and the four kernels

are

Wðs;xÞ ¼
1

8l2
ðJ0ðlrÞþ I0ðlrÞÞ; ð5Þ

Qðs;xÞ ¼
›Wðs;xÞ

›ns

¼
1

8l

2J1ðlrÞþ I1ðlrÞ

r
yini; ð6Þ

W 0ðs;xÞ ¼
›Wðs;xÞ

›nx

¼
1

8l

J1ðlrÞ2 I1ðlrÞ

r
yi �ni; ð7Þ

Q0ðs;xÞ ¼
›2Wðs;xÞ

›ns›nx

¼
1

8l

2lJ2ðlrÞyiyjni �nj

r2

�

þ
J1ðlrÞni �ni

r
2

lI2ðlrÞyiyjni �nj

r2
2

I1ðlrÞni �ni

r

�
;

ð8Þ

in which the prime 0 denotes ›=›nx; r ; ls2 xl is the

distance between the source point s and collocation point

x; ni is the ith component of the outnormal vector at s; �ni

is the ith component of the outnormal vector at x; as

shown in Fig. 1, Jm and Im denote the first kind of the

mth order Bessel and modified Bessel functions,
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respectively, and yi ; si 2 xi; i¼ 1;2; are the differences

of the ith components of s and x; w and u¼ ›w=›nx are

the transverse deflection and its slope along the normal

direction, respectively. It is noted that the differential

formulae for the Bessel and modified Bessel functions

have been utilized in deriving Eqs. (6)–(8), i.e.

J 0
‘ðlrÞ ¼2J‘þ1ðlrÞþ

‘

lr
J‘ðlrÞ; ‘¼ 0;1;2;3;…; ð9Þ

I 0‘ðlrÞ ¼ I‘þ1ðlrÞþ
‘

lr
I‘ðlrÞ; ‘¼ 0;1;2;3;…: ð10Þ

For simplicity, we consider the clamped plate with the

following boundary conditions

wðxÞ ¼ 0; and uðxÞ ¼ 0; x[B; ð11Þ

where B is the boundary. The main difference between

the present formulation and the NDIF method proposed

by Kang and Lee [36] is the choice of RBF. The NDIF

method chose Wðs;xÞ ¼ J0ðlrÞ and Qðs;xÞ ¼ I0ðlrÞ:

Although the selected RBF by Kang and Lee is simpler

[36], it results in spurious eigenvalues which need

special treatment. By matching the boundary conditions

for x on the 2N boundary points into Eqs. (3) and (4),

we have

{0}¼ ½W�{A}þ½Q�{B}; ð12Þ

{0}¼ ½W 0�{A}þ½Q0�{B}; ð13Þ

where {A} and {B} are the vectors of undetermined

coefficients, and ½W�; ½Q�; ½W 0� and ½Q0� are

influence matrices corresponding to the four kernels in

Eqs. (5)–(8). The elements of the four matrices are

shown below:

Wij ¼Wðsj;xiÞ; ð14Þ

Qij ¼Qðsj;xiÞ; ð15Þ

W 0
ij ¼W 0ðsj;xiÞ; ð16Þ

Q0
ij ¼Q0ðsj;xiÞ: ð17Þ

It is noted that the diagonal terms can be determined by

the L’Hôspital’s rule or invariant method. Although

even number of nodes ð2NÞ is considered here, odd number

ð2N þ1Þ has also been implemented [44]. Eq. (12) can be

rearranged to

{A}¼2½W�21½Q�{B}: ð18Þ

By substituting Eq. (18) into Eq. (13), we have

2½W 0�½W�21½Q�{B}þ½Q0�{B}¼ {0}: ð19Þ

By collecting the terms of vector {B} together, we obtain

½½Q0�2½W 0�½W�21½Q��{B}¼{0}Þ)½SMN�{B}¼{0}; ð20Þ

where

½SMN�¼½Q0�2½W 0�½W�21½Q�: ð21Þ

For the existence of non-trivial solution of {B}; the

determinant of the matrix versus the eigenvalue must become

zero, i.e.

det½SMN�¼0: ð22Þ

Although direct-searching eigenvalues is time consuming, it

is no problem for computation of desk computer. For the

generalized algebraic eigenproblem, some effective schemes

have been proposed, e.g. William–Wellie algorithm [45].

Since this is not our main focus, the efficient algorithm was

not discussed here.

3. Analytical study for the circular plate

3.1. Discrete system

For the circular case, we can express x ¼ ðr;fÞ and s ¼

ðR; uÞ in terms of polar coordinate. The four kernels can

be expressed in terms of degenerate kernels as shown

below [40],

where the subscripts ‘I’ and ‘E’ denote the interior ðR . rÞ

and exterior domains ðR , rÞ; respectively.

Fig. 1. Notations in the method of imaginary-part fundamental solution.

Wðs; xÞ ¼

WIðu;fÞ ¼
1

8l2

X1
m¼21

½JmðlRÞJmðlrÞ þ ð21ÞmImðlRÞImðlrÞ�cosðmðu2 fÞÞ; R . r

WEðu;fÞ ¼
1

8l2

X1
m¼21

½JmðlrÞJmðlRÞ þ ð21ÞmImðlrÞImðlRÞ�cosðmðu2 fÞÞ; R , r

8>>>><
>>>>:

; ð23Þ
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Since the rotation symmetry is preserved for a circular

boundary, the four influence matrices in Eqs. (3) and (4) are

denoted by ½W�; ½Q�; ½W 0� and ½Q0� of the circulants with the

elements

Kij ¼ KðR; uj; r;fiÞ; ð27Þ

where the kernel K can be W ; Q; W 0 or Q0; fi and uj are the

angles of observation and boundary points, respectively. By

superimposing 2N lumped strength along the boundary, we

have the influence matrices

½K� ¼

a0 a1 a2 · · · a2N22 a2N21

a2N21 a0 a1 · · · a2N23 a2N22

a2N22 a2N21 a0 · · · a2N24 a2N23

..

. ..
. ..

. . .
. ..

. ..
.

a1 a2 a3 · · · a2N21 a0

2
66666666664

3
77777777775
; ð28Þ

where the elements of the first row can be obtained by

aj2i ¼ Kðsj; xiÞ: ð29Þ

The matrix ½K� in Eq. (28) is found to be a circulant [25]

since the rotational symmetry for the influence coefficients

is considered. By introducing the following bases for the

circulants, I; ðC2NÞ
1; ðC2NÞ

2;…; and ðC2NÞ
2N21; we can

expand ½K� into

½K�¼a0Iþa1ðC2NÞ
1þa2ðC2NÞ

2þ ···þa2N21ðC2NÞ
2N21

;

ð30Þ

where I is a unit matrix and

C2N ¼

0 1 0 ··· 0 0

0 0 1 ··· 0 0

..

. ..
. ..
. . .
. ..

. ..
.

0 0 0 ··· 0 1

1 0 0 ··· 0 0

2
66666666664

3
77777777775

2N£2N

: ð31Þ

Based on the circulant theory, the eigenvalues for the

influence matrix, ½K�; are found as follows

l‘¼a0þa1a‘þa2a
2
‘þ ···þa2N21a

2N21
‘ ;

‘¼0;^1;^2;…;^ðN21Þ;N;

ð32Þ

where l‘ and a‘ are the eigenvalues for ½K� and ½C2N�;

respectively. It is easily found that the eigenvalues for

the circulant ½C2N� are the roots for a2N ¼1 as shown

below:

a‘¼eið2p‘=2NÞ
;

‘¼0;^1;^2;…;^ðN21Þ; N or ‘¼0;1;2;…;2N21:

ð33Þ

Substituting Eq. (33) into Eq. (32), we have

l‘¼
X2N21

m¼0

ama
m
‘ ¼

X2N21

m¼0

ameið2p=2NÞm‘
;

‘¼0;^1;^2;…;^ðN21Þ;N:

ð34Þ

According to the definition for am in Eq. (29), we have

am¼a2N2m; m¼0;1;2;…;2N21: ð35Þ

Qðs; xÞ ¼

QIðu;fÞ ¼
1

8l

X1
m¼21

½J 0
mðlRÞJmðlrÞ þ ð21ÞmI 0mðlRÞImðlrÞ�cosðmðu2 fÞÞ; R . r

QEðu;fÞ ¼
1

8l

X1
m¼21

½JmðlrÞJ
0
mðlRÞ þ ð21ÞmImðlrÞI

0
mðlRÞ�cosðmðu2 fÞÞ; R , r

8>>>><
>>>>:

; ð24Þ

W 0ðs; xÞ ¼

W 0
Iðu;fÞ ¼

1

8l

X1
m¼21

½JmðlRÞJ 0
mðlrÞ þ ð21ÞmImðlRÞI0mðlrÞ�cosðmðu2 fÞÞ; R . r

W 0
Eðu;fÞ ¼

1

8l

X1
m¼21

½J 0
mðlrÞJmðlRÞ þ ð21ÞmI 0mðlrÞImðlRÞ�cosðmðu2 fÞÞ; R , r

8>>>><
>>>>:

; ð25Þ

Q0ðs; xÞ ¼

Q0
Iðu;fÞ ¼

1

8

X1
m¼21

½J0mðlRÞJ0mðlrÞ þ ð21ÞmI0mðlRÞI 0mðlrÞ�cosðmðu2 fÞÞ; R . r

Q0
Eðu;fÞ ¼

1

8

X1
m¼21

½J 0
mðlrÞJ

0
mðlRÞ þ ð21ÞmI 0mðlrÞI

0
mðlRÞ�cosðmðu2 fÞÞ; R , r

8>>>><
>>>>:

; ð26Þ
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Without loss of generality by setting f¼0; substitution of

Eq. (35) into Eq. (34) yields

l‘¼a0þð21Þ‘aN þ
XN21

m¼1

ðam
‘ þa2N2m

‘ Þam

¼
X2N21

m¼0

cosðm‘DuÞam; ð36Þ

the Reimann sum of infinite terms reduces to the

following integral

l‘¼ lim
N!1

X2N21

m¼0

cosðm‘DuÞWðmDu;0Þ

<
1

rDu

ð2p

0
cosð‘uÞWðu;0Þrdu; ð37Þ

where Du¼2p=2N: By using the degenerate kernel for

Wðs;xÞ in Eq. (23) and the orthogonal conditions, Eq. (37)

reduces to ðr¼RÞ

l‘¼
N

4l2
½J‘ðlrÞJ‘ðlrÞþð21Þ‘I‘ðlrÞI‘ðlrÞ�;

‘¼0;^1;^2;…;^ðN21Þ;N:

ð38Þ

Similarly, we have

m‘¼
N

4l
½J‘ðlrÞJ

0
‘ðlrÞþð21Þ‘I‘ðlrÞI

0
‘ðlrÞ�;

‘¼0;^1;^2;…;^ðN21Þ;N;

ð39Þ

n‘¼
N

4l
½J 0

‘ðlrÞJ‘ðlrÞþð21Þ‘I0‘ðlrÞI‘ðlrÞ�;

‘¼0;^1;^2;…;^ðN21Þ;N;

ð40Þ

d‘¼
N

4
½J 0

‘ðlrÞJ
0
‘ðlrÞþð21Þ‘I 0‘ðlrÞI

0
‘ðlrÞ�;

‘¼0;^1;^2;…;^ðN21Þ;N;

ð41Þ

where m‘; n‘ and d‘ are the eigenvalues of ½Q�; ½W 0� and

½Q0� matrices, respectively. The determinants for the four

matrices are obtained by multiplying all the eigenvalues

as shown below:

det½W�¼l0ðl1l2···lN21Þ
2lN ; ð42Þ

det½Q�¼m0ðm1m2···mN21Þ
2mN ; ð43Þ

det½W 0�¼n0ðn1n2···nN21Þ
2nN ; ð44Þ

det½Q0�¼d0ðd1d2···dN21Þ
2dN : ð45Þ

Since the four matrices ½W�; ½Q�; ½W 0� and ½Q0� are all

symmetric circulants, they can be expressed by

½W�¼F

l0 0 0 ··· 0 0 0

0 l1 0 ··· 0 0 0

0 0 l21 ··· 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 ··· lðN21Þ 0 0

0 0 0 ··· 0 l2ðN21Þ 0

0 0 0 ··· 0 0 lN

2
666666666666666664

3
777777777777777775

2N£2N

F21
;

ð46Þ

½Q�¼F

m0 0 0 ··· 0 0 0

0 m1 0 ··· 0 0 0

0 0 m21 ··· 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 ··· mðN21Þ 0 0

0 0 0 ··· 0 m2ðN21Þ 0

0 0 0 ··· 0 0 mN

2
666666666666666664

3
777777777777777775

2N£2N

F21
;

ð47Þ

½W 0�¼F

n0 0 0 ··· 0 0 0

0 n1 0 ··· 0 0 0

0 0 n21 ··· 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 ··· nðN21Þ 0 0

0 0 0 ··· 0 n2ðN21Þ 0

0 0 0 ··· 0 0 nN

2
666666666666666664

3
777777777777777775

2N£2N

F21
;

ð48Þ

½Q0�¼F

d0 0 0 ··· 0 0 0

0 d1 0 ··· 0 0 0

0 0 d21 ··· 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 ··· dðN21Þ 0 0

0 0 0 ··· 0 d2ðN21Þ 0

0 0 0 ··· 0 0 dN

2
666666666666666664

3
777777777777777775

2N£2N

F21
;

ð49Þ

where
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By employing Eqs. (46)–(49) for Eq. (21), we have

½SMN�¼F

s0 0 0 ··· 0 0 0

0 s1 0 ··· 0 0 0

0 0 s21 ··· 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 ··· sðN21Þ 0 0

0 0 0 ··· 0 s2ðN21Þ 0

0 0 0 ··· 0 0 sN

2
666666666666666664

3
777777777777777775

F21
;

ð51Þ

where

s‘¼
N

4

½J 0
‘ðlrÞI‘ðlrÞ2I 0‘ðlrÞJ‘ðlrÞ�

2

J‘ðlrÞJ‘ðlrÞþð21Þ‘I‘ðlrÞI‘ðlrÞ
;

‘¼0;^1;^2;…;^ðN21Þ;N:

ð52Þ

According to Eqs. (51) and (52), we have

det½SMN�¼detlFls0ðs1s2···sN21Þ
2sNdetlF21l

¼s0ðs1s2···sN21Þ
2sN ; ð53Þ

since detlFl¼detlF21l¼1: By employing the differential

formulae for the Bessel and the modified Bessel functions

as shown below

J 0
‘ðlrÞ¼

J‘21ðlrÞ2J‘þ1ðlrÞ

2
; ‘¼0;1;2;3;…; ð54Þ

I 0‘ðlrÞ¼
I‘21ðlrÞþI‘þ1ðlrÞ

2
; ‘¼0;1;2;3;…; ð55Þ

we obtain the following identity for any l

J 0
‘ðlrÞI‘ðlrÞ2I 0‘ðlrÞJ‘ðlrÞ

¼2½J‘ðlrÞI‘þ1ðlrÞþI‘ðlrÞJ‘þ1ðlrÞ�: ð56Þ

Zero determinant in Eq. (53) implies that the eigenequa-

tion is

½J‘ðlrÞI‘þ1ðlrÞþI‘ðlrÞJ‘þ1ðlrÞ�
2

J‘ðlrÞJ‘ðlrÞþð21Þ‘I‘ðlrÞI‘ðlrÞ
¼0;

‘¼0;^1;^2;…;^ðN21Þ;N:

ð57Þ

Since the denominator term of J‘ðlrÞJ‘ðlrÞþ

ð21Þ‘I‘ðlrÞI‘ðlrÞ is never zero for any positive value

of l; the eigenequation in Eq. (57) reduces to

½J‘ðlrÞI‘þ1ðlrÞþI‘ðlrÞJ‘þ1ðlrÞ�
2¼0;

‘¼0;^1;^2;…;^ðN21Þ;N:

ð58Þ

After comparing with the exact solution for the

clamped circular plate, we find that the true

eigenequation is J‘ðlrÞI‘þ1ðlrÞþI‘ðlrÞJ‘þ1ðlrÞ¼0; ‘¼

0;^1;^2;…;^ðN21Þ;N; for plate vibration. In another

words, the exact eigensolution for a continuous system can be

obtained by approaching N in the discrete system to infinity.

Once the eigenvalue l is obtained, we can determine the non-

trivial vector {B}: Since ½W� in Eq. (42) is never singular due

to non-zero eigenvalues in Eq. (38), {A} can be obtained

using Eq. (18). Therefore, the interior mode can be calculated

by using Eq. (3). Instead of appearing the spurious

eigenvalues in the Kang and Lee method [36], contamination

of spurious eigenvalues are not present in our approach.

3.2. Continuous system

For the purpose of analytical study, we use the continuous

system to obtain the eigenequation. The unknowns densities

AðsÞ and BðsÞ; can be expanded into Fourier series by

AðsÞ ¼ a0 þ
X1
n¼1

ðan cosðnuÞþ bn sinðnuÞÞ; s [ B; ð59Þ

F ¼
1ffiffiffiffi
2N

p

�

1 1 0 · · · 1 0 1

1 cos 2p
2N

� �
sin 2p

2N

� �
· · · cos 2pðN21Þ

2N

� �
sin 2pðN21Þ

2N

� �
cos 2pN

2N

� �
1 cos 4p

2N

� �
sin 4p

2N

� �
· · · cos 4pðN21Þ

2N

� �
sin 4pðN21Þ

2N

� �
cos 4pN

2N

� �
..
. ..

. ..
. . .

. ..
. ..

. ..
.

1 cos 2pð2N22Þ
2N

� �
sin 2pð2N22Þ

2N

� �
· · · cos pð4N24ÞðN21Þ

2N

� �
sin pð4N24ÞðN21Þ

2N

� �
cos pð4N24ÞðNÞ

2N

� �
1 cos

2pð2N 2 1Þ

2N

� �
sin 2pð2N21Þ

2N

� �
· · · cos pð4N22ÞðN21Þ

2N

� �
sin pð4N22ÞðN21Þ

2N

� �
cos pð4N22ÞðNÞ

2N

� �

2
6666666666666666664

3
7777777777777777775

2N£2N

:

ð50Þ
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BðsÞ ¼ p0 þ
X1
n¼1

ðpn cosðnuÞþ qn sinðnuÞÞ; s [ B; ð60Þ

where an; bn; pn and qn are the undetermined Fourier

coefficients. For the clamped boundary conditions, w ¼ 0 and

u¼ 0; we have

0¼
ð2p

0
WEðs;xÞ a0þ

X1
n¼1

ðan cosðnuÞþbn sinðnuÞÞ

 !
rduþ

ð2p

0
QEðs;xÞ p0þ

X1
n¼1

ðpn cosðnuÞþqn sinðnuÞÞ

 !
rdu;

x[B; ð61Þ

0¼
ð2p

0
W 0

Eðs;xÞ a0þ
X1
n¼1

ðan cosðnuÞþbn sinðnuÞÞ

 !
rdu

þ
ð2p

0
Q0

Eðs;xÞ p0þ
X1
n¼1

ðpn cosðnuÞþqn sinðnuÞÞ

 !
rdu;

x[B: ð62Þ

By substituting the degenerate kernels of Eqs. (23)

and (24) into Eq. (61) and employing the orthogonality

condition of the Fourier series, the Fourier coefficients

an; bn; pn and qn satisfy

pn ¼2
1

l

JnðlrÞJnðlrÞþ ð21ÞnInðlrÞInðlrÞ

J0nðlrÞJnðlrÞþ ð21ÞnI 0nðlrÞInðlrÞ
an;

n¼ 0;1;2;…;

ð63Þ

qn ¼2
1

l

JnðlrÞJnðlrÞþ ð21ÞnInðlrÞInðlrÞ

J0nðlrÞJnðlrÞþ ð21ÞnI 0nðlrÞInðlrÞ
bn;

n¼ 0;1;2;…:

ð64Þ

Similarly Eq. (62) yields

pn ¼2
1

l

J0nðlrÞJnðlrÞþ ð21ÞnI 0nðlrÞInðlrÞ

J0nðlrÞJ
0
nðlrÞþ ð21ÞnI 0nðlrÞI

0
nðlrÞ

an;

n¼ 0;1;2;…;

ð65Þ

qn ¼2
1

l

J0nðlrÞJnðlrÞþ ð21ÞnI 0nðlrÞInðlrÞ

J0nðlrÞJ
0
nðlrÞþ ð21ÞnI 0nðlrÞI

0
nðlrÞ

bn;

n¼ 0;1;2;…:

ð66Þ

To seek non-trivial data for the generalized coefficients

of an; pn; bn and qn; we can obtain the eigenequations

by either from Eqs. (63) and (65) or from Eqs. (64)

and (66)

ðJ 0
nðlrÞInðlrÞ2 I 0nðlrÞJnðlrÞÞ

2

¼ ðJnðlrÞInþ1ðlrÞþ InðlrÞJnþ1ðlrÞÞ
2 ¼ 0: ð67Þ

The eigenequation in Eq. (67) is the same with Eq. (52)

obtained by using circulants in the discrete system.

3.3. Derivation of the eigenmode

By substituting the degenerate kernels of Eqs. (23)–(26)

for the interior point ð0 , r , rÞ and the relationships of

Eqs. (63)–(66) between generalized coefficients of AðsÞ and

BðsÞ into Eq. (2), we have

wðr;fÞ ¼ðJnðlrÞInþ1ðlrÞ þ InðlrÞJnþ1ðlrÞÞ

£ ð21Þn
ðJnðlrÞInðlrÞ2 InðlrÞJnðlrÞÞ

ðJnðlrÞJ
0
nðlrÞ þ ð21ÞnInðlrÞI

0
nðlrÞÞ

£ ðan cosðnfÞ þ bn sinðnfÞÞ;

n ¼ 1; 2; 3;…; 0 , r , r; 0 # f , 2p: ð68Þ

It is interesting to find that the eigenequation of Eq. (58)

is imbedded in Eq. (68). Theoretically speaking, the

interior mode is a null field when l is an eigenvalue.

However, the interior mode with clear nodal lines can be

found since no true zero can be obtained in real

calculations.

4. Calculation of eigenvalues, boundary modes and

interior modes using the SVD technique

In order to obtain the eigenvalues l and boundary modes

{A} and {B} at the same time, we employ the SVD

technique to decompose ½SMN� matrix into

½SMN� ¼ FSCT
; ð69Þ

where F and C are left and right unitary matrices, and S

is a matrix with diagonal terms composed of singular

values [46]. The analytical form of Eq. (69) is shown in

Eq. (51). By detecting the minimum singular value to be

zero versus l; we obtain the eigenvalues by employing

the direct searching scheme. In the meanwhile, the non-

zero boundary mode for {B} is extracted from the

corresponding right unitary vector with the zero singular

value in C since

½SMN�{B} ¼ {0}: ð70Þ

By substituting the boundary mode {B} into Eq. (18), the

vector of {A} can be directly determined since ½W�21

exists as shown in the circular case. After the vectors

{A} and {B} are determined, the interior mode can be

obtained by using Eq. (3). In summary, the flow chart for

the present method is shown in Fig. 2.

5. Numerical results and discussions

Case 1: Circular plate (clamped boundary)

A circular plate with a radius ðr ¼ 1 mÞ subjected to

the clamped boundary condition (w ¼ 0 and ›w=›n ¼ 0)

is considered. In this case, analytical solutions of

eigenequation and eigenmode are shown in Eqs. (67)

and (68).
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By collocating 18 nodes on the circular boundary, the

results by using the imaginary-part kernel are obtained as

shown in Table 1 for the eigenvalues in comparison with

other approaches. Good agreement is made. Fig. 3(a) shows

the minimum singular value versus l: To compare with

Kang and Lee’s results, Fig. 3(b) shows the determinant of

½SMN� versus l using the present method in comparison

with the circulant methods and Kang and Lee results [36].

The former six eigenvalues are obtained as shown in Table 1

by considering the near zero determinant or near zero

singular value. The eigenvalues agree well with the

analytical solution.

Case 2: Rectangular plate (clamped boundary)

A rectangular plate with dimensions 1.2 m £ 0.9 m

subjected to the clamped boundary condition

(w ¼ 0 and ›w=›n ¼ 0) is considered. In this case,

the analytical solution is not available. The Kang

and Lee results and FEM [36] using ANSYS are

compared with.

Fig. 2. Flow chart of the present method.

Table 1

The former six eigenvalues for the clamped circular plate using different

approaches

l1 l2 l3 l4 l5 l6

NASA SP-160 3.196 4.611 5.906 6.306 7.144 7.799

Integral Eq. 3.2 4.6 5.9 6.3 7.2 7.9

Kang and Lee 3.196 4.611 5.906 6.306 7.144 7.799

Circulant method 3.20 4.61 5.91 6.31 7.14 7.80

Present method 3.195 4.611 5.906 6.306 7.143 7.798

Exact solution 3.196 4.611 5.906 6.306 7.144 7.799
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Since the normal vector on the boundary is concerned,

the double notes at the corner are discretized. By collocating

12 nodes on the boundary, the results are obtained as shown

in Table 2 [47] for the eigenvalues in comparison with those

of other approaches. Good agreement is obtained. Fig. 4

shows the minimum singular value of ½SMN� versus l using

the present approach. The former six eigenvalues are

obtained as shown in Fig. 4.

Fig. 3. (a) Logarithm curve for the minimum singular value versus frequency parameter using the present method. (b) Logarithm curve for det½SMN � versus

frequency parameter of the circular clamped plate using the different methods.

Table 2

The former six eigenvalues for the clamped rectangular plate using different

approaches

l1 l2 l3 l4 l5 l6

Dickinson [38] 5.964 7.730 9.151 9.975 10.30 11.99
ANSYS (441 nodes) 5.946 7.701 9.114 9.938 10.24 11.91
ANSYS (961 nodes) 5.950 7.706 9.123 9.948 10.26 11.94
Present method 5.952 7.703 9.129 9.947 10.266 11.95
Kang and Lee 5.952 7.703 9.131 9.955 10.27 11.95
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6. Conclusions

We have developed a meshless method for the plate

vibration problem with a clamped boundary condition by

using the imaginary-part fundamental solution, which

was chosen as a RBF to approximate the solution.

Neither boundary elements nor singularities are required.

Free of introducing the fictitious boundary, no singularity

is encountered. Instead of appearing the spurious

eigenvalues in the NDIF method, the present method is

free of spurious eigenvalues. For a circular plate, the

eigenvalue, boundary mode and interior mode were

derived analytically by using the degenerate kernel,

Fourier series and circulants. Although the circular case

lacks generality, it lends significant insight into the

occurring mechanism of spurious eigensolution. There-

fore, we chose the circular cases to verify our approach

in the continuous and discrete systems. The scheme for

the circular plate can be extended to the general

situations, e.g. rectangular clamped plates and circular

plates subject to the simply supported boundary con-

ditions [48]. The general cases were numerically

demonstrated to check the validity of the meshless

formulation.
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