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Abstract

In this paper, we solve the large-scale problem for exterior acoustics by employing the concept of fast multipole method (FMM) to
accelerate the construction of influence matrix in the dual boundary element method (DBEM). By adopting the addition theorem, the four
kernels in the dual formulation are expanded into degenerate kernels, which separate the field point and source point. The separable technique
can promote the efficiency in determining the coefficients in a similar way of the fast Fourier transform over the Fourier transform. The
source point matrices decomposed in the four influence matrices are similar to each other or only some combinations. There are many zeros
or the same influence coefficients in the field point matrices decomposed in the four influence matrices, which can avoid calculating
repeatedly the same terms. The separable technique reduces the number of floating-point operations from O(N?) to O(N log®(N)), where N is
number of elements and a is a small constant independent of N. To speed up the convergence in constructing the influence matrix, the center
of multipole is designed to locate on the center of local coordinate for each boundary element. This approach enhances convergence by
collocating multipoles on each center of the source element. The singular and hypersingular integrals are transformed into the summability of
divergent series and regular integrals. Finally, the FMM is shown to reduce CPU time and memory requirement thus enabling us apply BEM
to solve for large-scale problems. Five moment FMM formulation was found to be sufficient for convergence. The results are compared well
with those of FEM, conventional BEM and analytical solutions and it shows the accuracy and efficiency of the FMM when compared with the
conventional BEM.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction exterior problem [6,10,11,21], and the degenerate scale
problem [8,9].

There is considerable interest in many applications for
the solution of Helmholtz equation, when the wave
length is short or the wave number is large after
comparing with the size of boundary, and it is so-called
the large-scale problem such as the scattering of high
frequency acoustics, Stokes flows, molecular dynamics

The boundary element method, sometimes referred to as
the boundary integral equation method, is now establishing
a position as an actual alternative to the FEM in many fields
of engineering. It is necessary to discretize the boundary
only instead of the domain, which takes a fewer time for
one-dimension reduction in mesh generation. The dual X .
boundary element method (DBEM), or so-called the dual anq electromagnetlc—wave. p.roble.ms. However, the appli-
boundary integral equation method developed by Hong cations of BEM were limited in small-scale problems
and Chen [16,20], is particularly suitable for the problems [14,17,26,27,29,30,34,37]. For l.arge—scale problems, we
with a degenerate boundary. The dual formulation also need to model such problems with a large number (V) of
plays important roles in some other problems, e.g. the corner boundary elements .to .accura.tely represent the geome.try
problem [15], adaptive BEM [7,24], the spurious eigen- and the solution variation which may not be solved using

value of interior problem [12,13], the fictitious frequency of a deskt(?p computer.. Thze corgplgxity pro.port.ional of the
conventional BEM is N“ and it is expensive in the large-

* Corresponding author. Tel.: +886-2-2462-2192x6140/6177; fax: scale problem, but the finite element method (FEM) is N
+886-2-2463-2375. because of its banded coefficient matrix [30]. Multi-
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the theories of plates and shells have been employed to
solve the problem using the parallel computers. When the
size of the influence matrix by using BEM is so large
that its storage and solution by Gaussian elimination may
cause problems for desktop computer. Thus, the size of
influence matrix becomes the limiting factor that large-
scale problems can be solved with a particular computer.
BEM with iterative solvers has been employed to deal
with the problem [25,38]. The major computational cost
of the iterative methods lies in the matrix—vector
multiplication. To improve the efficiency in numerical
computation of the dual BEM, we will adopt the fast
multipole method (FMM) to accelerate the speed of
calculation. This is due to the large domain and full
influence matrix, and it takes a lot of CPU time and
memory space to obtain the influence matrix. To
overcome the disadvantages, the FMM will be shown
to reduce CPU time and memory requirement from
exponential order to logarithmic order thus enabling us
apply BEM to really solve for large-scale problems.

The FMM was initially introduced by Rokhlin [34].
Applications of FMM for BEM analysis have been used
by many researchers in various fields of science and
engineering [2,3,27-34,36,37]. We will adopt the con-
cept of FMM to accelerate the calculation of influence
matrix in the dual BEM. By adopting the addition
theorem, the four kernels in the dual formulation are
expanded into degenerate kernels where the field point
and source point are separated. The separable technique
can promote the efficiency in determining the coefficients
as shown in Fig. 1, in a similar way of the fast Fourier
transform (FFT) over the Fourier transform (FT). The
source point matrices decomposed in the four influence
matrices are similar to each other or only some
combinations. There are many zeros or the same
influence coefficients in the field point matrices decom-
posed in the four influence matrices. Therefore, we can
avoid calculating repeatedly the same terms. The
separable technique reduces the number of floating-
point operations from O((N)*) to OWN log®(N)). To
accelerate the convergence in constructing the influence
matrix, the center of multipole is designed to locate on
the center of each boundary element. The singular and
hypersingular integrals are transformed into the summa-
bility of divergent series and regular integrals.

In this paper, the acoustic scattering of general structure
with the Neumann’s boundary condition will be considered.
The Burton and Miller formulation by combining the dual
boundary integral equations will be utilized to solve the
exterior acoustic problems for all wave numbers in order to
overcome the problem of fictitious frequency. Finally, the
CPU time and memory requirement will be calculated using
the FMM for the large-scale problem. The numerical results
will be compared with those of conventional DBEM and
analytical solutions.

2. Mathematical formulation
2.1. Helmholtz equation in exterior acoustics

Let D C DY be an unbounded region, where d is the
number of space dimensions, d can be 1, 2 or 3. The
boundary of the domain D, denoted by B, is internal and
assumed piecewise smooth. The outward unit vector normal
to B is denoted by n. We assume that the boundary, B,
admits the partition [22,35]

B=B,UB, (1)
@ng ﬂBh, (2)

where B, is the essential boundary with specified potential
and B, is the natural boundary with specified normal
derivative of potential. We intend to study the effects of
small disturbance to a given background flow in such a
region, under the usual assumptions that leads to the
equations of acoustics. Harmonic analysis leads to a
boundary-value problem for the Helmholtz equation (or
reduced wave equation): Find u in the exterior domain, the
spatial component for the acoustic pressure or velocity
potential [22,35], such that

—ZLu(x) = f, xin D, 3)

u(x) = g, xon B, “4)

du(x) = ikh, xon By, (®)]
on

Lo (9
lim R2¢ ”(% - iku) =0, R at infinity, (6)

R—

where %u = V?u + k*u is the Helmholtz operator, V2 is the
Laplacian operator and k = 0 is the wave number; and in
particular du/on := Vu-n is the normal flux and V is the
gradient operator; i> = — 1, R is the distance from the origin
to the field point. In the linearized equations of motion,
velocity gradients produce a compression of the acoustic
medium and pressure gradients are related to acceleration.
Thus, if the dependent variable is, e.g. the acoustic pressure,
then the Neumann boundary condition Eq. (5) represents a
prescribed velocity distribution on that portion of the wet
surface, where h is proportional to the velocity and the
presence of ik is a consequence of differentiation with
respect to time. Neumann boundary conditions are therefore
very common in physical situations that entail radiation,
and in the model problems and demonstrative examples that
are subsequently considered we emphasize boundary
conditions of this type. It is noted that the analysis is valid
for any combination of boundary conditions on the wet
surface for the boundary-value problem Egs. (3)—(6), and
by no means is it limited to Neumann problems. For
scattering problems, a fixed rigid object is represented by a
homogeneous Neumann boundary condition, often
referred to as a hard scatter. Conversely, the homogeneous
Dirichlet boundary condition, an appropriate representation
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Fig. 1. Comparison of the scheme in the calculation of influence coefficients by using the conventional BEM and the FMM.
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of a site of pressure release, is termed a soft scatter. An
impedance boundary condition is a linear combination of
the two [22,35].

The governing equation for an exterior acoustic problem
is the Helmholtz equation as follows
(V2 4+ K)u(x;, x,) = 0, (x1.x,) € D, (7
where f in Eq. (3) is zero (no sources), and k is the wave
number, which is the angular frequency over the speed of
sound. The boundary conditions can be either the Neumann
or Dirichlet type.

Eq. (6) stems from the Sommerfeld radiation condition
which allows only solutions with outgoing waves at infinity
to be admitted. This boundary condition implies an integral
form, the Rellich—Sommerfeld radiation condition

ou
J B, | OR

2
& —iku| dB =0, (8)

where B, is the surface of a sphere with an infinite radius. The
radiation condition requires energy flux at infinity to be
positive, thereby guaranteeing that the solution to the
boundary-value problem in Egs. (3)—(6) is unique. Appro-
priate representation of this condition is crucial to the
reliability of any numerical formulation of the problem. In
this section, the statement of problem follows the paper by
Stewart and Hughes [35] since they present a typical
formulation.

2.2. Dual boundary integral formulation
The first equation of the dual boundary integral equations

for the domain point can be derived from the Green’s third
identity

where X is the field point (¥ = (x, y)), § is the source point, and
UG.%) = — %ng“(klg — 3, (10)

in which H{" (k|5 — l) is the first kind zeroth order Hankel
function, and T'(5, X) is defined by

aUG, %)

I6.H = = -
s

) 1D
in which n; denotes the normal vector at the boundary point 3,
and U(3, %) is the fundamental solution which satisfies

VZU®,3) + KUK, 3) = 2w8(x — 3), ¥ € D. (12)

In Eq. (12), 6(% — 3) is the Dirac-delta function. After taking
normal derivative with respect to Eq. (9), the second equation
of the dual boundary integral equations for the domain point
is derived

ou(x) ou(3)

2T = J M@, X)u(3)dB(5) — J L(3,%) dB(3),
on B B ang

X €D, (13)
where

LG, %) = M7 (14)

an}
L _ UG
M(S,.X) = W, (15)

in which n; represents the normal vector of %. The explicit
forms for the four kernel functions are shown in Table 1. The
boundary conditions can be either the Neumann or Dirichlet
type. By moving the point x to the boundary, the dual
equations for the boundary points are

Tu(F) :CPVJ TG, %)u()dBG)
B

ou(s
2mu(F) = I TG, Hu)dBG) — J UG, %) a( )dB(s), (16)
B B ny
xeD, 9) —RPV J'B UG, %)t(5)dB®3), X€EB,
Table 1
The properties of the kernel functions for the Helmhotz equation
<~ . . . : (1
Kernel K(3,%) ven T(s,i) L'iu) M%) — ”‘%{AHZ rﬁ”) yevindy
_ imHy (Ar) _ AT o 2 ATy YTt )
A P on Y S H 2 L0,
r
Order of singularity O(In r) weak O(1/r) strong O(1/r) strong O(1/r*) hypersingular
Symmetry UG, %) = UG, 3) TG, %) = L, 5) LG3,%) = T(%3) MG, %) = M@, 3)
Density function v(3) duldn u dulon u

Potential type Single layer Double layer

[ KG3,)v(3)dBE3) Continuous Discontinuous
continuity across

boundary

Jump value No jump 21U

Principal value Riemann Cauchy

Normal derivative
of single layer

Normal derivative of double layer

Discontinuous Psuedo-continuous
2m(0u/dn) No jump
Cauchy Hadamard

Where H{"(Ar) is first kind of the nth order Hankel function, 7i; denotes the ith components of normal vector on X, respectively.
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(%) = HPVJ M(3,%)u(3)dB(3) — CPVJ L(3,%)1(3)dB(5),
B B
XEB, amn

where CPV, RPV and HPV denote the Cauchy principal
value, the Riemann principal value and the Hadamard
principal value, #3)=0u(5)/0n;, B denotes the boundary
enclosing D. The linear algebraic equations discretized from
the dual boundary integral equations can be written as

(THu} =[Ul{r}, (18)
(M{u} =[LI{z}, (19)
where {u} and {¢} are the boundary potential and flux,

respectively. The influence coefficients of the four square
matrices [U], [T], [L] and [M] can be represented as

U,,=RPV j Uls,x,)dBGs,). (20)
B‘I

Tpy=—T8,, +CPVJ’B T(s4,x,)dB(s,), (21)

L,,=m8,,+CPV JB L(s4,x,)dB(s,), (22)

M,, = HPV J M(syx,)dB(s, ), (23)
Bq

where the subscript p denotes the label on collocation
point, B, denotes the gth element and §,,=1 if p=g;
otherwise it is zero. In order to overcome the problem of
fictitious frequency, the Burton and Miller formulation
[5] is employed by combining the dual equations as
follows

{1+ Lonuo =i+ gt 24)
For all wave numbers, Eq. (24) can work well [4].

2.3. Expanding the four kernels using the multipole
expansion method

By adopting the addition theorem, the four kernels in the
dual formulation are expanded into degenerate kernels
which separate the field point and source point [1]. The

and o
a=cos | (—(f —~p)(x~— p~) ) 27
IG — Pl — p)l

The definition sketch of the coordinate is shown in Fig. 2. The
contour plot of potential for the U kernel can be shown
in Fig. 3(a) for the series form using the degenerate kernel in
Eq. (25) and Fig. 3(b) for the closed-form fundamental
solution of Eq. (10). The kernel function, 7'(3,X), can be
expanded into

T(3%)= Y Cu(®IVR,(3)n,]
m=0

(o TS N ) A D)
T = _2mZ_08me(k|x_p|){anscos(ma)
M plx = dcos(ma) o o
+HO®s—ph 2SI il pl,
B i o5 @9
LD W L
! ZmZosmHm (kx=PD ong
9
Xcos(ma)—l—]m(klg—ﬁl)M}
ang
[ x—pl>l5—pl,
where
o, (kls—pl) & o o
TZE[Jmﬂ(kls—pl)—J,,1+1(k|s—p|)]
5 i P 09
I5—pl
OH(KI5—ph) k) 5—pi O s
T an e (S Ph = H, L (K5 =ph
5 i P G0,
5 —pl
9
wz —msin(ma)(a;n;), 31)
nS

in which #; is the ith component of the normal vector at § and

0= =1 (53— p2)*(x; —p1) = (51— p1)(s2 = p2)(x2 — p2)
' sin(a) ’

l5—pl’lx—pl

kernel function, U(3, X), can be expanded into (32)
i T« o oWl = - o o o
U= 5 el (kX — pOH,, (k|5 — pl)cos(ma), 15— pl> 1% —pl,
UG.D)= Y C(DR,() = " (25)

Ue = —“71 S &, HY (K% = pI)J, (KI5 — phcos(ma), 15— pl >[5 — pl,

m=0

where i2 = —1, J,,(ks) is the first kind mth order Bessel
function, p is the center of multipole
1, m=0
&y = , (26)
2, m#0

g —1 (51 =p1) (s —p2) — (51 = p1)(s2 —p2)(x1 —py)
27 sin(@) ’

I5—pllx—pl
(33)
By substituting Eqs. (29)—(31) into Eq. (28), we have
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Fig. 2. The definition sketch of the coordinate, coordinate transformation and the position for the center of multipole

Mcos(ma) + HO®l5 — ply
p

cos(ma) + J,, (kI3 — pl)

(34)
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Fig. 3. The contour plot of potential for U kernel. (a) Degenerate kernel of Eq. (25), (b) Closed-form fundamental solution of Eq. (10).
The kernel function, L(3,%), can be expanded into
LG, %) = > [VC,(®)n,IR,,(5)
m=0
; i oJ, (klx — pl dcos
I=-2% &, HO s - ﬁ|){Mcos(ma) 4, (k% —ﬁl)ﬂ}, 5 — pl > Iz — pl
2 & on, ony
- D (k| | (33)
1 - oH.(klx — p dcos
1= =TS 6,05 - ]3|){m(anxmcos(ma) + HD (lx — ﬁ|)°(’”“)}, % pl > I5 — pl,
m=0 X X
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where
W E[Jm V(KIZ =Bl =,y (el — ;ﬂn%,
(36)
(D — )il
oH,, (klx=ph) _ k[H“)l(klx —pl)— H“>l(k|5c—pl)]7(x’~ Ly
an, mt lx—p
(37
EEE%EQ —msin(ma)(b;fi;), (38)

in which 7; is the ith component of the normal vector at X

and
_ —L Gi=p)x —p2)* = (5= p2)(x1 =P —p2)
sin(a) It —pl*l5—pl '
(39)
_ —L (a=pa)xy —p1)° = (51 —p)(x; —p)(x2 = pa)
sin(a) '

lx—pll5—pl

(40)
By substituting Egs. (36)—(38) into Eq. (35), we have

J.T. Chen, K.H. Chen / Engineering Analysis with Boundary Elements 28 (2004) 685-709

where

2cos(moz)=a [—msin(ma)a;n;]

on,0ng on,

[ —msin(ma)]

. oa;n
=a;n; +(—msin(ma))——
on, ad

X

=a,~ni[—mzcos(ma)b,-ﬁ,-]+[ —msin(ma)]

—(2—p)( i (—poiy

x{nl[ 5—pP \—p  (2—po)? )]
(1=pD)2—p)( My _(xl_l’l)’_h)

+n2[ 5—pF  \x—pr  (o—py)? ]}

(43)

By substituting Egs. (29)—(31), (36)—(38) and (43) into
Eq. (42), we have

L= - > > e, Hy (K5 — 13|){ ey (k% = pl) = Ty (kI — p\)]%cos(ma) + J,,(klx — pl)
m=0
X[—m sin(ma)(b,-r‘zi)]}, I5 —pl > Ix — pl,
L(3, %) “n
e _ o) ) 5 (x; — pi Dyle =
L= Z el (kI3 — pl) [H L (klx = ply — H,,3, (klx — |)]7ﬁ|cos(ma) +H,(klx — pl)
m=0
ﬂ—mﬁﬂm@@ﬂﬂ}&—ﬁk>ﬁ—ﬁL

The kernel function, M(5,%), can be expanded into

M3, %) =
m=0

’Tr (o)
__72::

9
T (kg — ) 25080me)
on

it on, on
D [VC, @)1 ]IVR,(5)n,] = -

; i H{P(kl5 — pl lx — pl
Ml=_'1Tl ZS 0 m(ks p){a‘]m(k-x P)

cos(ma)
on,

oJ,,(klx — pl) a
}‘*‘ &, H. (kls — pl){ w(klX — pl) dcos(ma)
on, an,

J
4T (K5 — |)M}, 5 — 5l > |5 — pl

aJm(kls - p|){ aH D (k% — pl)

cos(ma) + HV (k1x — pl)
an,

y acoas(ma) } e (K5 — ﬁb{ dH\V(klx — pl) dcos(ma)
nx

on, ong

62
FHO G — phy MO L eSS gl
L on, ong

(42)
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% —(s2 = p2) np (g —pny
ml 3 — —
l5—pI° \xa—p2 (2 —p2)

5 —pl>Ix —pl,

M3, %) .
- _% Z [ (Jmfl(kk;' P|) m+1(k|s _p|))
o X = P
- (x; — p)n;
—H\) (klx = p l))W
— (s, _Pz)( ny _ (x; — piy
X ny = —3 .
5 — pl X, —=py (X2 —p2)
L lx — pl > 15 — pl

2.4. Dual boundary element formulation in conjunction
with the FMM

By employing the constant element scheme after
coordinate transformation and moving the center of multi-
pole (p) to the center of local coordinate on each boundary
element as shown in Fig. 2, each element of the influence
matrices can be obtained as follows.

2.4.1. U kernel

For the regular integral (i # j), we have
(a) V[J > OSZJ

U= vtas= TS o, HO kr cos2
= Cos s= TZ n(krij)cos(2ma)

0.5/,
X
-0.5/;

T = 4 &
_7 Z H( )(krz )Cos(zma)(; ZJ2171+2i1+1(0‘51j))
n=0

J,(klshyds

- Z Cl,/m myj» (45)

)]+n2[ 51

)] + n2|: (51

. i k
M = _%1 Z_zosm[z(Hr(nl)l(kG—]ﬂ?D—H(l)l(k|s |))%]{2[ m—1(klx = pl) — J,, . (klx — pl)
x%”;’_’f ]cos(ma) + J,(klx — ph[—m sin(ma)(biﬁi)]} + &, H P (kI3 — 13|){[ S(Jm,l(kl)“c —ph
I (KIx = pb)% ][_m sin(ma)(a;n;)] + J,,(k1x — ph)[a;n,(—m® cos(ma)b,n;) + (—m sin(ma))

P1)(s2

- _Pz)( np (T pony )
5 —pl° =Py (= p)? '

(s _p,)|n ]{Z[Hml(klx P = H{LL, (ks = p)

=5 ]cos(ma) + HPklx — ph[—m sin(ma)(b;7; )]} + &,,J,,(kl3 —p|){|: (H (klz — pl)

][—m sin(ma)(a;n;)] + HP (klx — f)|)|:a,~n,~(—m2 cos(ma)b;n;) + (—m sin(ma))

P1)(s;

— P _I’z)( n(x _Pl)ﬁl)
5 - pl? Xy = P2 (2 —p3 ’

(44)

where r;; is the distance between the collocation point on ith
element’s center and the jth source element’s center, r;; =
\xZ+y2, x, and y, are the coordinates of collocation point
after translation and rotation, /; is the length of the jth source
element. The multipole moment Rm j 1s the value related to
the source point coordinate and C}; Jj.m 18 the value related to
the field point coordinate as shown below:

i
Clim="— jemHgn)(kri Jeos2ma), (46)
4 (o]
Rouj =7 2 Janans1(0.54). (47)
n=0

(b) r;,; < 0.5,

—rij . Tij 051
U”:J UldS+J UedS—i-J UldS
: -0.5/; T

rij

T — had
=5 En “>(kr,,>cos<2ma)( ZJMH(kr,-J))
m=0 ":0

WES 0.5
By ZongZm(kr[ J)cos(zma)zj

Tij

g (1)
H;,)(klsl)ds.  (48)

For the weakly singular integral (i = j), we regularize the
integral by means of partial integration and limiting process
((x,y) = (0, €)) as follows
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—€ € 0.5[;

U;; = lim U’ﬂs—l—J Ueds—i—J U' ds
T 0 ) —osy —e €

—ri

J

(.

—0.50;

R 0.
0+ ijo(ke)(zj

€

Sl;
H(()l>(ks|)ds) =

kl

1
13

—iTr

2

0.5;
—)l} —i—kJ H" (klshlslds),
—0.51;

=

where

€ € 2
lim J H{ (Klshds = lim J L In(ks)ds = 0. (50)
€— —€ € —e T

H" (klshds +J
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. 'ﬂ'l > 1) 4 n=x _Tl'l ad 0'Slj (1)
- mgo smHZm(ke)cos(Tr){ < ZO Jomiomi1(ke) + — ,;) stZm(ke)cos(Tr)(Z J H'V(kls)ds

H((,l)(k|s)ds)

(49)

For the strongly singular integral (i=j), we regularize the
integral by means of partial integration, limiting process and

the identities from the generalized function as shown below
(19]

sin(mﬂ)
2

d ™
2.4.2. T kernel m; m 4 (54
For the regular integral (i # j), we have
(@ r;; >0.51 We can obtain the integral as follows
O'SIj e ’lTl it 1) 0'Slj k S'O + 0(_ 1)
Tld = J'_()j[j T°ds = — 7 mgo smHzm(kriJ-)Costa) J'_().51j 5 [szfl(k|s|) - J2m+1(k‘S|)] Tds
T ) , 030 —Jyp1 (Klsl)
- — Z 2H,,, (kr;j)(2m + Dsin((2m + Da) —————ds (51)
2 & -0, H
S 0.51; || || X
= i H kr; (2 1)sin((2 1 Jom(k J klsh)]ds = C;; ,,[R,.; + R 1
mmZ::o a1 (k1 )2m + Dsin((2m + Da) y— Jo.szj[ om(klsl) + Jop i (klsDds = Cij R, + Rty ]
where
Clim=miH5)),  (kr;)2m+1)sin((2m+1)a) T (52)
(b) r;;<<0.51
IR e e 03l T () : i Jymy1 (klsl)
T, = T ds + T° ds + T ds = i Z H;, o (kr; )(2m + Dsin((2m + D) ﬁds
—0.5; —rij Tij m=0 ~Tij S

0.5, gD
/ H2m+1

1Y Ty (k)2 + Dsin(@2m + l)a)(Z)J 1

m=0
J’r:/
iy

+ HS) o (klshds.

k
dm+2

X

m=0

(kls)

o KIS + Jpa (KIsDIds + 700 > St (kri)(@m + Dsin(@2m + 1)a)(2)

(1)
H2m+1

(o]
ds =i Z
m=0

(kr; )(2m + Dsin((2m + 1)a)

5 )
[H)(klsl)

0.
Jr,‘x,'

dm+2
(53)
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o€ i o€ e 03 i (1) : ™ € J2m+l(k|S|)
T, = T'ds+ | T°ds+ T ds = mi Z Hopy gy (kry)@m + Dsin{ m + 1) = Lom+1 V51

-0.5};

€ m=0

S o\ (055 g
+ 2mi Z Joy1(ke)2m + 1)sin((2m + 1)5) J' L

m=0

(="
Zz +1 22

Ve 1 e (-
XJG sz—mdSZZZZ

m=0

where
0.51; H(]) (k‘S')

llmJ2m+l(k€)J %

(56)

J‘O.Slj im(2m+1)(k€)2m+l H§2+1(k|s|) doe
Je 0 22 (2m41)! ls|

2.4.3. L kernel
For the regular integral (i # j), we have
(a) r;; > 0.51
0.5/; TS k
L. = Leds = — — H(l) kr -
L] J*O.Sl- s 2 & m2[ 1( rlJ)

051
—H(l)+l(kr,J)] d lcos(2ma)J sz(k|s|)ds

1J
.X]-I’lz

- % Z WHSD er, ) (2m)sin(2ma) 2

iJ

0.51/- |
X Jo(kishds = C,mm, 57
[ Pantls) ,;) R, (57)

where

i k X7
C?J,m =T 5 €m [Hém l(kriJ) - Héll1z+l(krizi)] —
2 2 rl'J'

X cos(2ma) + B (kr, ) 2m)sin(@may 2 }
rl- g

(58)
(b) r;; < 0.51
=T . Tij 0.57;
L,»:J L’ds+J Lgds+J "Lds
Y ) ost —ri; rij

e k
:_7 8m§[H§2_1(kriJ) Hé,l;Jrl(krt,/)]
m=0 J

0.5, e
x| Dnklshds— 25 &, HO (kr, )2 )
Jo.szj 2m(klsDds ) mg (kr; j)(2m)sin(2ma)

= = 0.5 ;&
Yty — X1 / st k
X" Jo(klshds — — —[Jop—1(kr;;

rlzJ ,[O.Slj 2m( S) S 2 mgogmz[ 2m 1( rl‘])

0.5;
— Lo (krw)] Cos(2ma)< J Hgg(klslds))
Tij Tij

Z e (kry)2m)sinma)y 252

m=0 ij

x(zj ‘ ngl;(klsl)ds). (59)
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o Sin

Isl

Zmd +2Z( 1)m 2m+1
m=0

(— l)m
2 Z 2m+1 J'

(“) s i (’”5)

=, (55)

For the strongly singular integral (i=j), we regularize the
integral by means of partial integration and limiting process

as follows
0.51;

—€ . € .
Li’i=J leS+J LedS+J les
—0.5; —€

€

—Ti— k m
= smE[Hg;,l(klel) HS) . (kleh1(—1)
m=0
xJ J2m(k|s\)ds+—Zs [JZm,l(klel)
m=0
0.5;
—JZmH(klel)](—l)m(ZJ Hg,‘,g(klsl)ds)

0 B \/g 2
2+ > (—1)"e™ IL s

m=1

(D" (€ 2
__ZZ 2m+1j ds—

(_l)m _2_2§ (_l)m

— 2m—+1 — 1 —2m
oy Iy
o sin(m—) o sin(m—)
=-2 2 |22 Y —2 |=-m
m=1 m=1 m
(60)
where
lim[/,, - ((kleh)— Jz,,H_l(klel)]J’ H<“(k|s|)ds— (61)

2.4.4. M kernel
For the regular integral (i # j), we have

(a) r;; > 0.51
03 )

;}; (k> r— L [(2m + Dsin(Rm + Da)]
if

055 J,,,(klsl)
2m W
X ——ds+ - 2)HS)) | (k

J—o.szj T © mzo( 11 (KT j)

X (2m + 1)cos((2m + 1)a)%

Vl-J-

0.51; ]2 (k|S|) © .
J—o.szi Is| § n;) ijn [ Rinj & Ront 1]

(62)

where
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c,‘-‘J,mz > (2m+1) {(rid)[H(l)(kr,J)— 2m+2(kr,d)]

ld

ny — xn
Xyrl rZ}.

J

2
)"I-J-

(b) r,-xl- < 0.5

—Tij . Tij 0.5/;
MI‘/:J’ MldS+J MedS"_ Ml
—=0.5]; —ri; Tij lJ =0

k ij
+ HS,) (ki )2m + Deos((2m + Da)y, iy — xrﬁz}m Jir‘

(ki )2m + 1eos(2m + 1)a)
(63)

=5 Z(z +1){ (r PUHS ke ) — HS)) o (kry )1xi sin((2m + 1)

i 00
o (Klsl) + Jomsa(Klsh]ds + % S em+ 1)

ij m=0

k
X {5 (r Mo kri ) = Jomga(kr; DIty sin(Cm + 1)a) + Jpp g (ki j)(2m + Dcos(Cm + 1))y, ity — xrﬁZ}

9 k
dm+ 2

0.5/;
J [HS)(Klsl) + HS)) o (klsh]ds

For the hypersingular integral (i = j), we regularize the
integral by means of partial integration, limiting process and
using the identities from the generalized function as shown
below [19]

00

m_ 1
D D= (65)

We can obtain the integral as follows:

€ €

(64)

It is interesting to find that R,,; term is embedded in the
formula of the four influence matrices of Egs. (45), (51),
(57) and (62).

2.5. Construction of the four influence matrices
By using Egs. (45) and (51), the algebraic system UT

equation of the dual boundary integral formulation in
Eq. (18) can be rewritten as

sl

—€ ) € 0.50; 0.57 H(l)(k|s|) 00
M;; :J' M' ds + J' M°* ds + M ds = —mk{J' 1 ds+ Z Jom(ke)2m + 1)(—1)"
~0.50; —c

e |S| e2m+2 0

m=1

y J‘”l Hiy (Kls) } b3 2 ey [

m=1

—imk kl kl
() ()
2 { t\2 +k 2

0.50; - S ; ;
+kjo.51H§1)(k|S|)|S|ds]} Tete Z S A Z (=" = { a ZHgl)( 2 ) +k|:H(l)< 2 )

0.51; kl kZ
—i—kJ ' H}l)(k|s|)|s|ds l’lTkH(l)( ) - LU”. (66)
~0.51 2 2
i 0 C%,Z,m(Rm,Z + R(erl),Z) C%,N,m(Rm,N + R(m+1),N) l uj
o | C31m@R + Roninyn) 0 CinmRun + Rimi1y ) Uy
Z + i
m=0
| C12V,l,m(Rm,1 + Ront1),1) C12V,2,m(Rm,2 + Ronpnp) - 0 ] Uy
f 0 C},Z,mRm,Z C%,N,mRm,N tl
o C;,l,mRm,l 0 C%,N,mRm,N . 15)
=1y + [diagUi)1 F1 .t (67)
m=0 .
L | C]lV,l,mRm,l CIIV,Z,mRm,Z e 0 _ tN
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m=0

where

(U] =

[T]=
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By using Eqgs. (57) and (62), the algebraic system of the
LM equation of the dual boundary integral formulation of
Eq. (19) can be rewritten as
i 0 CAI‘,2,m(Rm,2 + R(m+1),2) CAI‘,N,m(Rm,N + R(m+l),N) ] 251
Cg,l,m(Rm,l + Ront),1) Cg,N,m(Rm,N + Ronpnyn) . up
+ [diag(M; ;)]
| C;4\/,l,111(Rm,1 + R(erl),l) C?V,Z,m(Rm,Z + R(m+l),2) 0 _ Uy
f 0 C%,Z,mRm,Z C%,N,mRm,N tl
© C%, 1 ,mRm, 1 0 CS,N,mRm,N 5]
Z + w[l] (63)
m=0
L | C?V,l,mRm,l C]3V,2,mRm,2 0 _ tN
I is the unit matrix.
By adopting the M + 1 terms in the series sum, the four
influence matrices can be rewritten as
[ 0 0 U [ Rox O 07 [ Cll,z,o Cll,z,l CII,Z,M ]
C2],1,0 C21,1,1 C%,I,M R, O 0 0 0 0
_I_
1 1 1
| Crnio Cwa Choawr dnsarsy LRy 0 0dwsxy LCn2o Cnoi Cnom Inxaus)
[0 Ro» 07 [ Cino Ciwa Civm | [0 0 Ron 7]
0 Ry, -~ 0 C%,N,O Cé,N,l C%,N,M 00 Ry
X 4+
| 0 Ry, --- 0 (M+1)XN | 0 0 0 s+ [0 O Ryrn dvs1yxv
+ [diag(U; )lyxws (69)
0 o - 0 (Rog+Ry) 0--0 _Ciz,o C%,2,1 C%,ZM-
C%,I,O C%,l,l C%,I,M (Ri,1;+Ry;)) 0--0 0 o - 0
+
2 2 2 2 2 2
| Civio Caa o Cnam dvxarsy LB HRws,) 0 - 0 v LCN20 Ch2i - Cyamd nxaonsn
0 (Roz+Rip) -0 Cino Ciwva =+ Clww ] [00 -+ (Rony+Rin)
0 (Rip+Ry) 0 Cino Ciny - Ciym 00 (Riy+Ryy)
et 1],
| 0 (Ry2+Ror+1)2) E Ul [yasy ey Y 0 0 dwxwm+1 [00 - (Ryn+Rons)n) J s xw

(70)
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0o 0 0 Ry O 0
3 3 3
Go G Gam R O 0
L] =
3 3 3
Cnio Chia Crim Inxe+y LRy 0 0 1w
Cioo Ciai Clom 0 Roa 0
0 0 0 0 Ry 0
+
3 3 3
Cy2o Choai Cnom Insxau+1) L0 Ry 0 41w
Cinvo Cin Clwa 00 Rown
C;,N,O CS,N,I CS,N,M 00 Ry
++ +m(1], (71)
0 0 0 dyxainL0 0 Ry y dorsrx
0 0 0 Ry +Ri) O 0
Crio Cau Coim (Rii+Ry) O 0
(M] =
Crxio Chia Cram nx+1) L Ryt + Rareny) 0 (U yamps
C?,ZO C?,Z,l CiZ,M 0 (R0,2 + RI,Z) 0
0 0 0 0 (Rip+Ry») 0
+
Crao Chai Crom nxam+ L0 (Ryrz + Rasny2) 0 s xw
Cino Cini Cinm 0 0 (Roy + Rin)
C%,N,O C%,N,l C%,N,M 0 0 (RI,N + RZ,N)
+F +[diag(M; ;))]yxn- (72)
0 0 0 dysxarsnL0 O Run + Rorsnn) Jarxn

It is interesting that the four influence matrices in the dual
BEM are all composed of the field point matrices and the
source point matrices. The separable technique can promote
the efficiency in determing the influence coefficients. The
source point matrices of [U] are all the same with [L], while
the source point matrices of [T] are all the same with [M].
Besides, many influence coefficients in the source point
matrices of [T] and [M] have the same value with [U] and
[L], or with only some combinations. There are many zeros
or the same influence coefficients in the field point matrices
decomposed in the four influence matrices. Therefore, we
can avoid calculating repeatedly the same term. The
separable technique reduces the number of floating-point

operations from ON?) to O(N log?(N)). Thus, large
computation time savings are achieved and memory
requirements are reduced, thus enabling us apply BEM to
solve large-scale problems.

3. Illustrative examples

To demonstrate the validity of the dual integral
formulation in conjunction with the FMM, two examples
for scattering problem by an infinite cylinder with radius (a)
subject to the Neumann boundary condition are given as
follows.
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W iy

Fig. 4. The scattering problem for a cylinder with the Neumann boundary
condition.

Example 1. The radius, a, is 5 m and the wave number of
incident wave, k, is 41r.

In the Example 1, we solve the problem by applying the
LU decomposition in the developed program and compare
with the analytical solution and the conventional dual BEM.
The problem was chosen because the analytical solution is
known [23,35]. It is therefore a good model problem to test
the accuracy of DBEM by employing the concept of FMM.
The example is shown in Fig. 4 and the analytical solution is

Jo(k — ., Jn(k
u(r, ) = — KD 0y 3 o Tnlh)
Hy" (ka) n=1 Hy’ (ka)
X H.\" (kr)cos(n), (73)
where i> = —1. Fig. 5 shows the contour plots of the real-

part solutions for the case of ka = 20m. The unknown
boundary solutions of scattering field using the boundary
mesh of 100 elements, Re(x) and Im(u), are plotted in Figs.
6 and 7 and 800 elements in Figs. 8 and 9. Solution using the
uniform mesh refinement of 800 elements converges to the
exact solution. By adopting only four moment FMM
formulation, the results are compared well with those of
FEM, conventional BEM and analytical solutions. Com-
parison of error norms for the FMM results versus different
terms in the series is shown in Fig. 10. Fig. 11 shows the
error norms against different meshes. Only a few terms in
the FMM can reach within the error tolerance. Comparison
of CPU time using the FMM with different terms are plotted
in Fig. 12. Fig. 13 shows the CPU time versus different
meshes. The trend of CPU time in proportional to N?> and
N log*3N is found for the conventional BEM and the FMM,
respectively.

Example 2. The radius, a, is 50 m and the wave number
of incident wave, k, is . Fig. 14 shows the contour plots of
the real-part solutions for the case of ka = 50m. The
unknown boundary solution of scattering field using the
mesh of 400 elements, Re(x) and Im(u), are plotted in
Figs. 15 and 16 and in Figs. 17 and 18 using 1100 elements.
Solution using the uniform mesh refinement of 1100
elements converges to the exact solution. By adopting

Fig. 5. The contour plot of the real-part solutions in the case 1. (a) Exact
solution, (b) FMM results (M = 4).

only three moment FMM formulation, the results are
compared well with those of FEM, conventional BEM and
analytical solutions. Comparison of error norms for the
FMM results versus different terms in the series is shown in
Fig. 19. Fig. 20 shows the error norms against different
meshes. Only a few terms in the FMM can reach within the
error tolerance. Comparison of CPU time using the FMM
with different terms are plotted in Fig. 21. Fig. 22 shows the
CPU time versus different meshes. The FMM can
reduce CPU time thus enabling us apply BEM to solve for
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Exact solution
— — — FMM DBEM (UT method, 100 clements)

Exact solution
— — — FMM DBEM (UT method, 100 elements)

Exact solution
— — — FMM DBEM (LM method, 100 clements)

Exact solution
— — — FMM DBEM (LM method, 100 elements)
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(c) (c)

Fig. 6. The boundary solution of the scattering field using 100 boundary Fig. 7. The boundary solution of scattering field using 100 boundary
elements, Re(u), for the case 1. (a) UT equation of FMM (M = 4), (b) LM elements, Im(u), for the case 1. (a) UT equation of FMM (M = 4), (b) LM
equation of FMM (M = 4), (c) Burton and Miller method of FMM (M = 4). equation of FMM (M = 4), (c) Burton and Miller method of FMM (M = 4).
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Exact solution Exact solution
— — — FMM DBEM (UT method, 800 elements) — — — FMM DBEM (UT method, 800 elements)
2 — 2 —|
D ~
2 — 2 —]
T [ T ] T T T T | T
0 2 4 0 2 4
0 0
(a)
(a)
Exact solution n
— — — FMM DBEM (LM method, 800 elements) Exact solution
— — — FMM DBEM (LM method, 800 elements)
2 —1
2 —I
S0 s
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0
- Exact solution
Exact solution ) — — — FMM DBEM (Burton and Miller approach, 800 elements)
— — — FMM DBEM (Burton and Miller approach, 800 elements)
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~
3 S o
s, £
& =
2 — 2 —
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(c)

(c)

Fig. 9. The boundary solution of scattering field using 800 boundary
elements, Im(u), for the case 1. (a) UT equation of FMM (M = 4), (b) LM
equation of FMM (M = 4), (c) Burton and Miller method of FMM (M = 4).

Fig. 8. The boundary solution of scattering field using 800 boundary
elements, Re(u), for the case 1. (a) UT equation of FMM (M = 4), (b) LM
equation of FMM (M = 4), (c) Burton and Miller method of FMM (M = 4).



702

Fig. 10. Comparison of the error norms for the FMM results versus M in the
series for the case 1. (a) UT equation. (b) LM equation. (c) Burton and
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Fig. 11. Comparison of the error norms for the FMM (M = 4) and the
conventional BEM results versus number of elements for the case 1. (a) UT

equation,

(b) LM equation, (c) Burton and Miller method.
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Fig. 12. CPU time by using the FMM versus M in the series for the case 1.
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Fig. 13. CPU time by using the FMM (M = 4) and the conventional DBEM versus number of elements for the case 1.
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Fig. 14. The contour plot of the real-part solutions in the case 2. (a) Exact solution, (b) FMM results (M = 3).
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Exact solution
— — — FMM DBEM (UT method, 400 elements)

Exact solution
— — — FMM DBEM (LM method, 400 clements)

(b)

Exact solution
— — — FMM DBEM (Burton and Miller method, 400 elements)
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-
§ ° 7
2 —
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(c)

Fig. 15. The boundary solution of scattering field using 400 boundary
elements, Re(u), for the case 2. (a) UT equation of FMM (M = 3), (b) LM
equation of FMM (M = 3), (c) Burton and Miller method of FMM (M = 3).

Exact solution
— — — FMM DBEM (UT method, 400 elements)

Exact solution
— — — FMM DBEM (LM mecthod, 400 clements)

Exact solution
— — — FMM DBEM (Burton and Miller method, 400 clements)

Fig. 16.
elements
equation

(c)

The boundary solution of scattering field using 400 boundary

, Im(u), for the case 2. (a) UT equation of FMM (M = 3), (b) LM

of FMM (M = 3), (c) Burton and Miller method of FMM (M = 3).
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Exact solution Exact solution
— — — FMM DBEM (UT method, 1500 elements) — — — FMM DBEM (UT method, 1500 elements)
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Fig. 17. The boundary solution of scattering field using 1500 boundary Fig. 18. The boundary solution of scattering field using 1500 boundary
elements, Re(u), for case 2. (a) UT equation of FMM (M = 3), (b) LM elements, Im(u), for the case 2. (a) UT equation of FMM (M = 3), (b) LM

equation of FMM (M = 3), (c) Burton and Miller method of FMM (M = 3). equation of FMM (M = 3), (c) Burton and Miller method of FMM (M = 3).
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Fig. 21. CPU time by using the FMM versus M in the series for the case 2.
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Fig. 22. CPU time by using the FMM (M = 3) and the conventional DBEM
versus number of elements for the case 2.

a large-scale problem. The same trend of CPU time in
comparison with Fig. 13 is observed.

4. Conclusions

In this paper, the four kernels in the dual formulation
were expanded into degenerate kernels where the field
point and source point were separated. The separable
technique promoted the efficiency in determining the
influence coefficients. The singular and hypersingular
integrals have been transformed into the summability of
divergent series and regular integrals. The Burton and

Miller formulation by combining the dual boundary
integral equations was utilized to solve the exterior
acoustic problems for all wave numbers in order to
overcome the problem of fictitious frequency. Two
illustrative examples have been successfully demonstrated
by using the FMM for DBEM formulation in the exterior
acoustic problems containing a large-scale scatter. The
numerical results were compared well with those of
conventional DBEM and analytical solutions. Only a few
terms in FMM can reach within the error tolerance. In
addition, the CPU time was reduced in comparison with
BEM without employing FMM concept.
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