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Abstract

In this paper, we review the free terms of dual boundary integral equations for the Laplace and Navier equations of 2-D and 3-D problems

and extend to biharmonic equation for plate problems. We derive the free terms of the dual BIE with a smooth boundary by means of the

Taylor series expansion for the density through bump-contour technique surrounding the singularity. After using the limiting approach, the

free terms and boundary terms for the 16 improper integrals in the dual formulation for the plate problems are derived. The contributions of

single, double, triple and quadrapole potentials for the free term are also examined. The improper integrals due to the 16 kernels with

singularity, hypersingularity or super-singularity are interpreted by the Cauchy principal value as well as finite parts.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Boundary integral equations (BIEs) with strongly

singular and hypersingular kernels are currently employed

in many fields of applied mechanics, most of the

mathematical issues have been clarified for the evaluation

of the singular integrals. The treatment of singularities has

always been a key subject in the development of boundary

element method (BEM). Dual boundary integral equations

(DBIEs) for crack problems were derived using the limiting

and trace approaches proposed by Hong and Chen [1]. Also,

the DBIEs for the Laplace equation with a degenerate

boundary was developed by Chen and Hong [2]. The

numerical implementation has been termed the dual

boundary element method by Portela et al. [22]. The dual

formulation has been mainly applied to problems with a

degenerate boundary by Chen and Hong in 1999, e.g. a

screen in an acoustic cavity [5], a crack in an elastic body

[16], and plate [24], thin airfoil in aerodynamics [23],

combdrive in MEMs [18], a cutoff wall in potential flow [4],
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degenerate scales [25] and the adaptive BEM [7].

Mathematically speaking, the dual formuation can provide

sufficient equations for a rank-deficiency system. Recently,

the hypersingular equation has been utilized to provide a

constraint at a corner in an analytical way by Gray and

Elschner et al. Gray and Manne [11] have applied the

hypersingular equation as an additional constraint to ensure

a unique solution by a limiting process from an interior

point to a corner. The three-dimensional case was also

extended by Gray and Lutz [10]. How to determine the free

terms in a hypersingular equation accurately has received

attention in the dual BIE by Guiggiani [12–15]. Later, an

additional free term in the hypersingular equation for the

Laplace problem was independently obtained by Guiggiani

[15] and Chen and Hong [3]. In 1995, Mantic and Paris [19]

obtained the same results which corrected independently the

error thus providing hypersingular boundary integral

equations of potential problem. In 2000, Chen et al. [6,9]

have proposed the bump-contour technique and the limiting

approach to determine the free terms of the two- or three-

dimensional Laplace and Navier equations successfully.

Also, the free terms of dual BIE for the 2-D Helmholtz

equation were presented [8]. Since the hypersingular
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Notations

rhjsKxj distance.

yiKxiKsi, iZ1,2 vector component.

�ni; iZ1; 2 normal vector of the field point.

ni, iZ1,2 normal vector of the source point.

�ti; iZ1; 2 normal vector of the field point.

ti, iZ1,2 normal vector of the source point.

n poisson ratio.
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integral equation can provide an additional constraint for the

Dirichlet problems, the free terms must be examined. Many

researchers, for example, Guiggiani has derived the free

terms in the boundary integral formulation by employing the

direct method for the Laplace equation, the Navier equation

and the biharmonic equation. He also found an additional

free term for the corner problem using his approach instead

of using the ‘dual’ formulation. Moreover, Maucher and

Hartmann [20] studied the singularities of Kirchhoff plate

for a boundary element solution. In 1994, Knöpke presented

the derivation of a second-order gradient BIE [17], that is

the identity for the bending moment components of elastic

Kirchhoff plates.

In this paper, we focus on the fourth-order partial

differentail equation, like bending of thin elastic plates

where the BIE must face the improper integrals of

hypersingular kernel or finte part. The order of super-

singularity occurred in the dual formulation for plate

problems is higher than that of hypersingularity. We derive

the free terms on a smooth boundary by means of the bump-

contour technique surrounding the singularity. After using

the bump-contour technique and limiting approach, the free

terms and boundary terms for the 16 improper integrals in

the dual formulation are derived. The improper integrals due

to the 16 kernels with weak singularity, strong singularity,

hypersingularity and super-singularity are interpreted as the

Cauchy principal value and finite parts.
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Fig. 1. The considered boundary integration path for the two-dimensional

problem.
2. Review of free terms of the dual integral formulation

for 2-D and 3-D Laplace and Navier equations with a

smooth boundary

According to the papers of Chen and his students as well

as his colleagues [6,8,9], they derived the free terms of the

dual integral equations in conjunction with the bump-

contour technique and limiting process for the Laplace and

Navier problems. First, let us consider the two- and three-

dimensional Laplace equations with a smooth boundary

point. The dual boundary integral equations are shown as

follows:

2-D Laplace problem

2puðxÞZ

ð
B0CBKCBeCBC

½Tðs;xÞuðsÞKUðs;xÞtðsÞ�dBðsÞ; x2U;

(1)
2ptðxÞZ

ð
B0CBKCBeCBC

½Mðs;xÞuðsÞKLðs;xÞtðsÞ�dBðsÞ; x2U;

(2)

3-D Laplace problem

4puðxÞZ

ð
B0CBKCBeCBC

½Tðs;xÞuðsÞKUðs;xÞtðsÞ�dBðsÞ; x2U;

(3)

4ptðxÞZ

ð
B0CBKCBeCBC

½Mðs;xÞuðsÞKLðs;xÞtðsÞ�dBðsÞ; x2U;

(4)

where the U and M kernels are weakly singular and

hypersingular kernel functions, respectively, while the T

and L kernels are strongly singular kernel functions, B0, BK,

Be and BC are the contour integration path including the

singularity as shown in Fig. 1, and U is the domain of

interest. In fact, the B integration path in Fig. 1 denotes the

contour integration around the singularity with a radius e,

and BCCBKCBeCB 0 is just the definition of the

integration region of the Cauchy principal value. BC and

BK denote two of the elements in the B0 boundary near the

singularity as shown in Fig. 1. By adopting the bump-

contour technique, we have the free terms and boundary

terms and the results are summarized in Table 1. It is found

that the contributions from both the hypersingular integrals

and the strongly singular integrals for the free terms of the

BIE are, respectively, half and half for the two-dimensional



Table 1

Free terms of the dual BIEs for the 2-D and 3-D Laplace problems

2-D problem

U(s,x) T(s,x)

0 pu(x)

L(s,x) M(s,x)

Kp
2

tðxÞ Cp
2

tðxÞC 2
e

uðxÞ

3-D problem

U(s,x) T(s,x)

0 2pu(x)

L(s,x) M(s,x)

K2p
3

tðxÞ 4p
3

tðxÞK 2p
e

uðxÞ

Table 2

Free terms of the dual BIEs for the 2-D and 3-D elasticity problems

2-D problem Uki(s,x) Tki(s,x)

iZ1, kZ1 No jump Ku1ðxÞ
2

iZ2, kZ1 No jump 0

iZ1, kZ2 No jump 0

iZ2, kZ2 No jump Ku2ðxÞ
2

Lki(s,x) Mki(s,x)

iZ1, kZ1 Gð3K4nÞ
16ð1KnÞ

vu1

vs2
C vu2

vs1

n o
sZxj

KG
8ð1KnÞ

vu1

vs2
sZxj

iZ2, kZ1 GðK1C4nÞ
8ð1KnÞð1K2nÞ

ð1KnÞ vu1

vs1
Cn vu2

vs2

n o
sZxj

KG
8ð1KnÞ

vu1

vs1
sZxj

iZ1, kZ2 Gð3K4nÞ
16ð1KnÞ

vu1

vs2
C vu2

vs1

n o
sZxj

KG
8ð1KnÞ

vu2

vs1
sZxj

iZ2, kZ2 Gð5K4nÞ
8ð1KnÞð1K2nÞ

ð1KnÞ vu2

vs2
Cn

vu1

vs1

n o
sZxj

K3G
8ð1KnÞ

vu2

vs2
sZxj

3-D problem

Uki(s,x) Tki(s,x)

iZ1, kZ1 No jump Ku1ðxÞ
2

iZ2, kZ1 No jump 0

iZ3, kZ1 No jump 0

iZ1, kZ2 No jump 0

iZ2, kZ2 No jump Ku2ðxÞ
2

iZ3, kZ2 No jump 0

iZ1, kZ3 No jump 0

iZ2, kZ3 No jump 0

iZ3, kZ3 No jump Ku3ðxÞ
2

Lki(s,x) Mki(s,x)

iZ1, kZ1 Gð4K5nÞ
30ð1KnÞ

vu1

vs3
C vu3

vs1

n o
sZxj

GðK7C5nÞ
30ð1KnÞ

vu1

vs3
sZxj

iZ2, kZ1 0 0

iZ3, kZ1 GðK1C5nÞ
15ð1KnÞð1K2nÞ

ð1KnÞ vu1

vs1
Cn vu2

vs2
C vu3

vs3

� �n o
sZxj KGð1C5nÞ

15ð1KnÞ
vu1

vs1
sZxj

iZ1, kZ2 0 0

iZ2, kZ2 Gð4K5nÞ
30ð1KnÞ

vu2

vs3
C vu3

vs2

n o
sZxj

GðK7C5nÞ
30ð1KnÞ

vu2

vs3
sZxj

iZ3, kZ2 GðK1C5nÞ
15ð1KnÞð1K2nÞ

ð1KnÞ vu2

vs2
Cn vu1

vs1
C vu3

vs3

� �n o
sZxj KGð1C5nÞ

15ð1KnÞ
vu2

vs2
sZxj

iZ1, kZ3 Gð4K5nÞ
30ð1KnÞ

vu1

vs3
C vu3

vs1

n o
sZxj

GðK7C5nÞ
30ð1KnÞ

vu3

vs1
sZxj

iZ2, kZ3 Gð4K5nÞ
30ð1KnÞ

vu2

vs3
C vu3

vs2

n o
sZxj

GðK7C5nÞ
30ð1KnÞ

vu3

vs2
sZxj

iZ3, kZ3 Gð7K5nÞ
15ð1KnÞð1K2nÞ

ð1KnÞ vu3

vs3
Cn vu1

vs1
C vu2

vs2

� �n o
sZxj

K8G
15ð1KnÞ

vu3

vs3
sZxj
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case, one-third and two-thirds for three-dimensional pro-

blem [6].

Secondly, the dual boundary integral equations for the

2-D and 3-D Navier equations are

uiðxÞ Z

ð
B0CBKCBeCBC

½KUkiðs; xÞtkðsÞ

CTkiðs; xÞukðsÞ�dBðsÞ; x2U; (5)

tiðxÞ Z

ð
B0CBKCBeCBC

½KLkiðs; xÞtkðsÞ

CMkiðs; xÞukðsÞ�dBðsÞ; x2U; (6)

where Uki, Tki, Lki and Mki are the four kernel functions

which depend on the 2-D or 3-D case, the uk(s) and tk(s) are

the kth components for the displacement and traction. After

collecting the free terms and unbounded boundary terms,

the dual boundary integral equations on a smooth boundary

point for elasticity problems are derived without the

problems of divergent integrals [9]. Similarly, the results

were summarized in Table 2. It is found that single- and

double-layer potentials contribute the free terms in the

hypersingular equation. Comparing the results of the

Laplace problem with those of the Navier equation, it is

found that the free coefficients are the same, namely one half

for the smooth boundary.
3. Free terms of the DBIEs with a smooth boundary for

the biharmonic problems

The dual integral equations for the plate problem can be

derived from the Rayleigh–Green identity as follows:

8puðxÞ Z

ð
B

½KUðs; xÞvðsÞCQðs; xÞmðsÞKMðs; xÞqðsÞ

CVðs; xÞuðsÞ�dBðsÞ; x2U; (7)
8pqðxÞ Z

ð
B

½KUqðs; xÞvðsÞCQqðs; xÞmðsÞKMqðs; xÞqðsÞ

CVqðs; xÞuðsÞ�dBðsÞ; x2U; ð8Þ

8pmðxÞ Z

ð
B

½KUmðs; xÞvðsÞCQmðs; xÞmðsÞKMmðs; xÞqðsÞ

CVmðs; xÞuðsÞ�dBðsÞ; x2U; ð9Þ

8pvðxÞ Z

ð
B

½KUvðs; xÞvðsÞCQvðs; xÞmðsÞKMvðs; xÞqðsÞ

CVvðs; xÞuðsÞ�dBðsÞ; x2U; ð10Þ

where B is the boundary, U is the domain of interest, u, q, m

and v mean the displacement, slope, normal moment and

effective shear force, s and x are the source and field points,



J.T. Chen et al. / Engineering Analysis with Boundary Elements 29 (2005) 435–446438
respectively. In Eqs. (1)–(6), we locate the point on the

boundary, and introduce the integral equation for the

domain point since B is modified to BCCBKCBeCB 0 to

embrace the boundary point x. In Eqs. (7)–(10), the

collocation point is in the interior domain and B is the

boundary, i.e. BZvU. For the biharmonic equation, we can

obtain the fundamental solution as follows

Uðx; sÞ Z Uðs; xÞ Z r2 lnðrÞ; (11)

where r is the distance between the field point and the source

point written as rhjsKxj. The other three kernels, Q(s,x),

M(s,x) and V(s,x), are defined as follows

Qðs; xÞ Z Kq;sðUðs; xÞÞ; (12)

Mðs; xÞ Z Km;sðUðs; xÞÞ; (13)

Vðs; xÞ Z Kv;sðUðs; xÞÞ; (14)

where Kq;sð$Þ, Km;sð$Þ and Kv;sð$Þ mean the slope, moment

and shear force operators with respect to s, respectively,

which are defined as follows

Kq;sð$Þ Z
vð$Þ

vns

; (15)

Km;sð$Þ Z nV2
s ð$ÞC ð1 KnÞ

v2ð$Þ

vn2
s

; (16)

Kv;sð$Þ Z
vV2

s ð$Þ

vns

C ð1 KnÞ
v

vts

v2ð$Þ

vns vts

� �� 	
; (17)

where n is the Poisson’s ratio, n and t are the normal and

tangential vectors, respectively. By employing the bump-

contour technique, the DBIEs in Eqs. (7)–(10) are derived as

8puðxÞZ

ð
B0CBKCBeCBC

½KUðs;xÞvðsÞCQðs;xÞmðsÞ

KMðs;xÞqðsÞCVðs;xÞuðsÞ�dBðsÞ; x2B; ð18Þ

8pqðxÞZ

ð
B0CBKCBeCBC

½KUqðs;xÞvðsÞCQqðs;xÞmðsÞ

KMqðs;xÞqðsÞCVqðs;xÞuðsÞ�dBðsÞ; x2B; ð19Þ

8pmðxÞZ

ð
B0CBKCBeCBC

½KUmðs;xÞvðsÞCQmðs;xÞmðsÞ

KMmðs;xÞqðsÞCVmðs;xÞuðsÞ�dBðsÞ; x2B; ð20Þ

8pvðxÞZ

ð
B0CBKCBeCBC

½KUvðs;xÞvðsÞCQvðs;xÞmðsÞ

KMvðs;xÞqðsÞCVvðs;xÞuðsÞ�dBðsÞ; x2B; ð21Þ
where B0, BK, Be and BC are the contour integration paths

including the domain U surrounding the singularity as

shown in Fig. 1. For convenience, it was assumed that Be is

an arc of a semi-circle centered at the field point x with

radius e. The integration path Be denotes the contour

integration around the singular point, and B0CBKCBC is

the definition of the integration region of the Cauchy

principal value. Eqs. (18)–(21) can be rewritten as

8puðxÞ

ZCPV

ð
B

½KUðs;xÞvðsÞCQðs;xÞmðsÞKMðs;xÞqðsÞ

CVðs;xÞuðsÞ�dBðsÞC

ð
Be

½KUðs;xÞvðsÞCQðs;xÞmðsÞ

KMðs;xÞqðsÞCVðs;xÞuðsÞ�dBeðsÞ; ð22Þ

8pqðxÞ

ZCPV

ð
B

½KUqðs;xÞvðsÞCQqðs;xÞmðsÞKMqðs;xÞqðsÞ

CVqðs;xÞuðsÞ�dBðsÞC

ð
Be

½KUqðs;xÞvðsÞCQqðs;xÞmðsÞ

KMqðs;xÞqðsÞCVqðs;xÞuðsÞ�dBeðsÞ; ð23Þ

8pmðxÞ

ZCPV

ð
B

½KUmðs;xÞvðsÞCQmðs;xÞmðsÞKMmðs;xÞqðsÞ

CVmðs;xÞuðsÞ�dBðsÞC

ð
Be

½KUmðs;xÞvðsÞCQmðs;xÞmðsÞ

KMmðs;xÞqðsÞCVmðs;xÞuðsÞ�dBeðsÞ; ð24Þ

8pvðxÞ

ZCPV

ð
B

½KUvðs;xÞvðsÞCQvðs;xÞmðsÞKMvðs;xÞqðsÞ

CVvðs;xÞuðsÞ�dBðsÞC

ð
Be

½KUvðs;xÞvðsÞCQvðs;xÞmðsÞ

KMvðs;xÞqðsÞCVvðs;xÞuðsÞ�dBeðsÞ; ð25Þ

where the CPV is the Cauchy principal value. The rigorous

definition of CPV will be elaborated on later. The integral

over Be contributes to the free term. In each integrand, both

kernel function and density function on Be will be studied in

Sections 4 and 5.
4. Taylor expansion of boundary density functions

Before deriving the free terms of the improper integral

equations, the density functions (displacement, slope,
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moment and shear force) are needed to be expanded to

series form for order analysis. Therefore, we expand the

density functions by using the Taylor series in the BIE

formulation as follows:

The displacement, u(s), is

uðsÞZuðxÞC
vuðsÞ

vs1

cosqC
vuðsÞ

vs2

sinq

� 	
e

C
1

2!

v2uðsÞ

vs2
1

cos2 qC
v2uðsÞ

vs2
2

sin2 qC
v2uðsÞ

vs1 vs2

cosqsinq

� 	
e2

C
1

3!

v3uðsÞ

vs3
1

cos3 qC
v3uðsÞ

vs1 vs2
2

cosqsin2q

�

C
v3uðsÞ

vs2 vs2
1

sinqcos2 qC
v3uðsÞ

vs3
2

sin3 q

	
e3 COðe4ÞC/

ð26Þ

The slope, moment and effective shear force can be obtained

by employing the operators in Eqs. (12)–(14), respectively.

We have the slope

qðsÞZ
vuðsÞ

vs1

cosqC
vuðsÞ

vs2

sinq

� 	
C

v2uðsÞ

vs2
1

cos2 q

�

C
v2uðsÞ

vs2
2

sin2 qC
v2uðsÞ

vs1 vs2

cosqsinq

	
eC

1

2

v3uðsÞ

vs3
1

cos3 q

�

C
v3uðsÞ

vs1 vs2
2

cosqsin2 qC
v3uðsÞ

vs2 vs2
1

sinqcos2 q

C
v3uðsÞ

vs3
2

sin3 q

	
e2 COðe3ÞC/ ð27Þ

The bending moment is

mðsÞZ
v2uðsÞ

vs2
1

½cos2 qCnsin2 q�C
v2uðsÞ

vs2
2

½sin2 q

Cncos2 q�C
v3uðsÞ

vs3
1

½cos3 qCncosqsin2 q�




C
v3uðsÞ

vs1 vs2
2

n

3
cos3 qC 1K

2n

3

� �
cosqsin2 q

� 	

!
v3uðsÞ

vs2 vs2
1

n

3
sin3 qC 1K

2n

3

� �
sinqcos2 q

� 	

C
v3uðsÞ

vs3
2

½cos3 qCncosqsin2 q�

�
eCOðe2ÞC/

ð28Þ
Table 3

Simplified forms of the density functions

Displacement u(x)

Slope qðxÞZ vuðxÞ
vnx

Z vuðxÞ
vx2

Moment mðxÞZnV2uðxÞC ð1KnÞ v2uðxÞ
vn2

x
Zn v2uðxÞ

vx2
1

C v2uðxÞ
vx2

2

Shear force vðxÞZ vV2uðxÞ
vnx

C ð1KvÞ v
vtx

v2uðxÞ
vnx vtx

h i
Z ð2KvÞ v3uð

vx2
1

v

The effective shear force is

vðsÞZ
1Kn

e
K

v2uðsÞ

vs2
1

ðcos2 qKsin2 qÞ
v2uðsÞ

vs2
2

�

!ðcos2 qKsin2 qÞK2
v2uðsÞ

vs1 vs2

cos q sin q

	

C
v3uðsÞ

vs3
1

½cos qCð1KnÞðcos3 qK2 cos q sin2 qÞ�

C
1

3

v3uðsÞ

vs1 vs2
2

½cos qCð1KnÞð2 cos3 qK7 cos q sin2 qÞ�

C
1

3

v3uðsÞ

vs2 vs2
1

½sin qCð1KnÞð2 sin3 qK7 cos2 q sin qÞ�

C
v3uðsÞ

vs3
2

½sin qCð1KnÞð2 sin q cos2 qKsin3 qÞ�

COðeÞC/ ð29Þ

The density functions are the Taylor expansions at x and

they should be substituted into the dual integral equations

when deriving the free terms. The simplified forms of the

density functions, u(x), q(x), m(x) and v(x), under the

condition of nxZ(0,1) and txZ(K1,0) are shown in Table 3

without loss of generality.
5. Explicit forms for the kernel functions and the order

analysis for the asymptotic behavior

Sixteen kernel functions of the boundary integral

equations are very lengthy and are summarized in Appendix

A. By adopting the boundary integral formulations and the

16 kernel functions, the notations generally employed in the

Kirchhoff plate theory are briefly summarized. Without loss

of generality, we have the following notations as shown in

Fig. 1:
(1)
xÞ
x2

C

The position of the field point: xZ(x1,x2)Z(0,0).
(2)
 The position of the source point: sZ ðs1; s2ÞZ
ðe cos q; e sin qÞ.
(3)
 Distance: rZjsKxj.
(4)
 Vector component: yiZxiKsi, iZ1,2.
(5)
 Normal vector of the field point: nðxÞZ ð �n1; �n2ÞZ ð0; 1Þ.
(6)
 Normal vector of the source point along the arc:

nðsÞZ ðn1; n2ÞZ ðcos q; sin qÞ.
v2uðxÞ
vx3

2



Table 4

Order analysis for the 16 kernels of biharmonic problem

U(s,x) Q(s,x) M(s,x) V(s,x)

O(e2 ln e) O(e ln e) O(ln e) O 1
e

� �
Uq(s,x) Qq(s,x) Mq(s,x) Vq(s,x)

O(e ln e) O(ln e) O 1
e

� �
O 1

e2

� �
Um(s,x) Qq(s,x) Mm(s,x) Vm(s,x)

O(ln e) O 1
e

� �
O 1

e2

� �
O 1

e3

� �
Uv(s,x) Qv(s,x) Mv(s,x) Vv(s,x)

O 1
e

� �
O 1

e2

� �
O 1

e3

� �
O 1

e4

� �
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(7)
 Tangential vector of the field point: tðxÞZ ð�t1; �t2ÞZ
ðK1; 0Þ.
(8)
 Tangential vector of the source point: tðsÞZ ðt1; t2ÞZ
ðKsin q; cos qÞ.
By employing the bump-contour technique and sub-

stituting the notations of (1)–(8) in Fig. 1, we can derive the

explicit forms of the 16 kernels of the dual integral

formulation. From the asymptotic analysis of the above-

mentioned kernels, the order analysis for the asymptotic

behavior in the kernels can be found in Table 4.
6. Potential due to the 16 kernels for the bump integral

After defining the related symbols, 16 kernel funtions

and the density functions for the bump-contour technique,

we substitute them into the boundary integral formulations

in Eqs. (7)–(10) and derive the free terms and boundary

terms. The four improper integrals of the first dual integral

formulation are

ðu1Þ :

ð
Be

Uðs; xÞvðsÞdBðsÞ Z e3 lnðeÞ ðfinite valueÞ; (30)

ðu2Þ :

ð
Be

Qðs; xÞmðsÞdBðsÞ Z e2 lnðeÞ ðfinite valueÞ; (31)

ðu3Þ :

ð
Be

Mðs; xÞqðsÞdBðsÞ Z e ln e ðfinite valueÞ; (32)

ðu4Þ :

ð
Be

Vðs; xÞuðsÞdBðsÞ Z 4puðxÞCe ðfinite valueÞ;

(33)

as e approaches zero, the free term is 4pu(x). It is worth

noting that the free term only occurs in the V kernel, the

other kernels do not contribute any values to the free terms.
For the second equation of the dual formulation, we have

ðq1Þ :

ð
Be

Uqðs; xÞvðsÞdBðsÞ Z e3 ln e ðfinite valueÞ; (34)

ðq2Þ :

ð
Be

Qqðs; xÞmðsÞdBðsÞ Z e ln e ðfinite valueÞ; (35)

ðq3Þ :

ð
Be

Mqðs; xÞqðsÞdBðsÞ

ZKpð1 CnÞqðxÞCe ðfinite valueÞ: (36)

By integrating the Mq(s,x) kernel, the free term is found to

depend on the Poisson ratio. We may wonder the existence

of the Poisson ratio in terms of the successful experiences of

the Laplace equation, the reasonable explanation is

attributed to the operator of kernel functions.

ðq4Þ :

ð
Be

Vqðs; xÞuðsÞdBðsÞ Z ð3 KnÞpqðxÞC
4ð3 KnÞ

e
uðxÞ;

(37)

where the former one is the free term and the latter one is the

unbounded boundary term. Apparently, the free terms of the

second integral equation are different from those of the first

one that the contribution of the free term is composed of the Mq

and Vq and the boundary term only results from the Vq integral

in Eq. (37). By collecting the two free terms in Eqs. (36) and

(37), a sum of 4pq(x) is obtained. Then, let us consider the

higher-order gradient boundary integral equation of the third

boundary integral formulation as follows:

ðm1Þ :

ð
Be

Umðs; xÞnðsÞdBðsÞ Z
p

2
ðn K1ÞmðxÞCOðeÞ; (38)

ðm2Þ :

ð
Be

Qmðs; xÞmðsÞdBðsÞ Z pð1 CnÞmðxÞCOðeÞ; (39)

ðm3Þ :

ð
Be

Mmðs; xÞqðsÞdBðsÞ

ZKpmðxÞK4ð1 KnÞ 1 C
5n

3

� �
qðxÞ

e
COðeÞ; (40)

ðm4Þ :

ð
Be

Vmðs; xÞuðsÞdBðsÞ

Z
p

2
ð3 KnÞmðxÞC

8ð1 KnÞð3 KnÞ

3

qðxÞ

e
COðeÞ:

(41)

By taking the limit, the O(e) term approaches zero. After

obtaining the free terms, we find that the free terms are

contributed by all the four kernels in the third boundary

integral equation. It is interesting that the sum of free terms is
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also found to be 4pm(x) in companion with some unbounded

terms. In view of the order analysis of the four integral

equations, we may wonder why the free term of Um occurs? To

the authors’ best knowledge, we may explain that the result is

attributed to the complex form of the density function n(s).

ðn1Þ :

ð
Be

Uvðs; xÞvðsÞdBðsÞ Z
pðn C1Þðn K3Þ

2
vðxÞCOðeÞ;

(42)

ðn2Þ :

ð
Be

Qvðs; xÞmðsÞdBðsÞ

Z 2pvðxÞC
4ðKn2 C6n C7Þ

3

� 	
mðxÞ

e
COðeÞ; (43)

ðn3Þ :

ð
Be

Mvðs; xÞqðsÞdBðsÞ

ZKpðn K1Þðn K2ÞvðxÞC
8ðn K1Þðn C7Þ

3e

� 	
mðxÞ

C
ð1 KnÞ

3e2
½3pðn K5ÞC16n�

� 	
qðxÞCOðeÞ; ð44Þ

ðn4Þ :

ð
Be

Vvðs; xÞuðsÞdBðsÞ

ZK
p

2
ðn K1Þðn K3ÞvðxÞC

4ðn K1Þðn K1Þ

e

� 	
mðxÞ

C
1 Kn

3e2
½3pðn K5ÞC16ðn K3Þ�

� 	
qðxÞ

C
8ðn K1Þ2

e3

� 	
uðxÞCOðeÞ: ð45Þ

According to the integrals in Eqs. (42)–(45), we find that the

free terms are contributed by all the kernels and the sum is

4pn(x). It is interesting to find that the order descends in a

successive order for the 16 integrals. After combining the CPV

and the boundary terms to obtain the finite value as coined by

the finite part, Eqs. (18)–(21) are rewritten as

4puðxÞ ZKFP

ð
B

Uðs; xÞvðsÞdBðsÞCFP

ð
B

Qðs; xÞmðsÞdBðsÞ

KFP

ð
B

Mðs; xÞqðsÞdBðsÞCFP

ð
B

Vðs; xÞuðsÞdBðsÞ;

ð46Þ

4pqðxÞ ZKFP

ð
B

Uqðs; xÞvðsÞdBðsÞCFP

ð
B

Qqðs; xÞmðsÞdBðsÞ

KFP

ð
B

Mqðs; xÞqðsÞdBðsÞCFP

ð
B

Vqðs; xÞuðsÞdBðsÞ;

ð47Þ
4pmðxÞZKFP

ð
B

Umðs;xÞvðsÞdBðsÞCFP

ð
B

Qmðs;xÞmðsÞdBðsÞ

KFP

ð
B

Mmðs;xÞqðsÞdBðsÞCFP

ð
B

Vmðs;xÞuðsÞdBðsÞ;

ð48Þ

4pvðxÞZKFP

ð
B

Uvðs;xÞvðsÞdBðsÞCFP

ð
B

Qvðs;xÞmðsÞdBðsÞ

KFP

ð
B

Mvðs;xÞqðsÞdBðsÞCFP

ð
B

Vvðs;xÞuðsÞdBðsÞ;

ð49Þ

in which

FP

ð
B

Uðs;xÞvðsÞdBðsÞZCPV

ð
B0CBKCBC

Uðs;xÞvðsÞdBðsÞ;

(50)

FP

ð
B

Qðs;xÞmðsÞdBðsÞZCPV

ð
B0CBKCBC

Qðs;xÞmðsÞdBðsÞ;

(51)

FP

ð
B

Mðs;xÞqðsÞdBðsÞZCPV

ð
B0CBKCBC

Mðs;xÞqðsÞdBðsÞ;

(52)

FP

ð
B

Vðs;xÞuðsÞdBðsÞZCPV

ð
B0CBKCBC

Vðs;xÞuðsÞdBðsÞ;

(53)

FP

ð
B

Uqðs;xÞvðsÞdBðsÞZCPV

ð
B0CBKCBC

Uqðs;xÞvðsÞdBðsÞ;

(54)

FP

ð
B

Qqðs;xÞmðsÞdBðsÞZCPV

ð
B0CBKCBC

Qqðs;xÞmðsÞdBðsÞ;

(55)

FP

ð
B

Mqðs;xÞqðsÞdBðsÞZCPV

ð
B0CBKCBC

Mqðs;xÞqðsÞdBðsÞ;

(56)



Þ

Table 5

Free terms due to the bump integral for the biharmonic equation

U(s,x) Q(s,x) M(s,x) V(s,x)

0 0 0 [4p]u(x)

Uq(s,x) Qq(s,x) Mq(s,x) Vq(s,x)

0 0 [Kp(1Cn)]q(x) ½ð3KnÞp�qðxÞC ½4ð3KnÞ� uðxÞ
e

Um(s,x) Qm(s,x) Mm(s,x) Vm(s,x)
p
2
ðnK1Þ

� �
mðxÞ [p(1Cn)]m(x) ½Kp�mðxÞC K4ð1KnÞC ð1C 5

3
vÞ

� �
qðxÞ

e
p
2
ð3KnÞ

� �
mðxÞC 8ð1KnÞð3KnÞ

3

� �
qðxÞ

e
C 0

e2 uðxÞ

Uv(s,x) Qv(s,x) Mv(s,x) Vv(s,x)
p
2
ðnC1ÞðnK3Þ

� �
vðxÞ

½2p�vðxÞC
4
3
ðKn2 C6nC7Þ

� �
mðxÞ

e

KpðK1CnÞðK2CnÞ½ �vðxÞC 8ðnK1ÞðnC7Þ
3

� �
mðxÞ

e
C

ð1KnÞ
3

½3pðnK5ÞC16n�
� �

qðxÞ
e2

Kp
2
ðK1CnÞðK3CnÞ

� �
vðxÞC ½4ðnK1ÞðnK1Þ�!

mðxÞ
e

C ð1KnÞ
3

½3pðnK5ÞC16ðnK3Þ�
� �

qðxÞ
e2 C

½8ðK1CnÞ2� uðxÞ
e3

θ = + p−2

q = – p−2

∇ 4u(x) = 0, x ∈Ω u = 0u = 0

a

= –1∂u
∂n

= 0∂u
∂n

Fig. 2. The chart of the biharmonic equation with the essential boundary

condition.
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FP

ð
B

Vqðs;xÞuðsÞdBðsÞ

ZCPV

ð
B0CBKCBC

Vqðs;xÞuðsÞdBðsÞC
4ð3KnÞ

e
uðxÞ; (57)

FP

ð
B

Umðs;xÞvðsÞdBðsÞZCPV

ð
B0CBKCBC

Umðs;xÞvðsÞdBðsÞ;

(58)

FP

ð
B

Qmðs;xÞmðsÞdBðsÞZCPV

ð
B0CBKCBC

Qmðs;xÞmðsÞdBðsÞ;x

(59)

FP

ð
B

Mmðs;xÞqðsÞdBðsÞZCPV

ð
B0CBKCBC

Mmðs;xÞqðsÞdBðsÞ

K4ð1KnÞ 1C
5n

3

� �
qðxÞ

e
; ð60Þ

FP

ð
B

Vmðs;xÞuðsÞdBðsÞ

ZCPV

ð
B0CBKCBC

Vmðs;xÞuðsÞdBðsÞC
8ðnK1ÞðnC7Þ

3e

� 	
mðx

C
ð1KnÞ

3e2
½3pðnK5ÞC16n�

� 	
qðxÞ; ð61Þ

FP

ð
B

Uvðs;xÞvðsÞdBðsÞZCPV

ð
B0CBKCBC

Uvðs;xÞvðsÞdBðsÞ;

(62)

FP

ð
B

Qvðs;xÞmðsÞdBðsÞZCPV

ð
B0CBKCBC

Qvðs;xÞmðsÞdBðsÞ

C
4ðKn2 C6nC7Þ

3

� 	
mðxÞ

e
; ð63Þ
FP

ð
B

Mvðs;xÞqðsÞdBðsÞ

ZCPV

ð
B

Mvðs;xÞqðsÞdBðsÞC
8ðnK1ÞðnC7Þ

3e

� 	
mðxÞ

C
ð1KnÞ

3e2
½3pðnK5ÞC16n�

� 	
qðxÞ; ð64Þ

FP

ð
B

Vvðs;xÞuðsÞdBðsÞ

ZCPV

ð
B

Vvðs;xÞuðsÞdBðsÞC
4ðnK1ÞðnK1Þ

e

� 	
mðxÞ

C
ð1KnÞ

3e2
½3pðnK5ÞC16ðnK3Þ�

� 	
qðxÞ

C
8ðnK1Þ2

e3

� 	
uðxÞ; (65)
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Fig. 3. The contour plots of the biharmonic fields with the essential boundary condition using the boundary element method. (a) Number of boundary elements,

42; (b) number of boundary elements, 102.
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where CPV and FP denote the Cauchy principal value

and finite part, respectively. For the biharmonic problem,

we have the kernels with higher singularity than the

hypersingularity which is termed unnamed singularity by

Guiggiani. Here, the unnamed singularity is called super-

singularity. Therefore, we denote them as the ‘finite part’

in a unified manner. The boundary terms of the kernel

integration arise from the boundary integral equations

naturally and can compensate the infinity of CPV.

Combining the 16 improper integrals, we have the

boundary integral equations with the free coefficient of

4p for a smooth boundary. The free terms are

contributed from different kernels instead of only one

Cauchy kernel. Finally, all the results of free terms and

boundary terms are summarized in Table 5.

To check the validity of the present formulation, the

BEM was utilized to solve the following problem [21] in

Fig. 2. The governing equation is

P4uðxÞ Z 0; x2U; (66)

subject to the essential boundary conditions

uðr; qÞjrZa Z 0; 0!q!2p
–1

–0.8

–0.6

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

Fig. 4. The contour plot of the exact solution.
vuðr; qÞ

vr
rZa Z

K1; K
p

2
!q!

p

2

0;
p

2
!q!

3p

2

8><
>:

�������
(67)
where U is a circular domain with radius aZ1. The exact

solution was avaliable by Mills [21] as follows
uðr; qÞ Z
1

2p
ð1 Kr2Þ g Carctan

1 Cr

1 Kr
tan

p
2

Kq

2

� �� ��

Karctan
1 Cr

1 Kr
tan

K p
2

Kq

2

� �� �	
ð68Þ
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where

g Z
0;

Kp

2
!q!

p

2

p;
p

2
!q!

3p

2

:

8><
>: (69)

Also, the series solution is available [25]

uðr; qÞ Z
1

4
ð1 Kr2ÞK

XN

mZ1

1

mq
sin

mq

2

� �
ðrm cosðmqÞ

KrmC2 cosðmqÞÞ: (70)

The numerical results were plotted by using 42 and 102

constant elememts as shown in Fig. 3(a) and (b). After

comparing with the exact solution in Fig. 4, the BEM results

agree well with the exact solution.
7. Conclusions

In this paper, the free terms of the DBIEs for the

biharmonic problem were derived successfully. We adopted
the bump-contour technique surrounding the singularity and

expanded the density functions by using the Taylor series.

Contribution of the single, double, triple and quadrapole

potentials on the free terms was determined. After combinig

the boundary term with the Cauchy principal value, finite

part was obtained in the derivation. After collecting the 16

improper integrals for the smooth boundary, it is interesting

to find that the sum of the free terms in each boundary

integral equations is 4p. Finally, the order analysis and the

free terms of the 16 kernels of the biharmonic equation are

summarized in Table 5. The potentials of the 16 kernels can

be interpreted as finite part and Cauchy principal value. In

addition, a numerical example was tested to see the validity

of the formulation.
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Appendix A. Sixteen kernel functions for the biharmonic problem

Kernels for the first equation of the boundary integral formulations:

8puðxÞZ
Ð

BfKUðx; sÞvðsÞCQðx; sÞmðsÞKMðs; xÞqðsÞCVðs; xÞuðsÞgdBðsÞ

Uðs; xÞ Z r2 ln r

Qðs; xÞ ZKð1 C2 ln rÞyini

Mðs; xÞ Z n
2

r2
yiyi C2ð1 C2 ln rÞ

� 	
C ð1 KnÞ

2

r2
yiniyjnj C ð1 C2 ln rÞnini

� 	

Vðs; xÞ Z
4

r4
yiyiyjnj K

8

r2
yjnj

� 	
C ð1 KnÞ

4

r4
yjnjyitiyktk C

2

r3
yitiyjtj K

2

r2
yjnjtiti K

2

r3
yjnjyini

� 	
Kernels for the second equation of the boundary integral formulations:

8pqðxÞZ
Ð

BfKUqðx; sÞvðsÞCQqðx; sÞmðsÞKMqðs; xÞqðsÞCVqðs; xÞuðsÞgdBðsÞ

Uqðs; xÞ Z ð1 C2 ln rÞyi �ni

Qqðs; xÞ ZK
2

r2
yi �niyjnj C ð1 C2 ln rÞni �ni

� 	

Mqðs; xÞ Z 4n
K1

r4
yiyiyk �nk C

2

r2
yi �ni

� 	
C2ð1 KnÞ

K2

r4
yiniyjnjyk �nk C

3

r2
yininj �nj C

2

r2
yk �nknini

� 	

Vqðs; xÞ Z
K16

r6
yiyiyjnjyl �nl C

24

r4
yiniyj �nj C

4

r4
yiyinj �nj K

8

r2
nj �nj

� 	
C ð1 KnÞ

K16

r6
yitiyjnjyktkyl �nl C

4

r4
yitiyktknj �nj C

8

r4
yjnjyktk �niti K

4

r5
yitiyjtjyl �nl

�

C
4

r3
yjtj �niti C

4

r4
yjnjtitiyl �nl K

2

r2
titinj �nj C

4

r5
yiniyjnjyl �nl K

4

r3
yininj �nj
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Kernels for the third equation of the boundary integral formulations:

8pmðxÞZ
Ð

BfKUmðx; sÞvðsÞCQmðx; sÞmðsÞKMmðs; xÞqðsÞCVmðs; xÞuðsÞgdBðsÞ

Umðs; xÞ Z n
2

r2
yiyi C2ð1 C2 ln rÞ

� 	
C ð1 KnÞ

2

r2
yi �niyjnj C ð1 C2 ln rÞ �ni �ni

� 	

Qmðs; xÞ Z 4n
1

r4
yiyiyknk K

2

r2
yini

� 	
C2ð1 KnÞ

K2

r4
yi �niyj �njyknk K

3

r2
yi �ninj �nj K

2

r2
yknk �ni �ni

� 	

Mmðs; xÞ Z n 16n
1

r6
yiyiykyk K

2

r4
yiyi C

1

r2

� 	
C ð1 KnÞ

16

r6
yiniyjnjykyk K

24

r4
yiniyjnj K

4

r4
ykyknini C

8

r2
nini

� 	
 �

C ð1 KnÞ 16n
4

r6
yiyiyk �nkyl �nl C

K2

r4

� �
yk �nkyi �ni C

K1

r4

� �
yiyi �nk �nk C

K4

r3

� �
yi �niyl �nl C

2

r2

� �
�ni �ni

� 	


C2ð1 KnÞ
8

r5
yiniyjnjyk �nkyl �nl C

K4

r4

� �
yjnjyk �nkni �ni C

K2

r4

� �
yiniyjnj �nk �nk C

K6

r3

� �
yiniyl �nlnj �nj C

K4

r3

� �
yk �nkyl �nlnini

�

C
3

r2

� �
nj �njni �ni C

2

r2

� �
nini �nk �nk

	�

Vmðs; xÞ Z n
96

r8
yiyiyjnjylyl K

192

r6
yiyiyjnj C

96

r4
yjnj

� 	
Cnð1 KnÞ

96

r8
yitiyjnjyktkylyl K

128

r6
yjnjyktkyiti C

16

r7
yi �tiyj �tj C

24

r4
yjnjtktk K

24

r5
yitiyjtj C

4

r3
tjtj

�

K
16

r6
yjnjtitiylyl K

16

r7
yjnjyiniylyl C

24

r5
yiniyjnj K

4

r3
nini

	
C ð1 KnÞ

96

r8
yiyiyjnjyl �nlyp �np K

128

r6
yiniyj �njyl �nl K

32

r6
yiyiyl �nlnj �nj K

16

r6
yiyiyjnj �nl �nl

�

C
24

r4
yjnj �ni �ni C

48

r4
yi �ninj �nj

	
C ð1 KnÞð1 KnÞ

96

r8
yitiyjnjyktkyl �nlyp �np K

32

r6
yjnjyktkyl �nl �niti K

16

r6
yitiyktkyl �nlnj �nj K

16

r6
yitiyjnjyktk �nl �nl

�

K
32

r6
yjnjyktk �nitiyp �np C

16

r4
yjnj �nitink �nk C

8

r4
yjnj �niti �nktk K

16

r6
yitiyktknj �njyp �np C

16

r7
yitiyjtjyl �nlyp �np K

16

r5
yjtjyl �nl �niti K

4

r5
yitiyjtj �nl �nl C

4

r3
�niti �njtj

K
16

r6
yjnjyl �nltitiyp �np C

16

r7
yitiyjtjyl �nlyp �np K

16

r5
yjtjyl �nl �niti K

4

r5
yitiyjtj �nl �nl C

4

r3
�niti �njtj K

16

r6
yjnjyl �nltitiyp �np C

4

r4
yjnjtiti �nl �nl C

4

r4
yl �nltitinj �nj

K
16

r7
yjnjyiniyl �nlyp �np C

8

r5
yiniyl �nlnj �nj C

4

r5
yjnjyini �nl �nl C

4

r4
nj �njtitiyp �np C

8

r5
yininj �njyp �np K

4

r3
ni �ninj �nj

	

Kernels for the fourth equation of the boundary integral formulations:

8pvðxÞZ
Ð

BfKUvðx; sÞvðsÞCQvðx; sÞmðsÞKMvðs; xÞqðsÞCVvðs; xÞuðsÞgdBðsÞ

Uvðs; xÞ Z
K4

r4
yiyiyj �nj C

8

r2
yj �nj

� 	
C ð1 KnÞ

K4

r4
yj �njyi �tiyk �tk C

2

r3
yi �tiyj �tj C

2

r2
yj �nj �ti �ti K

2

r3
yj �njyi �ni

� 	

Qvðs; xÞ Z
K16

r6
yiyiyj �njylnl C

24

r4
yiniyj �nj C

4

r4
yiyinj �nj K

8

r2
nj �nj

� 	
C ð1 KnÞ

K16

r6
yi �tiyj �njyk �tkylnl C

4

r4
yi �tiyk �tknj �nj C

8

r4
yj �njyk �tkni �ti C

4

r5
yi �tiyj �tjylnl

�

K
4

r3
yj �tjni �ti C

4

r4
yj �nj �ti �tiylnl K

2

r2
�ti �tinj �nj K

4

r5
yi �niyj �njylnl C

4

r3
yi �ninj �nj

	

Mvðs; xÞ Z n
K96

r8
yiyiyj �njylyl C

192

r6
yiyiyj �nj K

96

r4
yj �nj

� 	
Cnð1 KnÞ

K96

r8
yi �tiyj �njyk �tkylyl C

128

r6
yj �njyk �tkyi �ti C

16

r7
yi �tiyj �tj K

24

r4
yj �nj �tk �tk K

24

r5
yi �tiyj �tj C

4

r3
�tj �tj

�

C
16

r6
yj �nj �ti �tiylyl K

16

r7
yj �njyi �niylyl C

24

r5
yi �niyj �nj K

4

r3
�ni �ni

	
C ð1 KnÞ

K96

r8
yiyiyj �njylnlypnp C

128

r6
yiniyj �njylnl C

32

r6
yiyiylnlnj �nj C

16

r6
yiyiyj �njnlnl

�

K
24

r4
yj �njnini K

48

r4
yininj �nj

	
C ð1 KnÞð1 KnÞ

K96

r8
yi �tiyj �njyk �tkylnlypnp C

32

r6
yj �njyk �tkylnlni �ti K

16

r6
yi �tiyk �tkylnlnj �nj C

16

r6
yi �tiyj �njyk �tknlnl

�

C
32

r6
yj �njyk �tkni �tiypnp K

16

r4
yj �njni �tinknk K

8

r4
yj �njni �tink �tk C

16

r6
yi �tiyk �tknj �njypnp C

16

r7
yi �tiyj �tjylnlypnp K

16

r5
yj �tjylnlni �ti K

4

r5
yi �tiyj �tjnlnl C

4

r3
ni �tinj �tj

C
16

r6
yj �njylnl �ti �tiypnp C

16

r7
yi �tiyj �tjylnlypnp K

16

r5
yj �tjylnlni �ti K

4

r5
yi �tiyj �tjnlnl C

4

r3
ni �tinj �tj C

16

r6
yj �njylnl �ti �tiypnp K

4

r4
yj �nj �ti �tinlnl K

4

r4
ylnl �ti �tinj �nj

K
16

r7
yj �njyi �niylnlypnp C

8

r5
yi �niylnlnj �nj C

4

r5
yj �njyi �ninlnl K

4

r4
nj �nj �ti �tiypnp C

8

r5
yi �ninj �njypnp K

4

r3
ni �ninj �nj
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Vvðs; xÞ Z
K768

r10
yiyiyj �njylylypnp C

1536

r8
yiniyj �njylyl C

96

r8
yiyiylylnj �nj K

192

r6
yiyinj �nj K

768

r6
yiniyj �nj C

96

r4
nj �nj

� 	
C ð1 KnÞ

K768

r10
yi �tiyj �njyk �tkylylypnp

�

C
192

r8
ni �tiyj �njyk �tkylyl C

96

r8
yi �tinj �njyk �tkylyl C

960

r8
yj �njyk �tkypnp C

96

r9
yi �tiyj �tjylylypnp C

96

r8
yj �nj �ti �tiylylypnp K

96

r8
yi �tiyj �njyk �tkypnp K

128

r6
nj �njyi �tiyk �tk

K
256

r6
yi �tiyj �njnk �tk K

32

r7
ni �tiyj �tjylyl K

32

r7
yi �tiyj �tjylnl K

128

r6
yj �nj �tk �tkypnp K

96

r7
yi �tiyj �tjypnp K

16

r6
nj �nj �ti �tiylyl C

32

r7
nj �njyi �niylyl C

128

r7
yj �njyi �niylnl

C
24

r4
nj �nj �tk �tk C

48

r5
nj �tjyi �ti C

8

r5
ypnp �tk �tk K

48

r5
ni �niyj �nj K

8

r5
�ni �niypnp

	
C ð1 KnÞ

96

r8
yiyiyj �njtltlypnp C

96

r8
yiyiyj �njylnlypnp K

128

r6
yiniyj �njtltl

�

K
128

r7
yiniyj �njylnl K

16

r6
yiyinj �njtltl K

32

r7
yiyinj �njylnl C

24

r4
titinj �nj C

48

r5
yininj �nj

	
C ð1 KnÞð1 KnÞC ð1 KnÞ Cð1 KnÞ

96

r8
yiyiyj �njtltlypnp

��

C
96

r8
yiyiyj �njylnlypnp K

128

r6
yiniyj �njtltl K

128

r7
yiniyj �njylnl K

16

r6
yiyinj �njtltl K

32

r7
yiyinj �njylnl C

24

r4
titinj �nj C

48

r5
yininj �nj

Cð1 KnÞð1 KnÞ K
32

r6
ti �niyjnjtk �tkyl �tl K

32

r6
ti �tiyjnjtk �tkyp �np C

8

r4
ti �tinj �njtk �tk K

32

r6
ti �tiyjnjtk �nkyp �np C

8

r4
ti �tinj �tjtk �nk K

8

r5
ti �niyjnjtk �nk C

8

r5
ti �tiyjnjtk �tk

�

C
8

r4
ti �ninj �tjtk �tk K

8

r5
tj �njti �tiyl �tl K

8

r5
ti �titj �tjyp �np K

8

r5
ti �titj �njyq�tq K

4

r4
ti �nitj �nj C

4

r4
ti �titj �tj K

16

r6
titinj �tjyp �npyq �tq K

4

r5
titinj �njyp �np C

4

r5
titinj �tjyp �tp

C
96

r9
yiniyjnjyl �tlyp �npyq�tq K

32

r7
ni �tiyjnjyl �tlyp �np K

16

r7
yiniyjnj �tl �tlyp �np C

16

r8
yiniyjnjyl �nlyp �np K

16

r8
yiniyjnjyl �tlyp �tp K

32

r7
ni �niyjnjyl �tlyq�tq

C
8

r5
ni �ninj �tjyl �tl C

8

r5
ni �niyjnj �tl �tl C

8

r6
ni �tiyjnjyl �tl K

8

r6
ni �niyjnjyl �nl K

32

r7
ni �tiyjnjyp �npyq �tq C

8

r5
ni �tinj �tjyp �np K

8

r6
ni �niyjnjyp �np C

8

r6
ni �tiyjnjyp�tp

C
8

r5
ni �tinj �njyq �tq C

4

r4
ni �ninj �nj K

4

r4
ni �ti �nj �tj C

96

r8
titiyjnjyl �tlyp �npyq�tq K

16

r6
titinj �tjyl �tlyp �np K

16

r6
titiyjnj �tl �tlyp �np

C
16

r7
titiyjnjyl �nlyp �np K

16

r7
titiyjnjyl �tlyp�tp K

16

r6
titinj �njyl �tlyq�tq C

4

r4
titinj �nj �tl �tl C

4

r5
titinj �tjyl �tl K

4

r5
titinj �njyl �nl
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