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Abstract

In this paper, we review the free terms of dual boundary integral equations for the Laplace and Navier equations of 2-D and 3-D problems
and extend to biharmonic equation for plate problems. We derive the free terms of the dual BIE with a smooth boundary by means of the
Taylor series expansion for the density through bump-contour technique surrounding the singularity. After using the limiting approach, the
free terms and boundary terms for the 16 improper integrals in the dual formulation for the plate problems are derived. The contributions of
single, double, triple and quadrapole potentials for the free term are also examined. The improper integrals due to the 16 kernels with
singularity, hypersingularity or super-singularity are interpreted by the Cauchy principal value as well as finite parts.
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1. Introduction

Boundary integral equations (BIEs) with strongly
singular and hypersingular kernels are currently employed
in many fields of applied mechanics, most of the
mathematical issues have been clarified for the evaluation
of the singular integrals. The treatment of singularities has
always been a key subject in the development of boundary
element method (BEM). Dual boundary integral equations
(DBIEs) for crack problems were derived using the limiting
and trace approaches proposed by Hong and Chen [1]. Also,
the DBIEs for the Laplace equation with a degenerate
boundary was developed by Chen and Hong [2]. The
numerical implementation has been termed the dual
boundary element method by Portela et al. [22]. The dual
formulation has been mainly applied to problems with a
degenerate boundary by Chen and Hong in 1999, e.g. a
screen in an acoustic cavity [5], a crack in an elastic body
[16], and plate [24], thin airfoil in aerodynamics [23],
combdrive in MEMs [18], a cutoff wall in potential flow [4],
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degenerate scales [25] and the adaptive BEM [7].
Mathematically speaking, the dual formuation can provide
sufficient equations for a rank-deficiency system. Recently,
the hypersingular equation has been utilized to provide a
constraint at a corner in an analytical way by Gray and
Elschner et al. Gray and Manne [11] have applied the
hypersingular equation as an additional constraint to ensure
a unique solution by a limiting process from an interior
point to a corner. The three-dimensional case was also
extended by Gray and Lutz [10]. How to determine the free
terms in a hypersingular equation accurately has received
attention in the dual BIE by Guiggiani [12-15]. Later, an
additional free term in the hypersingular equation for the
Laplace problem was independently obtained by Guiggiani
[15] and Chen and Hong [3]. In 1995, Mantic and Paris [19]
obtained the same results which corrected independently the
error thus providing hypersingular boundary integral
equations of potential problem. In 2000, Chen et al. [6,9]
have proposed the bump-contour technique and the limiting
approach to determine the free terms of the two- or three-
dimensional Laplace and Navier equations successfully.
Also, the free terms of dual BIE for the 2-D Helmholtz
equation were presented [8]. Since the hypersingular
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Notations

r=|s—x| distance.

yi—Xx;—S;, i=1,2 vector component.

i;, i=1,2 normal vector of the field point.
n;, i=1,2 normal vector of the source point.

t;,i=1,2 normal vector of the field point.
t;, i=1,2 normal vector of the source point.
v poisson ratio.

integral equation can provide an additional constraint for the
Dirichlet problems, the free terms must be examined. Many
researchers, for example, Guiggiani has derived the free
terms in the boundary integral formulation by employing the
direct method for the Laplace equation, the Navier equation
and the biharmonic equation. He also found an additional
free term for the corner problem using his approach instead
of using the ‘dual’ formulation. Moreover, Maucher and
Hartmann [20] studied the singularities of Kirchhoff plate
for a boundary element solution. In 1994, Knopke presented
the derivation of a second-order gradient BIE [17], that is
the identity for the bending moment components of elastic
Kirchhoff plates.

In this paper, we focus on the fourth-order partial
differentail equation, like bending of thin elastic plates
where the BIE must face the improper integrals of
hypersingular kernel or finte part. The order of super-
singularity occurred in the dual formulation for plate
problems is higher than that of hypersingularity. We derive
the free terms on a smooth boundary by means of the bump-
contour technique surrounding the singularity. After using
the bump-contour technique and limiting approach, the free
terms and boundary terms for the 16 improper integrals in
the dual formulation are derived. The improper integrals due
to the 16 kernels with weak singularity, strong singularity,
hypersingularity and super-singularity are interpreted as the
Cauchy principal value and finite parts.

2. Review of free terms of the dual integral formulation
for 2-D and 3-D Laplace and Navier equations with a
smooth boundary

According to the papers of Chen and his students as well
as his colleagues [6,8,9], they derived the free terms of the
dual integral equations in conjunction with the bump-
contour technique and limiting process for the Laplace and
Navier problems. First, let us consider the two- and three-
dimensional Laplace equations with a smooth boundary
point. The dual boundary integral equations are shown as
follows:

2-D Laplace problem

[T(s,x)u(s) — U(s,x)t(s)]dB(s), x € Q,

B'+B~ +B.+B*

2mu(x) =

(D

2TH(x) = J [M(s,x)u(s) — L(s,x)t(s)]dB(s), xE€ Q,

B'+B~ +B.+B*

2
3-D Laplace problem

4rtu(x) = J [T(s,x)u(s) — U(s,x)t(s)]dB(s), x € Q,

B'+B~+B.+B*

3)

[M(s,x)u(s) — L(s,x)t(s)]dB(s), xE€ Q,

B'+B~ +B.+B*

4ret(x) =

“)

where the U and M kernels are weakly singular and
hypersingular kernel functions, respectively, while the T
and L kernels are strongly singular kernel functions, B',B™,
B. and B" are the contour integration path including the
singularity as shown in Fig. 1, and Q is the domain of
interest. In fact, the B integration path in Fig. 1 denotes the
contour integration around the singularity with a radius e,
and B*+B~ +B.+B' is just the definition of the
integration region of the Cauchy principal value. B and
B~ denote two of the elements in the B’ boundary near the
singularity as shown in Fig. 1. By adopting the bump-
contour technique, we have the free terms and boundary
terms and the results are summarized in Table 1. It is found
that the contributions from both the hypersingular integrals
and the strongly singular integrals for the free terms of the
BIE are, respectively, half and half for the two-dimensional

s=(¢cosb, ¢ sin6) u(s)

B+
x = (0.0)

Singular point

B

Fig. 1. The considered boundary integration path for the two-dimensional
problem.
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Table 1 Table 2
Free terms of the dual BIEs for the 2-D and 3-D Laplace problems Free terms of the dual BIEs for the 2-D and 3-D elasticity problems
2-D problem 2-D problem  Uj(s.x) Tri(s,x)
U(s,x) T(s,x) i=1, k= No jump %(‘)
0 TTU(X) i=2,k=1 No jump 0
L(s.x) M(s.x) i=1,k=2 No jump 0
—Z1(x) +Z1(x) + 2 u(x) i=2, k=2 No jump —ip)
3-D problem Ly(s.x) Mi(s.x)
Uls.) T(s.x) i=1. k= Goan fon ol Ty G o
0 2meu(x) i=2,k=1 G(—1+4v) d a —G_
L(s,x) M(s,%) et =120 {(1 — Vgt V£}|s:x Sr-n) ds, ls=x
2T 4T 2w . -
— == =1 —_ == = = — u u. —G %
3 1) 310~ U i=1,k=2 SO {‘;T'-l- f,Tf}L:x §i-n as, |
i=2,k=2 G(5—4v) {(l_y)%_i_yaﬂ}l i%|
. . . . —n)(1— a asy [ ls=x 8(1—») s, 15X
case, one-third and two-thirds for three-dimensional pro- A=) 2 al
bl 6 3-D problem
em [6]. . . Usi(s.x) Tri(s,%)
Secondly, the dual boundary integral equations for the i=1, k=1 No jump w0
2-D and 3-D Navier equations are i=2,k=1 No jump 0
i=3,k=1 No jump 0
i=1,k=2 No jump 0
u;i(x) = [—Ui(s, )t (s) i=2,k=2  No jump S0
B'+B~+B.+B* i=3,k=2 No jump 0
i=1,k=3 No jump 0
+ Tyi(s, Dui(s)1dB(s), x € Q, ) i=2,k=3  No jump 0
i=3,k=3 No jump %(V)
Lii(s.x) Mii(s.x)
. = —L... = = 5y u u G(=T+5v) du;
(%) J [—Lyi(s, )ti(5) i=1k=1 ot {%J"%}L:x e B
B'+B~+B,+B™* i=2,k=1 0 0
i=3, k=1 _G-1+51 _Ndu duy 4 Juy _ G(+50) uy
+ Myi(s, 0w (s)ldB(s), x € Q, (6) s {00 g (B ) fe —5E Bl
i=1,k=2 0 0
. i=2, k=2 G@5v) [ou, | s GTH5y) duy |
where Uy, Ty, Li; and M,; are the four kernel functions 00 {ﬁ + 3 }|.v:x W) ass b=
=3,k

which depend on the 2-D or 3-D case, the u,(s) and #,(s) are
the kth components for the displacement and traction. After
collecting the free terms and unbounded boundary terms,
the dual boundary integral equations on a smooth boundary
point for elasticity problems are derived without the
problems of divergent integrals [9]. Similarly, the results
were summarized in Table 2. It is found that single- and
double-layer potentials contribute the free terms in the
hypersingular equation. Comparing the results of the
Laplace problem with those of the Navier equation, it is
found that the free coefficients are the same, namely one half
for the smooth boundary.

3. Free terms of the DBIEs with a smooth boundary for
the biharmonic problems

The dual integral equations for the plate problem can be
derived from the Rayleigh—Green identity as follows:

8mu(x) = J[—U(s, x)v(s) + OCs, x)m(s) — M(s, x)0(s)
B

+ V(s,x)u(s)]dB(s), x€Q, 7

i=3,k=2 _G-1+5» N duy | duy _GA+5y) dup
iy (= e T rlah+ 50 )l ~ 15000 s l o=

i=1, k=3 Gu-sn [ou 4 ou G(=T+5v) %l -
30(1—v) \ @53 ' 05, lo=x 30(1—») ds, ls=x

i=2,k=3 G@4=5v [ou, | ou G(=T+5v) duz.
30(1—:) a_s§+ as; li=x 30(1—») s, ls=

i= 3, k=3 G(7=5v) _ Auy duy duy _—8G  Juy
T5(1—0)(1—2v) (1 V)THJ’_ v WJ’_ Bsy |.v:x 15(1=v) ds; |FX

8mh(x) = J[—Ug(s, X)(s) + Opy(s, x)m(s) — My(s, x)0(s)
B
+ Vy(s, x)u(s)]dB(s), x€Q, )
8mm(x) = J[—Um(s, xXv(s) + 6,,(s, x)m(s) — M, (s, x)0(s)
B
+ V,.(s,x)u(s)|dB(s), x€EQ, )
8mv(x) = J[—Uv(s, x)v(s) + O, (s, x)m(s) — M, (s, x)0(s)
B

+ V. (s, x)u(s)]dB(s), x€Q, (10)

where B is the boundary, Q is the domain of interest, u, 6, m
and v mean the displacement, slope, normal moment and
effective shear force, s and x are the source and field points,
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respectively. In Egs. (1)-(6), we locate the point on the
boundary, and introduce the integral equation for the
domain point since B is modified to B +B~ +B.+ B’ to
embrace the boundary point x. In Egs. (7)-(10), the
collocation point is in the interior domain and B is the
boundary, i.e. B=0Q. For the biharmonic equation, we can
obtain the fundamental solution as follows

U(x,s) = U(s,x) = 1 In(r), (11)

where r is the distance between the field point and the source
point written as r=|s—x|. The other three kernels, O(s,x),
M(s,x) and V(s,x), are defined as follows

Q(Sv x) = g(ﬁ,s(U(s7 x))7 (12)
M(s,x) = K, (U(s, x)), (13)
V(s,x) = K, (U(s,x)), (14)

where Ky ((-), K,,(-) and K, ((-) mean the slope, moment
and shear force operators with respect to s, respectively,
which are defined as follows

a .
Kos(-) = a(n)’ (15)
&(-
Hon) =72+ (1 =0 50, (16)
Iv2(- Ié) 9%(-
#) =2 "’)E{(anéa)t)]’ (17)

where v is the Poisson’s ratio, n and ¢ are the normal and
tangential vectors, respectively. By employing the bump-
contour technique, the DBIEs in Eqgs. (7)—(10) are derived as

8mu(x) = J [—=U(s,x)v(s) + O(s,x)m(s)

B'+B~+B.+B*

— M(s,x)0(s) + V(s,x)u(s)|dB(s), xEB, (18)

8mh(x) = J [—Uy(s,x)v(s) + Oy(s,x)m(s)

B'+B~+B.+B"

— My(s,x)0(s) + Vy(s,x)u(s)]dB(s), xEB, (19)

8tm(x) = J

B'+B~+B.+B"

[—=Un(s,x)v(s) + O, (s, x)m(s)

—M,,(s,x)0(s) + V,,(s,x)u(s)]dB(s), x€B, (20)

8mv(x) = J [—U,(s,x)v(s) + O, (s,x)m(s)

B'+B~+B.+B*

— M, (5,x)0(s) + V,(s,x)u(s)]dB(s), xEB, 21

where B, B~, B, and B are the contour integration paths
including the domain Q surrounding the singularity as
shown in Fig. 1. For convenience, it was assumed that B, is
an arc of a semi-circle centered at the field point x with
radius €. The integration path B. denotes the contour
integration around the singular point, and B'+B~ +B™ is
the definition of the integration region of the Cauchy
principal value. Egs. (18)—(21) can be rewritten as

81u(x)

=CPV J[ —U(s,x)v(s) + O(s,x)m(s) — M(s,x)0(s)
B

+ V(s,x)u(s)]dB(s) + J[— U(s,x)v(s) + O(s,x)m(s)
B

€

— M(s,x)0(s) + V(s,x)u(s)]dB.(s), (22)

8h(x)

= CPVJ[—Ug(s,x)v(s) + Oy(s,x)m(s) — My(s,x)0(s)
B

+ Vy(s,x)u(s)]dB(s) + J[—Uo(s,x)v(s) + Oy(s,x)m(s)
B

€

= My(5,)0(s) + Vy(s,x)u(s)]dB(s), (23)

81tm(x)

= CPVJ[—Um(s,x)v(s) + 6,,(s,x)m(s) — M,,(s,x)0(s)
B

+ V., (s,x)u(s)]dB(s) + J[—Um(s,x)v(s) + 0,,(s,x)m(s)
B,
—M,,(5,0)0(s) + V,,(s,)u(s)]dB(s), (24)

8mv(x)

=CPV J[—Uv(s,x)v(s) + O, (s,x)m(s) — M, (s,x)0(s)
B

+ V., (s,x)u(s)]dB(s) + J[—Uv(s,x)v(s) + O, (s,x)m(s)
B,

=M, (5,)0(s) + V, (s, x)u(s)]dB(s), (25)

where the CPV is the Cauchy principal value. The rigorous
definition of CPV will be elaborated on later. The integral
over B, contributes to the free term. In each integrand, both
kernel function and density function on B, will be studied in
Sections 4 and 5.

4. Taylor expansion of boundary density functions

Before deriving the free terms of the improper integral
equations, the density functions (displacement, slope,
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moment and shear force) are needed to be expanded to
series form for order analysis. Therefore, we expand the
density functions by using the Taylor series in the BIE
formulation as follows:

The displacement, u(s), is

u(s) = u(x) + {Ogis) cosf + Gus) sin 6)} €
1

6s2
2
1 9 u(s)00520+ u(s) 20+ “u(s)
21| 953 6s2 51082
L [u(s) 5, uls)

— 0

3 [ s +a 1as2
Fu(s) . &2 Yu(s)

nécos” 6

is,05200 +2 353

5COS fsin’6

+

sin 0]6 —I—O(e )+
(26)

The slope, moment and effective shear force can be obtained
by employing the operators in Egs. (12)—(14), respectively.
We have the slope

du(s) . du(s)

0(s) = [ 35, o0sf + 35, sinﬁ} + {a(;;(ls) cos’ 6
+ 6;(;) nf+ gSl (gi)zcosﬁs nﬁ} e+— [ 6u(3s) cos” 0
+ g;u(z os fsin® 0 + 35, ;S)% sinfcos” 0
+a;g)51n 0]6 + 0+ 27
The bending moment is
m(s) = (2)[05 6 + vsin® 0]+ (ZS)[

51

63
—|—Vc0520] +{ aug )[cos 6+ vcosfsin’ 0
S1

& 2
N 6s]u(§§§ [%COS,% 0+ (1 — %) cosfsin’ 0}

3 2
ng:(gz)% Esin39+ (1 —?V) sinﬁcoszﬁ}

cosfsin 6)} e

The effective shear force is

1— (9 9?
v(s) = v u(zs) (cos® 8 — sin® ) u(s)
€ dsy
2
X(cos® § — sin® §) — 2 07uls) cos fsin @
S1.082
+ Yu(s) 3 .2
3 [cos 8 + (1 —v)(cos” § —2cosfsin” §)]
51
3
L 0u ()2[050+(1—v)(2cos30—7c0505in20)]
3 dsy ds5
16 ()[in0+(1—V)(25in30—7coszﬂsin0)]
3 ds, 953
+ ()[ 0+(1—V)(251nﬂcos 6 — sin’ N1
s
+ O(e) + -+ 29)

The density functions are the Taylor expansions at x and
they should be substituted into the dual integral equations
when deriving the free terms. The simplified forms of the
density functions, u(x), 6(x), m(x) and v(x), under the
condition of n,=(0,1) and ¢, =(— 1,0) are shown in Table 3
without loss of generality.

5. Explicit forms for the kernel functions and the order
analysis for the asymptotic behavior

Sixteen kernel functions of the boundary integral
equations are very lengthy and are summarized in Appendix
A. By adopting the boundary integral formulations and the
16 kernel functions, the notations generally employed in the
Kirchhoff plate theory are briefly summarized. Without loss
of generality, we have the following notations as shown in
Fig. 1:

(1) The position of the field point: x= (x1,x,) =(0,0).

(2) The position of the source point: s=(s,S,)=
(€ cos 6, € sin 6).

(3) Distance: r=|s—x]|.

(4) Vector component: y;=x;—s;, i=1,2.

(5) Normal vector of the field point: n(x) = (i1, 7,) = (0, 1).

(6) Normal vector of the source point along the arc:
n(s) = (n;,ny) = (cos 6, sin ).

63
+ 35 (3 )[cos 0+ vcosfsin® 0] pe+ O(e%) + -
(28)

Table 3
Simplified forms of the density functions
Displacement u(x)

6u (x) — Au(x
Slope 0(x) = ( 052)
Moment

Shear force

m(x) = Vl72u(x) + (1= ) T = Lum + L

t,=(—sin@,cos 0)
=(cos ,sind)
n, (0,1)

r? 9 6 6
=T (1) [5] = 0y i+

t.(-1,0)
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Table 4

Order analysis for the 16 kernels of biharmonic problem

U(s,x) O(s,x) M(s,x) V(s,x)
O( In ¢) O(eIn ) O(n ¢) o)
Uy(s,x) Oy(s,x) My(s,x) Vi(s,x)
O(eln¢) O(n ¢) o) 0@)
U,.(s.x) Oy(s.x) M,,(s.x) Vin(8,X)
O(in 9 (%) o(%) o(¥)
Uy(s.x) 0,(s.%) M, (s.x) Vi(s.x)
o0 o) o) o

(7) Tangential vector of the field point: #(x)= (f;, %)=
(—1,0).

(8) Tangential vector of the source point: #(s) = (t|,t,)=
(—sin 6, cos 6).

By employing the bump-contour technique and sub-
stituting the notations of (1)—(8) in Fig. 1, we can derive the
explicit forms of the 16 kernels of the dual integral
formulation. From the asymptotic analysis of the above-
mentioned kernels, the order analysis for the asymptotic
behavior in the kernels can be found in Table 4.

6. Potential due to the 16 kernels for the bump integral

After defining the related symbols, 16 kernel funtions
and the density functions for the bump-contour technique,
we substitute them into the boundary integral formulations
in Egs. (7)-(10) and derive the free terms and boundary
terms. The four improper integrals of the first dual integral
formulation are

(ul) : | U(s,x)v(s)dB(s) = € In(e) (finite value), 30)

Bé

(u2) : | OCs, x)m(s)dB(s) = e In(e) (finite value), 31D

éé

(u3) : JM(s,x)H(s)dB(s) = ¢ln e (finite value), (32)

o~

€

w4) : | V(s,x)u(s)dB(s) = 4mu(x) + € (finite value),

&

(33)

as e approaches zero, the free term is 4mu(x). It is worth
noting that the free term only occurs in the V kernel, the
other kernels do not contribute any values to the free terms.

For the second equation of the dual formulation, we have

01) : | Uy(s, x)v(s)dB(s) = € lne (finite value), (34)

Bé

(62) : | Og(s, x)m(s)dB(s) = €In e (finite value), 35)

B

€

(03) : | My(s,x)0(s)dB(s)

B(

= —m(l +v)0(x) + ¢ (finite value). (36)

By integrating the M(s,x) kernel, the free term is found to
depend on the Poisson ratio. We may wonder the existence
of the Poisson ratio in terms of the successful experiences of
the Laplace equation, the reasonable explanation is
attributed to the operator of kernel functions.

(64) : J Vy(s, X)u(s)dB(s) = (3 — v)mh(x) + @ u(x),

Bé

(37)

where the former one is the free term and the latter one is the
unbounded boundary term. Apparently, the free terms of the
second integral equation are different from those of the first
one that the contribution of the free term is composed of the M
and Vj and the boundary term only results from the Vj integral
in Eq. (37). By collecting the two free terms in Eqs. (36) and
(37), a sum of 47f(x) is obtained. Then, let us consider the
higher-order gradient boundary integral equation of the third
boundary integral formulation as follows:

m1): | U, (s, x)w(s)dB(s) = g(v — Dm@) + 0(e),  (38)

Bf

m2) : | 0,,(s,x)m(s)dB(s) = (1l +v)m(x) + O(e), (39)

B

€

(m3) : J M, (s, x)0(s)dB(s)

BE

= —1mm(x) —4(1 — ) <1 + %) @ + O0(e), (40)

(m4) : J V,.(s, X)u(s)dB(s)
B

€

=—0B —v)mkx) +

8(1 —v)(3—vn) @ + 00,
3 €

(4D

(S

By taking the limit, the O(e) term approaches zero. After
obtaining the free terms, we find that the free terms are
contributed by all the four kernels in the third boundary
integral equation. It is interesting that the sum of free terms is
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also found to be 47tm(x) in companion with some unbounded
terms. In view of the order analysis of the four integral
equations, we may wonder why the free term of U,,, occurs? To
the authors’ best knowledge, we may explain that the result is
attributed to the complex form of the density function v(s).

v+ )y —3)

> v(x) + O(e),

vl): J U, (s, x)v(s)dB(s) =
B

€

(42)

2): J@V(s,x)m(s)dB(s)
B

€

+ O(e), (43)
3 €

)
2 + [4( v+ 6v+ 7)] m(x)

@3): JMV(s,x)ﬁ(s)dB(s)

B,
=~ — ¥ — 2v(x) + {W} m(x)
(1I—w
+ |52 BR0 = 5) + 16|00 + 00, (44)

vd): J V., (s, x)u(s)dB(s)

B

€

=T D -3 + {w} "
_ 2
+ {8(:731)] u(x) + O(e). “

According to the integrals in Egs. (42)—(45), we find that the
free terms are contributed by all the kernels and the sum is
47tr(x). It is interesting to find that the order descends in a
successive order for the 16 integrals. After combining the CPV
and the boundary terms to obtain the finite value as coined by
the finite part, Eqs. (18)—(21) are rewritten as

4rtu(x) = —FPJ U(s,x)v(s)dB(s) + FP J O(s, x)m(s)dB(s)
B B

— FP JM(S, x)0(s)dB(s) + FP J V (s, x)u(s)dB(s),

B

B
(46)

41td(x) = —FP | Uy(s, x)v(s)dB(s) + FP J Oy(s, x)m(s)dB(s)
B

B
FPJMg(s,x)H(s)dB(s) + FP | Vy(s, x)u(s)dB(s),
B

& —

(47)

4tm(x) = —FPJ U,.(s,x)v(s)dB(s) + FP J 0,,(s,x)m(s)dB(s)
B B
— FPJMm(s,x)H(s)dB(s) +FP |V, (s,x)u(s)dB(s),

B

& —

(48)

4mtv(x) = —FPJ U, (s,x)v(s)dB(s) + FPJ@V(s,x)m(s)dB(s)
B B

— FPJMV(s,x)ﬁ(s)dB(s) +FP | V,(s,x)u(s)dB(s),

B B
(49)
in which
FPJ U(s,x)v(s)dB(s) = CPV U(s,x)v(s)dB(s),
B B'+B~+B"
(50)
FP J O(s,x)m(s)dB(s) = CPV O(s,x)m(s)dB(s),
B B'+B~+B*
(51)
FP JM (s,x)8(s)dB(s) = CPV M(s,x)0(s)dB(s),
B B'+B~+B*
(52)
FPJ V(s,x)u(s)dB(s) = CPV V(s,x)u(s)dB(s),
B B'+B~+B*
(53)

FPJ Uy(s,x)v(s)dB(s) = CPV J Uy(s,x)v(s)dB(s),

B B'+B~ +B*
(54)
FP J Oy(s,x)m(s)dB(s) = CPV Oy(s,x)m(s)dB(s),
B B'+B~+B*
(55)

FPJMg(s,x)H(s)dB(s) =CPV J My(s,x)0(s)dB(s),
B B'+B~+B*
(56)
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Table 5
Free terms due to the bump integral for the biharmonic equation
U(s,x) O(s,x) M(s,x) V(s,x)
0 0 0 [47t]u(x)
Upy(s,x) Oy(s,x) My(s,x) Vi(s,x)
0 0 [—7(1+»)]6(x) [(3 = »)Tf(x) + [4(3 — »)] 42
Up(s.%) 0,,(s,x) M, (s.%) Vin(s,%)
[Zw— D)]mx) [re(1+)lm(x) () + [—4(1 — )+ 1+ 3v)] 22 [ZG—v)]m(x) + [B19E=2]) 19 4 8 (x)
Uy(s:x) O,(s.x) M.(s,x) Vils,x)
EFe+De—3)] Rehve)+ [—m(—1 + 1)(—2 + »)]v(x) + [Be=DeD] mo 4 [FE 1+ nE3+0))v@ + [ — De— DX
v(x) [4 (=0 +6v+7)] 2 3r@—5)+ 16v]] 42 20 4 (952 37w — 5) + 16(r — 3)]] 42 +
e [8(—1+r)2]*Q
FP J Vo (s,x)u(s)dB(s) FP JM L, (5,%)0(s)dB(s)
B B
8w—1w+17)
43 — = -
— CPV V, (s, u(s)dB(s) + 3B—v) ux).  (57) CPVJMv(s,x)ﬁ(s)dB(s) + [ 3e m(x)
€
B+B~+B* (1 B_ %)
+ [T By —5)+ 161/]] 0(x), (64)
€
FPJ U, (s,x)v(s)dB(s) = CPV U, (s,x)v(s)dB(s),
B B'+B~+B*
(58) FPJ V., (s,X)u(s)dB(s)
B

FP J 0,,(s,x)m(s)dB(s) = CPV J 0,,(s,x)m(s)dB(s),x
B B'+B~+B*

(59)

FPJMm(s,x)ﬁ(s)dB(s) =CPV J M,,(s,x)0(s)dB(s)
B B'+B~+B*

—4(1 —v)<1 —i—ﬂ) @, (60)
3 €

FP J V., (8, x)u(s)dB(s)
B

80— D +7)

=CPV
3¢

V. (s, 0)u(s)dB(s) + [
B'+B~+B*

+ {%[3T€(V -5+ 16u]] 6(x), ©1)

FPJ U, (s,x)v(s)dB(s) = CPV J U, (s,x)v(s)dB(s),

B B'+B~+B*
(62)
FP J 0, (s,x)m(s)dB(s) = CPV O, (s,x)m(s)dB(s)
B B'+B~+B*
_ .2
+[4( v —;6v+7)}m(x)’ 63)

] m(x)

4v—Dw—1)
6} m(x)

= CPVJ V,(s,0)u(s)dB(s) + [
B

+ {(13%”) B —5)+ 16(r — 3)]] 0(x)

N2
[ * 5 (©9)

NI

0%u(x) = 0,x @

Fig. 2. The chart of the biharmonic equation with the essential boundary
condition.
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Fig. 3. The contour plots of the biharmonic fields with the essential boundary condition using the boundary element method. (a) Number of boundary elements,

42; (b) number of boundary elements, 102.

where CPV and FP denote the Cauchy principal value
and finite part, respectively. For the biharmonic problem,
we have the kernels with higher singularity than the
hypersingularity which is termed unnamed singularity by
Guiggiani. Here, the unnamed singularity is called super-
singularity. Therefore, we denote them as the ‘finite part’
in a unified manner. The boundary terms of the kernel
integration arise from the boundary integral equations
naturally and can compensate the infinity of CPV.
Combining the 16 improper integrals, we have the
boundary integral equations with the free coefficient of
47 for a smooth boundary. The free terms are
contributed from different kernels instead of only one
Cauchy kernel. Finally, all the results of free terms and
boundary terms are summarized in Table 5.

To check the validity of the present formulation, the
BEM was utilized to solve the following problem [21] in
Fig. 2. The governing equation is

Viux) =0, xeQ, (66)
subject to the essential boundary conditions
u(r,0),—-, =0, 0<6<2w

T T
Ju(r, 0) -1 _§<0<3
T |r=a T (67)

or 0, Top<iT
’ 2 2

where Q is a circular domain with radius a=1. The exact
solution was avaliable by Mills [21] as follows

1—|—rtan T—0
1—r 2
—arctan 1_‘_rtan —5 6

1—r 2

u(r,d) = %(1 —r) [7 + arctan(

(68)
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Fig. 4. The contour plot of the exact solution.
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where
0, F<g<Z
_ 2 2
= 3 (69)
T, << —
2
Also, the series solution is available [25]
1 1 0
u(r.0) =5 (1 - ) — n; —sin <m7> (" cos(mb)
— "2 cos(m#)). (70)

The numerical results were plotted by using 42 and 102
constant elememts as shown in Fig. 3(a) and (b). After
comparing with the exact solution in Fig. 4, the BEM results
agree well with the exact solution.

7. Conclusions

In this paper, the free terms of the DBIEs for the
biharmonic problem were derived successfully. We adopted

the bump-contour technique surrounding the singularity and
expanded the density functions by using the Taylor series.
Contribution of the single, double, triple and quadrapole
potentials on the free terms was determined. After combinig
the boundary term with the Cauchy principal value, finite
part was obtained in the derivation. After collecting the 16
improper integrals for the smooth boundary, it is interesting
to find that the sum of the free terms in each boundary
integral equations is 47t. Finally, the order analysis and the
free terms of the 16 kernels of the biharmonic equation are
summarized in Table 5. The potentials of the 16 kernels can
be interpreted as finite part and Cauchy principal value. In
addition, a numerical example was tested to see the validity
of the formulation.
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Appendix A. Sixteen kernel functions for the biharmonic problem

Kernels for the first equation of the boundary integral formulations:
87tu(x) = [p{—U(x, $)v(s) + O(x, s)m(s) — M(s, x)8(s) + V (s, x)u(s)}dB(s)

U(s,x) = Zlnr

O(s,x) = —(1 + 2 In r)y;n;

2 2
M(s,x) = V{—Zy,-y,» +2(1+21In r)] +(1 —v) {—zyin,-yjnj + (1 +21In r)n;n;
r r

4 8 4 2 2 2
V(s,x) = FYi.Vin”j *r—gy]'”j + (=) |z ymyitivite +r—3y'iti)’jlj *r—zyj”jlifi *r—g)’j"j)’i”i

r4

Kernels for the second equation of the boundary integral formulations:
8TO(x) = [p{—Upy(x, 5)v(s) + Oy(x, s)m(s) — My(s, x)0(s) + Vy(s, x)u(s)}dB(s)

Uy(s,x) = (1 + 2 In r)yn;

2
Oy(s,x) = — L—zy,»ﬁ,-yjnj + (1 +21In r)n,vﬁ,}

-1 _ 2 -2 _ 3 _
My(s,x) = 4v |:r_4yi)’iyknk + r_zyini:| +2(1 =) |:r_4yi”iyjnjyknk + 2 Vit +

4 _ 4 _ 2 _ 4 _ 4 _
+ r—3yjtjn,-t,- + r—ijnjt,-t,-ym[ — r—2t,-t,»njnj + r—sy,-nl-yjnjy,n, — r—sy,n,njnj

2
r_gy/cnk”ini

—16 _ 24 _ 4 _ g8 _ 16 _ 4 _ 8 _ 4 _
Viy(s,x) = G Yy + R + AL R UL + (0 =) |——yitynytyiiy + r_4yitiyktknjnj + r—4y1'njykfk”ifi - r—5yifi){f’jy1"1
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Kernels for the third equation of the boundary integral formulations:
8tm(x) = [p{—U,,(x, $)v(s) + O,,(x, $)m(s) — M., (s, )0(s) + V,,,(s, x)u(s)}dB(s)

2 2
U,(s,x) =v {—zyl-y,- +2(1 +21In r)] + (1 —v) {?yiﬁ,-y,-n,- +(1+2In r)ﬁl-ﬁ,}
r 7"
2 2 _
S} (5 x) =4 4 ythyknk 2 Vil + 2(1 - V) 4 y: lyj jyknk rz ylnlnjnj - 2 3 Vi n;

2 | 16 2 4 8
M,,(s,x) = vq 16v % YIYzYkYk Vi + z +0 - 76 iy = YiYjy = g VeVl + 2 it

4 o —2 1 —4 o 2\ _ _
+d - V){lﬁV [r_ﬁyiyiyknkylnl + < )yk”k)’z” + ( )y Vil + (7))’:‘”%”1 + <7> "i"i}

—4 ) (=6 —4
+2(1 — V){ = Vil Yy + ( >y] Yy + <7>Yi"i)’j"jnk"k + <7>Yt’lm"1" il + ( >Yk”kYI”In N

(2 )+ (2 )]}

96 19 96 96 128 16 _ _ 24 24 4
Vin(s,x) = v JE YDV T 5 YiYiYm +—= L +v(l —v) J& VY 5 MYkl T it S VMl = S5 Vit +—= gl
16 16 24 4 128 __ 32 o 16 _
—rT,yjnjtiti)’/)’l —7)’]'"1')’1'”1')’1)’1 + TSyiniy]"lj - 7 +1 - V) s yly Yy, — 5 yinyinyin — rTyiinInlnjnj - T(,)’iyl'yj'”jnznz
48 96 32 _ 16 o 16 _
+— P Vil + yirgni; | + (1 —v)(1 —v) &Y LYY Yy pit, — 5 —5 Vit — r—(,y,'li)’kfkymlnjnj - r—ﬁ)’ifi)’jﬂfwwml

32 _ _ 16 _ _ 8 o 16 o 16 o 16 o 4 o 4

_rT)’j"jyktk"[f/yp"p + rTyjnjnitinknk + rj)’/"j"ﬂ/"ﬂk - rT;yitiyktknjn_/ypn/) + 7)’[@)’]'1‘/)’1"1)’/;",7 - 75}’/1,')’1"1"#/ - r?)’/tiy/fj”lnl + *” il
16 _ _ 16 o 16 _ 4 _ 4 16 _ _ 4 _ 4

VYt + r—7yili)’jfj)’1n1yp y — r—Syjfj)’/'llniti - r—S)’itiyjfj"t"l +— "zfz",f] % — Yinyiutity,i, + r—4)’j’ljfifi’ll’ll +— 4 iyt

16 o 8 o 4 o 4 8 o 4
—r—7yjnjy,~n,»y1n1y,,np + r—jy,vn,-ylnlnjnj + r—syjnjy,»n,»nlnl +— . njnjt t,ypn +—= 5 Yilii;y, i, — r—3n,»n,»njnj

Kernels for the fourth equation of the boundary integral formulations:
8Tv(x) = [p{—U,(x, 9)v(s) + O, (x, )m(s) — M, (s, x)0(s) + V, (s, x)u(s)}dB(s)

—4 ~ 8 2 2 __ 2
U,(s,x) = {VT)’I')’;)’_/”_/ +r7y_/n,} +(1 - V){ T ViYiliVite +FYitiyjtj + e jt;t; _rﬁ)’/"_/yi"i}

—16 24 _ 4 _ 8 —16 4 8 4
0,(s,x) = & YO iy + Ay, -n,-+r—4yiyinjnj*r—2n +d - 5 il Lyifyitym + 4)'[)’ktkn” + Y ylint; + pall Ly;itiyim

4 _ _ 4 __ 4 4
—F Yl + rjy/”,f iy — ptifi"j"j S Yilyyim + 73)’;"1"/"/}

192 4 __
3

—96 9 _ —96 128 16 24 ___ 24 _ _ _
M, (s,x) = —E Y Ly +—y,y,yj j =T Y +v(l —v) 5 i LYy +—yj yhyit +— Vi Lyt — Sa Vit = 5 Yilivjl; +r\ 1jt;

\ ~

16 ___ 16 _ _ 24 —96 128 32 _ 16 B
+75yj"jfi’iy1)’1 = Yy + 73 Vil = ;| + (1 —v) —F Vi Yyl +— 5 Vi iy + 8 Yy + -8 Yy

J
24 48 —96
—rjyjnjnl-n,- — Fy,nlnlnl} + (1 —» — V)|:

32 . _ 16 _ _ _ 16 _ _ _
EYYEymypn, + rTyj"j)’kfkymlnfli - rTYifikak)’/nlnj"j + FTYifijankkall”l

32 . _ 6 _ _ 8 _ _ _ 16 _ _ _ 16 _ _ 16 _ _ 4 4
+r—6yjnj)’klk"itiyp”p - rTanj”il‘inkﬂk - r_4yjnj”itinktk + r_ﬁyitiyktknjnjypnp + r_7yitiyjtjylnlypnp - r—S)’jtjymt"iti - Fyitiyj tinny + 5 it

16 _ o 16 _ _ 16 _ _ 4 _ 4 16 _ __ 4 4 __
+r7)’j"jym/fiti)’p"p + 7)’ifinthI”1)’p"p - rTthjYInzniti - r?)’itiyj timny +*" At + — P yiymtity,n, — ey aitityn — A titin;n;

16 _ _ 8 4 4 __ 877 4
7 MYy YTy + F Yy + VY = g Gy + YRy = 5 i
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—768 _ 1536 _ 96 _ 192 _
Vi (s,x) = 0 Yy + =& Yy + T8 YV = = VY

768 _ 9% _ =768 _ _  _
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