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Abstract

In this paper, we derive the null-field integral equation for piezoelectricity problems with arbitrary piezoelectric circular inclusions

under remote anti-plane shears and in-plane electric fields. Separable expressions of fundamental solutions and Fourier series for

boundary densities are adopted to solve the piezoelectric problem with circular inclusions. Four gains are obtained: (1) well-posed model,

(2) singularity free, (3) boundary-layer effect free and (4) exponential convergence. The solution is formulated in a manner of semi-

analytical form since error purely attributes to the truncation of Fourier series. Two piezoelectric problems with two piezoelectric circular

inclusions are revisited and compared with the Chao and Chang’s solutions to demonstrate the validity of our method. The limiting case

that the two inclusions separate far away leads to the Pak’s solution of a single inclusion. Stress and electric field concentrations are

calculated and are dependent on the distance between the two inclusions, the mismatch in the material constants and the magnitude of

mechanical and electromechanical loadings. The results for the shear and electric loadings in two directions are also compared well with

the Wang and Shen’s results.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The distribution of stress in an infinite medium contain-
ing circular holes and/or inclusions under the remote anti-
plane shear has been studied by many investigators.
However, analytical solutions are rather limited except
for simple cases. To the authors’ best knowledge, an exact
solution of a single inclusion was derived by Honein et al.
[1] using the complex potential. Besides, analytical solu-
tions for two identical holes and inclusions were obtained
by Stief [2] and by Budiansky and Carrier [3], respectively.
Zimmerman [4] employed the Schwartz alternative method
for plane problems with two holes or inclusions to obtain a
closed-form approximate solution. In addition, Sendeckyj
[5] proposed an iterative scheme for solving problems of
multiple inclusions. However, the approach is rather
complicated and explicit solutions were not provided.
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Numerical solutions for problems with two unequal holes
and/or inclusions were provided by Honein et al. [1] using
the Möbius transformations involving the complex poten-
tial. Not only anti-plane shears but also screw dislocations
were considered. Numerical results were presented by
Goree and Wilson [6] for an infinite medium containing
two inclusions under the remote shear. Bird and Steele [7]
used a Fourier series procedure to revisit the anti-plane
elasticity problems of Honein et al.’s paper [1]. To
approximate the infinite problem, an equivalent bounded-
domain approach with stress applied on the outer
boundary was utilized. A shear stress szr on the outer
boundary is used in place of a stress szy at infinity to
approach the Honein et al.’s results as the radius becomes
large. Based on the technique of analytical continuity and
the method of successive approximation, Chao and Young
[8] studied the stress concentration on a hole surrounded by
two inclusions. For a triangle pattern of three inclusions,
Gong [9] employed the complex potential and Laurent
series expansion to calculate the stress concentration.
Complex variable boundary element method (CVBEM)
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Fig. 1. Infinite anti-plane piezoelectric problem with arbitrary piezo-

electric circular inclusions under remote shear and electric loadings.
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was utilized to deal with the problem of two circular holes
by Ang and Kang [10] and Chou [11], independently.

Mathematically speaking, only circular boundaries in an
infinite domain are concerned here. Mogilevskaya and
Crouch [12] have also employed Fourier series expansion
technique and used the Galerkin method instead of
collocation technique to solve the problem of circular
inclusions in 2-D elasticity. Also Wang et al. [13] proposed
a fast algorithm for large-scale problems. The advantage of
their method is that one can tackle a lot of inclusions even
inclusions touching one another. However, they did not
expand the fundamental solution into the degenerate
kernels in the polar coordinate. Degenerate kernels play
an important role not only for mathematical analysis [14],
but also for numerical implementation [15]. For example,
the spurious eigenvalue [16], fictitious frequency [17] and
degenerate scale [18] have been mathematically and
numerically studied by using degenerate kernels for
problems with circular boundaries. One gain is that
exponential convergence instead of algebraic convergence
in boundary element method (BEM) can be achieved using
the degenerate kernel and Fourier expansion [15]. Chen et
al. [19] have successfully solved the anti-plane problem
with circular holes using the null-field integral equation in
conjunction with degenerate kernels and Fourier series.
The idea was also applied to determine torsional rigidities
of circular bars with circular holes [20]. The extension to
biharmonic problems was also implemented [21]. The
above literature review focuses on the elasticity problems
with circular holes and/or inclusions. We will extend to
piezoelectricity problems.

The recent technological developments and the increas-
ing market demand have opened promising research
opportunities and engineering priorities in the field of
micromechanics. Coupled electro-elastic analysis in smart
composites and micro-electro-mechanical systems (MEMS)
receives much attention. Due to the intrinsic coupling effect
of electrical and mechanical fields, the piezoelectric
material is widely applied to intelligent structures. Regard-
ing the piezoelectric circular inclusions, an exact solution of
a single piezoelectric inclusion was derived by Pak [22]
under remote anti-plane shear and in-plane electric
loadings. For the two piezoelectric inclusions, Honein et
al. [23] employed the Möbius transformation to derive the
electromechanical field. Based on the method of analytical
continuation and the techniques of successive approxima-
tion, Chao and Chang [24] revisited the problem of two
piezoelectric inclusions. Wu and Funami [25] also solved
this problem by using the conformal mapping and the
theorem of analytical continuation. Wang and Shen [26]
considered the shear and electric loadings in two directions.

This paper extends the null-field formulation to solve
piezoelectricity problems with multiple piezoelectric circu-
lar inclusions. By introducing a multi-domain approach, an
inclusion problem can be decomposed into two parts. One
is the infinite medium with circular holes and the other is
the problem with each circular inclusion. After considering
the continuity and equilibrium conditions on the interface
for electrical and mechanical fields, a linear algebraic
system can be obtained and the unknown Fourier
coefficients in the algebraic system can be determined.
Then the displacement field and electric potential are
obtained. Furthermore, an arbitrary number of circular
inclusions are treated by using the present method without
any difficulty. The calculation of potential gradient must be
determined with care by using the vector decomposition
and the adaptive observer system for the nonconfocal case.
Also the boundary stress and electric fields can be easily
determined by using series sums instead of employing the
sense of Hadamard principal value. A general purpose
program for arbitrary number of piezoelectric circular
inclusions with various radii and different positions was
developed. Several examples solved previously by other
researchers [22,24,26] were revisited to see the accuracy and
efficiency of the present formulation. The Pak’s solution of
a single inclusion is designed as a limiting case when two
inclusions dispart far away.

2. Problem statement of anti-plane displacement field and in-

plane electric potential

The physical problem to be considered is shown in
Fig. 1, where multiple piezoelectric circular inclusions are
imbedded in an infinite piezoelectric medium under the far-
field anti-plane shear s1zx; s

1
zy and the far-field in-plane

electric field E1x ; E1y . Bleustein [27] has found that if one
takes the plane normal to the poling direction as the plane
of interest, only the anti-plane displacement w couples with
the in-plane electric field Er and Ey. Therefore, we only
consider the anti-plane displacement and the in-plane
electric field such that

u ¼ v ¼ 0; w ¼ wðr; yÞ; Er ¼ Erðr; yÞ,

Ey ¼ Eyðr; yÞ; Ez ¼ 0, ð1Þ
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where u, v and Ez are the vanishing components of
displacements and electric field, respectively. The govern-
ing equation, in the absence of body forces and body
charges, can be decoupled and simplified to

r2w ¼ 0; r2F ¼ 0, (2)

where r2 is the 2-D Laplacian operator

r2 �
q2

qr2
þ

1

r

q
qr
þ

1

r2
q2

qy2
, (3)

and F is the in-plane electric potential. The coupling
between the elastic field and the electrical field occurs only
through the constitutive equations

szr ¼ c44gzr � e15Er; szy ¼ c44gzy � e15Ey, (4)

Dr ¼ e15gzr þ �11Er; Dy ¼ e15gzy þ �11Ey, (5)

where c44 is the elastic modulus, e15 is the piezoelectric
constant, e11 is the dielectric constant, sij and Di are,
respectively, the anti-plane shear stress and in-plane electric
displacement, gij and Ei are, respectively, the anti-plane
shear strain and in-plane electric field, which are defined as

gzr ¼
qw

qr
; gzy ¼

1

r

qw

qy
; Er ¼ �

qF
qr

,

Ey ¼ �
1

r

qF
qy

. ð6Þ

The analogy between the anti-plane shear deformation
and in-plane electrostatics for anti-plane piezoelectric
problems is listed in Table 1. By taking free body along
the interface between the matrix and inclusions, the
problem can be decomposed into two systems. One is an
infinite medium with N circular holes under remote anti-
plane shear and in-plane electric loadings as shown in
Fig. 2(a). The other is N circular inclusions bounded by the
Bk contour which satisfies the Laplace equation as shown
in Fig. 2(b). From the numerical point of view, this is the
so-called multi-domain approach. For the problem in
Fig. 2(a), it can be superimposed by two parts. One is an
infinite medium under remote shear and electric loadings
and the other is an infinite medium with N circular holes
which satisfies the Laplace equation as shown in Figs. 2(c)
Table 1

Analogy between the anti-plane shear deformation and in-plane electrostatics

Anti-plane shear deformation Constitutive equations for

z-displacement w

Strain gzi

Stress szi

Shear modulus m
Body force f

Strain-displacement relationship gzi ¼ w,i Coupling effect

Constitutive law szi ¼ mgzi szi ¼ c44gzi�e15Ei

Di ¼ e15gzi+e11Ei

Governing equation of equilibrium szi,i ¼ �fz

Poisson equation r2w ¼ �f/m

�Here, r is the charge density. The subscript ‘‘,’’ refers to partial differentia
and (d), respectively. Therefore, one exterior problem for
the matrix is shown in Fig. 2(d) and several interior
problems for nonoverlapping inclusions are shown in
Fig. 2(b). The two problems in Figs. 2(d) and (b) can be
solved in a unified manner since they both satisfy the
Laplace equation.
When the coupled effect between the mechanical and

electrical fields is absent or the piezoelectric constant is equal
to zero, the expressions of the electro-elastic field in the
present formulation reduces to the results given by Emets
and Onofrichuk [28] and Honein et al. [1], respectively.

3. A unified formulation for exterior and interior Laplace

problems under anti-plane mechanical and in-plane electrical

loadings

3.1. Dual boundary integral equations and dual null-field

integral equations

The boundary integral equation (BIE) for the domain
point can be derived from the third Green’s identity [29],
we have

2pwðxÞ ¼

Z
B

Tðs;xÞwðsÞdBðsÞ

�

Z
B

Uðs; xÞtðsÞdBðsÞ; x 2 D, ð7Þ

2p
qwðxÞ

qnx

¼

Z
B

Mðs;xÞwðsÞdBðsÞ

�

Z
B

Lðs; xÞtðsÞdBðsÞ; x 2 D, ð8Þ

where w(x) is the anti-plane displacement field,
t(s) ¼ qw(s)/qns, s and x are the source and field points,
respectively, B is the boundary, D is the domain of interest,
ns and nx denote the outward normal vector at the source
point s and field point x, respectively, and the kernel
function U(s, x) ¼ ln r, (r�|x�s|), is the fundamental
solution which satisfies

r2Uðs;xÞ ¼ 2pdðx� sÞ (9)
for anti-plane piezoelectric problems

anti-plane piezoelectricity In-plane electrostatics

Electric potential F
Electric field Ei

Electric displacement Di

Dielectric constant e
Charge density r�

Electricity Ei ¼ �F,i

Constitutive law Di ¼ eEi

Governing equation of Maxwell Di,i ¼ r
Poisson equation r2F ¼ �r/e

tion with respect to the subsequent spatial coordinate ‘‘i’’.
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Fig. 2. (a) Infinite piezoelectric medium with circular holes under remote shear and electric loadings. (b) Interior Laplace problems for each piezoelectric

inclusion. (c) Infinite piezoelectric medium under remote shear and electric loadings. (d) Exterior Laplace problems for the piezoelectric medium.
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in which d(x�s) denotes the Dirac-delta function. The
other kernel functions, T(s, x), L(s, x) and M(s, x), are
defined by

Tðs;xÞ �
qUðs;xÞ

qns

; Lðs; xÞ �
qUðs;xÞ

qnx

,

Mðs;xÞ �
q2Uðs; xÞ
qnsqnx

. ð10Þ

By collocating x outside the domain (xADc), we obtain
the dual null-field integral equations as shown below

0 ¼

Z
B

Tðs; xÞwðsÞdBðsÞ �

Z
B

Uðs;xÞtðsÞdBðsÞ; x 2 Dc,

(11)

0 ¼

Z
B

Mðs;xÞwðsÞdBðsÞ �

Z
B

Lðs;xÞtðsÞdBðsÞ; x 2 Dc,

(12)

where Dc is the complementary domain. Based on the
separable property, the kernel function U(s, x) is expanded
into the degenerate form by separating the source point
and field point in the polar coordinate [30]:

Uðs; xÞ ¼

U iðR; y; r;fÞ ¼ ln R�
P1

m¼1

1
m

r
R

� �m
cos mðy� fÞ; RXr;

U eðR; y; r;fÞ ¼ ln r�
P1

m¼1

1
m

R
r

� �m

cos mðy� fÞ; r4R;

8>><
>>:

(13)

where the superscripts ‘‘i’’ and ‘‘e’’ denote the interior (R4r)
and exterior (r4R) cases, respectively. The origin of the
observer system for the degenerate kernel is (0, 0). By setting
the origin at o for the observer system, a circle with radius R

from the origin o to the source point s is plotted. If the field
point x is situated inside the circular region, the degenerate
kernel belongs to the interior expression of Ui; otherwise, it is
the exterior case. After taking the normal derivative q/qR

with respect to Eq. (13), the T(s,x) kernel yields

Tðs; xÞ ¼

T iðR; y; r;fÞ ¼ 1
R
þ
P1

m¼1

rm

Rmþ1

� �
cos mðy� fÞ; R4r;

TeðR; y; r;fÞ ¼ �
P1

m¼1

Rm�1

rm

� �
cos mðy� fÞ; r4R

8>>><
>>>:

(14)
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and the higher-order kernel functions, L(s,x) and M(s,x),
are shown below:

Lðs; xÞ ¼

LiðR; y; r;fÞ ¼ �
P1

m¼1

rm�1

Rm

� �
cos mðy� fÞ; R4r;

LeðR; y; r;fÞ ¼ 1
rþ

P1
m¼1

Rm

rmþ1

� �
cos mðy� fÞ; r4R;

8>>><
>>>:

(15)

Mðs; xÞ ¼

M iðR; y; r;fÞ ¼
P1

m¼1

mrm�1

Rmþ1

� �
cos mðy� fÞ; RXr;

MeðR; y; r;fÞ ¼
P1

m¼1

mRm�1

rmþ1

� �
cos mðy� fÞ; r4R:

8>>><
>>>:

(16)

Since the potentials resulted from T(s,x) and L(s,x)
kernels are discontinuous across the boundary, the potentials
of T(s,x) and L(s,x) for R-r+ and R-r� are different.
This is the reason why R ¼ r is not included for degenerate
kernels of T(s,x) and L(s,x) in Eqs. (14) and (15). For
problems with the kth circular boundary, we apply the
Fourier series expansions to approximate the potential w and
its normal derivative t on the boundary as

wðskÞ ¼ ak
0 þ

XL

n¼1

ak
n cos nyk þ bk

n sin nyk

� �
; sk 2 Bk,

k ¼ 0; 1; 2; . . . ;N, ð17Þ

tðskÞ ¼ pk
0 þ

XL

n¼1

pk
n cos nyk þ qk

n sin nyk

� �
; sk 2 Bk,

k ¼ 0; 1; 2; . . . ;N, ð18Þ

where N is the number of circular inclusions, t(sk) ¼ qw(sk)/
qns, ak

n ; bk
n ; pk

n and qk
n (n ¼ 0, 1, 2,y,L) are the Fourier

coefficients and yk is the polar angle. In the real computation,
only 2L+1 finite terms are considered where L indicates the
truncated terms of Fourier series.

In the present application, both anti-plane mechanical
and in-plane electrical fields are modeled by using the null-
field formulation. Since the electric potential F also satisfies
the Laplace equation, the variables w and t(s) ¼ qw(s)/qns

in Eqs. (7), (8), (11), (12), (17) and (18) can be replaced by
F and C(s) ¼ qF(s)/qns.

3.2. Adaptive observer system [19,21]

After collocating points in the null-field integral equa-
tion, the boundary integrals through all the circular
contours are required. Since the BIEs are obtained through
the reciprocal theorem, it is frame indifferent due to the
objectivity rule such that the observer system can be
adaptively to locate the origin at the center of circle in the
boundary integration. The adaptive observer system is
chosen to fully employ the property of degenerate kernels
and Fourier series. Figs. 3(a) and (b) show the boundary
integration for the circular boundary in the adaptive
observer system. Therefore, the origin of the observer
system is located on the center of the corresponding circle
under integration to entirely utilize the geometry of circular
boundary for the expansion of degenerate kernels and
boundary densities. The dummy variable in the circular
integration is the angle (y) instead of the radial coordinate
(R). In the present applications, the anti-plane mechanical
and in-plane electrical fields can both be modeled by
employing the same null-field formulation.
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3.3. Linear algebraic system for modeling the Laplace

equation

By moving the null-field point xm to the kth circular
boundary in the limit sense for Eq. (11) in Fig. 3(a), we
have

0 ¼
XN

k¼0

Z
Bk

TðRk; yk; rm;fmÞwðRk; ykÞRk dyk

�
XN

k¼0

Z
Bk

UðRk; yk; rm;fmÞtðRk; ykÞRk dyk,

xðrm;fmÞ 2 Dc, ð19Þ

where N is the number of circular inclusions and B0

denotes the outer boundary for the bounded domain. In
case of the infinite problem, B0 becomes BN. Note that the
kernels U(s, x) and T(s, x) are assumed in the degenerate
form given by Eqs. (13) and (14), respectively, while the
boundary densities w and t are expressed in terms of the
Fourier series expansion forms given by Eqs. (17) and (18),
respectively. Then, the integrals multiplied by separate
expansion coefficients in Eq. (19) are non-singular and the
limit of the null-field point to the boundary is easily
implemented by using appropriate forms of degenerate
kernels. Thus, the collocation point x(rm,fm) in the
discretized Eq. (19) can be considered on the boundary
Bk, as well as the null-field point. In contrast to the
standard discretized BIE formulation with nodal un-
knowns of the physical boundary densities w and t. Now
the degrees of freedom are transformed to Fourier
coefficients employed in expansion of boundary densities.
It is found that the compatible relationship of the
boundary unknowns is equivalent by moving either the
null-field point or the domain point to the boundary in
different directions using various degenerate kernels as
shown in Figs. 3(a) and (b). In the Bk integration, we set the
origin of the observer system to collocate at the center ck to
fully utilize the degenerate kernels and Fourier series. By
collocating the null-field point on the boundary, the linear
algebraic system is obtained:

For the exterior problem of matrix, we have

UM
� �

tM � t1
	 


¼ TM
� �

wM � w1
	 


, (20)

UM
� �

WM
�W1

	 

¼ TM
� �

UM �U1
	 


. (21)

For the interior problem of each inclusion, we have

UI
� �

tI
	 

¼ TI
� �

wI
	 


, (22)

UI
� �

WI
	 


¼ TI
� �

UI
	 


, (23)

where the superscripts ‘‘M’’ and ‘‘I’’ denote the matrix and
inclusion, respectively. [UM], [TM], [UI] and [TI] are the
influence matrices with a dimension of (N+1)(2L+1) by
(N+1)(2L+1), {wM}, {tM}, {wN}, {tN}, {UM}, {WM},
{UN}, {WN}, {wI}, {tI}, {UI} and {WI} denote the column
vectors of Fourier coefficients with a dimension of
(N+1)(2L+1) by 1 in which those are defined as follows:

UM
� �

¼

UM
00 UM

01 � � � UM
0N

UM
10 UM

11 � � � UM
1N

..

. ..
. . .

. ..
.

UM
N0 UM

N1 � � � UM
NN

2
66666664

3
77777775
,

TM
� �

¼

TM
00 TM

01 � � � TM
0N

TM
10 TM

11 � � � TM
1N

..

. ..
. . .

. ..
.

TM
N0 TM

N1 � � � TM
NN

2
66666664

3
77777775
, ð24Þ

UI
� �
¼

UI
00 UI

01 � � � UI
0N

UI
10 UI

11 � � � UI
1N

..

. ..
. . .

. ..
.

UI
N0 UI

N1 � � � UI
NN

2
66666664

3
77777775
,

TI
� �
¼

TI
00 TI

01 � � � TI
0N

TI
10 TI

11 � � � TI
1N

..

. ..
. . .

. ..
.

TI
N0 TI

N1 � � � TI
NN

2
66666664

3
77777775
, ð25Þ

wM
	 


¼

wM
0

wM
1

wM
2

..

.

wM
N

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
; tM
	 


¼

tM0

tM1

tM2

..

.

tMN

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
,

UM
	 


¼

UM
0

UM
1

UM
2

..

.

UM
N

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
; WM
	 


¼

WM
0

WM
1

WM
2

..

.

WM
N

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
, ð26Þ

w1f g ¼

w10

w11

w12

..

.

w1N

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
; t1f g ¼

t10

t11

t12

..

.

t1N

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
,
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Table 3

Comparisons of the present method and conventional BEM

Boundary

density

discretization

Auxiliary

system

Formulation Observer system Singularity Convergence Boundary-layer

effect

Present method Degenerate

kernel

Null-field

integral

equation

Adaptive

observer system

Disappear after

introducing the

degenerate

kernel

Exponential

convergence

Free

Conventional

BEM

Fundamental

solution

Boundary

integral

equation

Fixed observer

system

Principal values

(C.P.V., R.P.V.

and H.P.V.)

Linear algebraic

convergence

Appear

where C.P.V., R.P.V. and H.P.V. are the Cauchy, Riemann and Hadamard principal values, respectively.

�  

x  

x 

� - �

3 

1 4 

2 

2’ 

1’ 

4’ 

3’ 

�

Fig. 4. Vector decomposition for the potential gradient in the hyper-

singular equation. 1, 10: Normal direction; 2, 20: Tangential direction; 3, 30:

True normal direction; 4, 40: True tangential direction.
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U1f g ¼

U10

U11

U12

..

.

U1N

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
; W1f g ¼

W10

W11

W12

..

.

W1N

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
, ð27Þ
wI
	 


¼

wI
0

wI
1

wI
2

..

.

wI
N

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
; tI
	 

¼

tI0

tI1

tI2

..

.

tIN

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
,

UI
	 


¼

UI
0

UI
1

UI
2

..

.

UI
N

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
; WI
	 


¼

WI
0

WI
1

WI
2

..

.

WI
N

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
, ð28Þ

where the first subscript ‘‘j’’ (j ¼ 0, 1, 2,y,N) in

UM
jk

h i
; TM

jk

h i
; UI

jk

h i
and TI

jk

h i
denotes the index of the

jth circle where the collocation point is located and the
second subscript ‘‘k’’ (k ¼ 0, 1, 2,y,N) denotes the index
of the kth circle when integrating on each boundary data

wM
k �w

1
k

	 

; tMk �t

1
k

	 

; UM

k �U1k
	 


; WM
k �W1k

	 

, wI

k

	 

;

tIk
	 


; UI
k

	 

and WI

k

	 

, N is the number of circular

inclusions in the domain. It is noted that {wN}, {tN},
{UN} and {WN} in Fig. 2(c) are the displacement and
traction fields due to the remote shear and electric loadings,
respectively. The coefficient matrix of the linear algebraic
system is partitioned into blocks, and each off-diagonal
block corresponds to the influence matrices between two
different circular boundaries. The diagonal blocks are the
influence matrices due to itself in each individual circle.
After uniformly collocating the point along the kth circular
boundary, Eq. (19) can be calculated by employing the
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relations of trigonometric function and the orthogonal
property in the real computation. Only the finite L terms
are used in the summation of Eqs. (17) and (18). The
explicit forms of all the boundary integrals for U, T, L and
M kernels are listed in Table 2. Finite values of singular
integrals are easily obtained after introducing the degen-
erate kernel. The limiting case across the boundary (R�-
r-R+) is also addressed. The continuous and jump
behavior across the boundary is captured. Instead of
boundary data in BEM, the Fourier coefficients become
the new unknown degrees of freedom in the formulation.
Table 4

Flowchart of the present method
Two cases may be solved in a unified manner using the
null-field integral formulation:
(1)
 One bounded problem of circular domain in Fig. 2(b)
becomes the interior problem for each inclusion.
(2)
 The other is unbounded, i.e., the outer boundary B0 in
Fig. 3(a) is BN. It is the exterior problem for the matrix
as shown in Fig. 2(d).
The direction of contour integration should be deter-
mined with care, i.e., counterclockwise and clockwise
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Fig. 5. Two piezoelectric circular inclusions embedded in a piezoelectric

matrix under remote shear and electric loadings.
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directions are used for the interior and exterior problems,
respectively.

According to the continuity of displacement and
equilibrium of traction along the kth interface, we have
the four constraints. For the stress field, the interface
condition yields

wM ¼ wI on Bk, (29)

sMzr ¼ sIzr on Bk. (30)

For the electric field, the interface condition yields

FM ¼ FI on Bk, (31)

DM
r ¼ DI

r on Bk. (32)

Invoking the governing equation of piezoelectricity with
proper continuity conditions, fully coupled equations are
obtained. By assembling the matrices in Eqs. (20)–(23) and
(29)–(32), we have

TM �UM 0 0 0 0 0 0

0 0 TI �UI 0 0 0 0

0 0 0 0 TM �UM 0 0

0 0 0 0 0 0 TI �UI

I 0 �I 0 0 0 0 0

0 cM44 0 cI44 0 eM15 0 eI15

0 0 0 0 I 0 �I 0

0 eM15 0 eI15 0 �eM11 0 �eI11

2
6666666666666666664

3
7777777777777777775

�

wM

tM

wI

tI

UM

WM

UI

WI

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

¼

a

0

b

0

0

0

0

0

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

, ð33Þ

where {a} and {b} are the forcing terms due to the far-field
anti-plane shear and the far-field in-plane electric field
as shown in Appendix, cM44

� �
; cI44
� �

; eM15
� �

; eI15
� �

; eM11
� �

and eI11
� �

are defined as follows:

cM44
� �

¼

cM44 0 � � � 0

0 cM44 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � cM44

2
6666664

3
7777775
,

cI44
� �

¼

cI44 0 � � � 0

0 cI44 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � cI44

2
6666664

3
7777775
, ð34Þ

eM15
� �

¼

eM15 0 � � � 0

0 eM15 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � eM15

2
6666664

3
7777775
,

eI15
� �

¼

eI15 0 � � � 0

0 eI15 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � eI15

2
6666664

3
7777775
, ð35Þ

eM11
� �

¼

�M11 0 � � � 0

0 �M11 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � �M11

2
6666664

3
7777775
,

eI11
� �

¼

�I11 0 � � � 0

0 �I11 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � �I11

2
6666664

3
7777775
. ð36Þ
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Fig. 6. (a) Stress concentration as a function of the ratio of piezoelectric constants with b ¼ 901. (b) Electric field concentration as a function of the ratio

of piezoelectric constants with b ¼ 901.
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The matrix [I] is an identity matrix. After obtaining
the unknown Fourier coefficients in Eq. (33), the
origin of observer system is set to ck in the Bk integration
as shown in Fig. 3(b) to obtain the field potential
by employing Eq. (7). The differences between the
present formulation and the conventional BEM are
listed in Table 3. In determining the stress and
electric field concentration, the gradient of potential
should be determined with care as shown in the following
section.
3.4. Vector decomposition technique for the potential

gradient of w and F in the hypersingular equation

In order to determine the stress and electric fields, the
tangential derivative should be calculated with care. Also
Eq. (8) shows the normal derivative of potential for domain
points. For nonconcentric cases, potential gradients should
be determined with care as the source point and field point
locate on different boundaries. As shown in Fig. 4, the
normal direction on the boundary (1, 10) should be super-
imposed by those of the radial derivative (3, 30) and angular
derivative (4, 40) through the vector decomposition techni-
que. According to the concept of vector decomposition
technique, the kernel functions of Eqs. (15) and (16) can be
modified to
0 20 40

0.5

1

1.5

2

E
M

/E
∞

�

Fig. 7. Electric field concentration as a function of the ratio
Lðs;xÞ

¼

LiðR; y; r;fÞ ¼ �
P1

m¼1

rm�1

Rm

� �
cos mðy� fÞ cosðz� xÞ

�
P1

m¼1

rm�1

Rm

� �
sin mðy� fÞ

� cos p
2
� zþ x

� �
; R4r;

LeðR; y; r;fÞ ¼ 1
rþ

P1
m¼1

Rm

rmþ1

� �
cos mðy� fÞ cosðz� xÞ

�
P1

m¼1

Rm

rmþ1

� �
sin mðy� fÞ

� cos p
2
� zþ x

� �
; r4R;

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð37Þ

Mðs;xÞ

¼

M iðR; y; r;fÞ ¼
P1

m¼1

mrm�1

Rmþ1

� �
cos mðy� fÞ cosðz� xÞ

�
P1

m¼1

mrm�1

Rmþ1

� �
sin mðy� fÞ

� cos p
2
� zþ x

� �
; RXr;

MeðR; y; r;fÞ ¼
P1

m¼1

mRm�1

rmþ1

� �
cos mðy� fÞ cosðz� xÞ

�
P1

m¼1

mRm�1

rmþ1

� �
sin mðy� fÞ

� cos p
2
� zþ x

� �
; r4R;

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð38Þ
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Fig. 8. (a) Tangential stress distribution for different ratios d/r1 with eM15=eI15 ¼ 3:0 and b ¼ 901. (b) Tangential electric field distribution for different ratios

d/r1 with eM15=eI15 ¼ 3:0 and b ¼ 901.
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ratios d/r1 with eM15=eI15 ¼ �5:0 and b ¼ 901.

J.-T. Chen, A.-C. Wu / Engineering Analysis with Boundary Elements 30 (2006) 971–993 985



ARTICLE IN PRESS

-3 -2 -1 0 1 2 3 5 64
-3

-2

-1

0

1

2

3

 

-3 -2 -1 0 1 2 3 5 64  

-3 -2 -1 0 1 2 3 5 64  

-3

-2

-1

0

1

2

3

 

-3

-2

-1

0

1

2

3

(a)

(b)

(c)

Fig. 10. (a) Contour of electric potential F/EN (b ¼ 01). (b) Contour of

shear stress szx/tN (b ¼ 01). (c) Contour of shear stress szy/tN (b ¼ 01).

J.-T. Chen, A.-C. Wu / Engineering Analysis with Boundary Elements 30 (2006) 971–993986
where z and x are shown in Fig. 4. For the confocal case,
the potential gradient is derived free of special treatment
since z ¼ x. The flowchart of the present method is shown
in Table 4.

4. Numerical results and discussions

The exact solution for a single piezoelectric inclusion,
which was derived by Pak [22], can be derived by using the
present formulation. Although our formulation is general
for multiple inclusions, we consider two piezoelectric
circular inclusions perfectly bonded to a matrix which is
subjected to the remote shear and electric field as shown in
Fig. 5. In the following discussion, the applied loadings and
material properties of the matrix and two inclusions are
assumed as the same of Chao and Chang [24], Pak [22] and
Wang and Shen [26]. All the numerical results are given
below by using the 20 terms of Fourier series (L ¼ 20) since
those are checked to achieve good accuracy under
acceptable error tolerance as compared to those by using
the 30 terms.

Case 1: Two circular inclusions parallel to the applied
loadings [22,24]

In order to examine the accuracy of the present
formulation, the stress concentration factor szy/tN in the
matrix at y ¼ 01 under remote loadings of s1zx ¼ 0; s1zy ¼

t1 and E1x ¼ 0; E1y ¼ E1 is plotted in Fig. 6(a) as a
function of the ratio of piezoelectric constants eM15=eI15,
where the two circular inclusions (r2 ¼ 2r1) are arrayed
parallel to the applied loadings (b ¼ 901) and the distance
between two circular inclusions d/r1 ¼ 10. It is found that
the results displayed in Fig. 6(a) agree very well with the
Chao and Chang’s results [24] and approach to the Pak’s
solution of a single inclusion [22]. The electric field
concentration Ey/EN in the matrix at y ¼ 01 is plotted in
Fig. 6(b) as a function of the ratio of piezoelectric
constants. It is also found that the results in Fig. 6(b)
leads to the Pak’s solution of a single inclusion [22], since
the two inclusions displace far away (d/r1 ¼ 10). The
electric field concentration Ey/EN occurring at y ¼ 01 is
plotted in Fig. 7 as a function of the ratio of dielectric
constants �M11=�

I
11. It is shown that the electric field

concentration approaches two for a large value of �M11=�
I
11

as d/r1 ¼ 10 which is consistent with the Chao and Chang’s
results [24] and reduces to the Pak’s solution of a single
inclusion [22]. When the two inclusions approach each
other, both the tangential stress szy and tangential electric
field Ey in the matrix along the boundary of the smaller
inclusion are plotted in Figs. 8(a) and (b), respectively, as
the piezoelectric constants are fixed at eM15=eI15 ¼ 3.
Figs. 9(a) and (b), respectively, show the tangential stress
and tangential electric field distribution that the matrix is
subjected to the reversal of the poling direction as
compared to the inclusion such as the ratio of piezoelectric
constants eM15=eI15 ¼ �5. The two figures show the consis-
tency between the present data and those of Chao and
Chang in the range of y ¼ 01–1801 except near y ¼ 901. It is
open for discussions why our results are different from
those of Chao and Chang near y ¼ 901. The tangential
stress and tangential electric field are continuous across
y ¼ 901 using our formulation while the results of Chao
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and Chang seems to have a jump at y ¼ 901 for the case of
d/r1 ¼ 0.01, 0.02.

Case 2: Two circular inclusions perpendicular to the
applied loadings [24,26]

As the two circular inclusions are arrayed perpendicular
to the applied loadings (b ¼ 01), the contours of electric
potential and shear stress are plotted in Figs. 10(a)–(c). The
contours of shear stress match very well with the Wang and
Shen’s results [26]. It reveals that F and szx are anti-
symmetric with respect to the x-axis and szy is symmetric
with respect to the x-axis. There exists serious amplification
at the point where the two inclusions are nearly in contact
with each other. The electric potential is continuous across
the interface between the matrix and each inclusion. When
the two inclusions approach each other, both the tangential
stress szy and tangential electric field Ey in the matrix along
the boundary of the smaller inclusion are plotted in
Figs. 11(a) and (b), respectively, as the piezoelectric
constants are fixed at eM15=eI15 ¼ �5. After comparing with
the results of Chao and Chang [24], agreement is made
except near y ¼ 01 and 1801. Variations of stress and
electric field concentrations occurred at y ¼ 01 with the
ratio of piezoelectric constants are shown in Figs. 12(a)
and (b). It is seen that, from Figs. 12(a)–13(b), both the
stress and electric field concentrations are equal to one as
-5 0 5 10

x/r1
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2

3

� z
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Fig. 14. Stress and electric displacem
eM15=eI15 ¼ 1 which are reasonable results for the homo-
geneous problem. The stress and electric field concentra-
tions are plotted in Figs. 13(a) and (b) under loadings of
various magnitude for a far-field in-plane electric load
E1y ¼ E1 and a far-field anti-plane shear s1zy ¼ t1,
respectively. After comparing with the results of Chao
and Chang [24], agreement is made except for the negative
value of eM15=eI15. However, our results are smoother as
shown in Figs. 12(a)–13(b) which are different from the
oscillation behavior in the Chao and Chang’s paper [24].

Case 3: Two circular inclusions under the applied
loadings in two directions [26]
The radii of two circular inclusions are r1 and r2 with

r2 ¼ 1.5r1 and the problem is subjected to the remote shear
s1zx ¼ t1=2; s1zy ¼ t1 and the electric field E1x ¼ E1=2;
E1y ¼ E1. The distance between the two inclusions is
d ¼ 0.01r1 and the orientation is b ¼ 01. Fig. 14 shows that
the stress and electric displacement distribution along the x-
axis. It can be observed that szx and Dx are continuous while
szy and Dy are discontinuous across the interface between the
matrix and inclusions. We also note that the stress and
electric displacement are not uniform within the two
inclusions. Fig. 15 shows the stress and electric displacement
distribution along the interface between the matrix and the
smaller inclusion. Fig. 16 shows the stress and electric
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displacement distribution along the interface between the
matrix and the larger inclusion. According to these curves, it
is found that the normal stress szr and electric displacement
Dr in the matrix and inclusion are continuous through the
interface due to the continuity requirement. The present
results agree very well with the Wang and Shen’s results [26].

It is noted that only a fewer inclusions are considered in
the demonstrate examples. For large-scale problems (e.g.,
more than 20 inclusions), fast algorithm [13] is required on
the limitation of PC hardware. This is our future study.

5. Conclusions

The present work not only demonstrated an elegant
method for solving boundary value problems but also
understood the interesting coupling behaviors between
mechanical and electrical fields that have not been studied
previously by using BIE. It was shown that the concentration
behavior of stress and electric fields depends on the distance
between two piezoelectric inclusions, the mismatch in the
material constants and the magnitude of mechanical and
electromechanical loadings. Singularity free and boundary-
layer effect free are the main gains using the present
formulation as well as the exponential convergence. The
present study is useful in designing piezoelectric composites
and in understanding the coupling effects of two inclusions.
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Appendix. Calculation for the forcing term

According to the constitutive equation due to the
coupling behavior in Eq. (4), the displacement and traction
fields in the infinite medium due to the far-field shear
s1zx ; s1zy and electric field E1x ; E1y in Fig. 2(c) yield

w1 ¼
s1zx þ eM15E1x

cM44
xþ

s1zy þ eM15E1y

cM44
y, (A.1)

t1 ¼
qw1

qn
¼ �

s1zx þ eM15E1x
cM44

nx þ
s1zy þ eM15E1y

cM44
ny

 !
,

(A.2)

where the unit outward normal vector on the boundary
is n ¼ (nx, ny). By comparing Eq. (20) with the first row
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of Eq. (33), we have

af g ¼ TM
� �

w1f g � UM
� �

t1f g. (A.3)

For the circular boundary which the original system is
located, the boundary conditions due to the far-field shear
and electric field are

w11 ¼
s1zx þ eM15E1x

cM44
r1 cos y1 þ

s1zy þ eM15E1y

cM44
r1 sin y1,

(A.4)

t11 ¼ �
s1zx þ eM15E1x

cM44
cos y1 þ

s1zy þ eM15E1y

cM44
sin y1

 !
.

(A.5)

Considering the boundary condition, due to the far-field
shear and electric field, on the kth circular boundary with
respect to the observer system, we have

w1k ¼
s1zx þ eM15E1x

cM
44

ðex þ rk cos ykÞ

þ
s1zy þ eM15E1y

cM44
ðey þ rk sin ykÞ, ðA:6Þ
t1k ¼
s1zx þ eM15E1x

cM44
cos yk þ

s1zy þ eM15E1y

cM44
sin yk

 !
, (A.7)

where ex and ey, respectively, denote the eccentric distance
of kth inclusion in the x and y direction. By comparing Eq.
(A.5) with (A.7), we find that tN can be described in any
observer system without any change, where yk denotes the
polar angle in the adaptive observer coordinate system. For
the forcing term {b} due to the far-field electric field
without the coupling behavior, it can be obtained in a
similar way as the forcing term {a}.
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