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Abstract

In this paper, we derive the null-field integral equation for a medium containing circular cavities with arbitrary radii and positions under

uniformly remote shear. To fully capture the circular geometries, separate expressions of fundamental solutions in the polar coordinate and Fourier

series for boundary densities are adopted. By moving the null-field point to the boundary, singular integrals are transformed to series sums after

introducing the concept of degenerate kernels. The solution is formulated in a manner of a semi-analytical form since error purely attributes to the

truncation of Fourier series. The two-hole problems are revisited to demonstrate the validity of our method. The bounded-domain approaches

using either displacement or stress approaches are also employed. The proposed formulation has been generalized to multiple cavities in a

straightforward way without any difficulty.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Researchers and engineers have paid much attention on

the development of boundary integral equations (BIEs) and

boundary element method (BEM) since Rizzo [15] proposed a

numerical treatment for elastostatics. Most of the efforts have

been focused on the singular boundary integral equation for

problems with ordinary boundaries. In some situations, the

singular boundary integral equation is not sufficient, e.g.

degenerate boundary, fictitious frequency and spurious

eigenvalue. Therefore, the hypersingular equation is required.

The role of hypersingularity in computational mechanics has

been examined in the review article of Chen and Hong [5]. In

the past, several regularizations for singularity and hypersin-

gularity were offered to handle it in direct and indirect ways.

Hong and Chen [4] have developed the theory of dual boundary

integral equation method (BIEM) and dual BEM with

hypersingular kernels. The analytical formula reveals the

jump behavior of double layer potentials. How to determine

accurately the free terms has received more attentions in the
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past decade. Two conventional approaches were employed to

regularize the singular and hypersingular integrals. First,

Guiggiani [9] has derived the free terms for Laplace and

Navier equations using bump approach in Fig. 1 (a). Second,

Gray and Manne [8] have employed a limiting process to

ensure a unique solution from an interior point to boundary in

Fig. 1 (b). In the present approach, we employed the degenerate

kernel for the two-point fundamental solution in the problems

with circular boundaries as shown in Fig. 1 (c).

More recently, Honein et al. have solved problems of two

arbitrary circular holes or rigid inclusions [10–12] of different

shear moduli under uniformly remote shear. They have

introduced the Möbius transformations involving the complex

potential to analytically investigate the stress field around the

hole. The extension to more than two holes may have

difficulty in the Honein’s formulation. To search a systematic

method for multiple circular holes is not trivial. It is found

that the tangential shear stress sqz at the closest points of the

two circular holes tends to infinity as the two cavities

approach each other. Mogilevskaya and Crouch [14] have

solved the problem of an infinite plane containing arbitrary

number of circular inclusions based on the complex singular

integral equation. In their analysis procedure, the unknown

tractions are approximated by using complex Fourier series.

The advantage of their method is that one can tackle a lot of

inclusions even inclusions touching one another. However, for

calculating an integral over a circular boundary, they did not
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Fig. 1. (a) Bump contour, (b) Limiting process, (c) Present method.
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express the fundamental solution using local polar coordi-

nates. By collocating the null-field point on the boundary, the

singular integral can be easily determined using series sums in

our formulation due to the introduction of degenerate kernels.

Since the analytical solution for more than two cavities may

encounter difficulty, several numerical approaches have been

employed, e.g. complex variable boundary element method

(CVBEM) by Chou [7] and Ang and Kang [1]. The CVBEM

was primarily introduced by Hromadka and Lai [13] for

solving the Laplace problems in an infinite domain. In 1997,

Chou extended the work of Hromadka to the multiply

connected domain in an infinite plane. The antiplane problem

with holes can be formulated in terms of derivatives of

displacement. Thus, the stresses around the hole had been

obtained directly without resource to numerical differentiation.

Recently, Ang and Kang [1] developed a general formulation

for solving the second-order elliptic partial differential

equation for a multiply-connected region in a different version

of CVBEM. The Cauchy integral formulae are offered to solve

the exterior boundary value problem [2]. By introducing the

CVBEM, Chou [7] and Ang and Kang [1] have revisited the

problems with two circular holes whose centers lie on the x

axis investigated by Honein et al.. Bird and Steele [3] used a
Fourier series procedure to solve the antiplane elasticity

problems in Honein’s paper [11]. To approximate the Honein’s

infinite problem, an equivalent bounded-domain approach with

stress applied on the outer boundary was utilized. A shear

stress srz on the outer boundary is used in place of a stress s32

at infinity to approach the Honein’s results as the radius

becomes large.

Since the cavity or inclusion is circular, we may wonder

why not using the degenerate kernels in the polar coordinate

and Fourier series to best fit the geometry. In this paper, a

semi-analytical approach is successfully developed to carry

out the solution of the problem under antiplane shear. The

mathematical formulation is derived by using degenerate

kernels for the fundamental solution and Fourier series

expansions for the boundary densities in the null-field integral

equation. Then, it is reduced to a linear algebraic system after

collocating points on each circular boundary and substituting

the boundary conditions. The unknown coefficients in the

algebraic system can be determined. Furthermore, arbitrary

number of circular holes can be treated by using the present

method without any difficulty. A general purpose program for

arbitrary number of holes with various radii and different

positions was developed.
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2. Formulation of the problem

The displacement field of the antiplane deformation is

defined as:

u Z v Z 0; w Z wðx; yÞ; (1)

where w is the only nonvanishing component of displacement

with respect to the Cartesian coordinate which is a function of x

and y. For a linear elastic body, the stress components are

s13 Z s31 Z m
vw

vx
; (2)

s23 Z s32 Z m
vw

vy
; (3)

where m is the shear modulus. The equilibrium equation can be

simplified to

vs31

vx
C

vs32

vy
Z 0: (4)

Thus, we have

v2w

vx2
C

v2w

vy2
Z V2w Z 0: (5)

What is taken into consideration is an infinite medium

subject to N traction-free circular holes bounded by the Bk

contour and kZ1, 2, ., N as shown in Fig. 2. The medium is

under uniformly remote shear stress sN
31 Z0, sN

32 Zt at infinity

or equivalently under the displacement

wN Z
ty

m
: (6)

The total stress field in the medium is made to be

decomposed into

s31 Z s
s
31 Cs

N
31; (7)

s32 Z ss
32 CsN

32; (8)
Fig. 2. Infinite antiplane problem with arbitrary traction-free circular holes.
and the total displacement can be given as

w Z ws CwN; (9)

where the superscript “s” denotes the part needed to be solved

after decomposition. Therefore, the antiplane problem is

reduced to find the displacement ws which satisfies the Laplace

equation and the Neumann boundary conditions that will be

elaborated on later. The problem can be converted into the

solution of the Laplace problem for ws:

V2wsðxÞ Z 0; x2D; (10)

and the traction-free condition results in the following

Neumann boundary condition

vwsðxÞ

vn
ZK

t

m
ny; x2Bk; (11)

where the unit outward normal vector on the hole is nZ(nx, ny).

It is convenient to display the stress components in the polar

coordinate since the fundamental solutions are separated in the

system. The shear stress components, srz and sqz, can be

superimposed by using s31 and s32

srz Z m
vw

vn
; (12)

sqz Z m
vw

vt
; (13)

where n and t are the normal and tangent directions. Before

determining srz and sqz on the interior point, we should

calculate ss
31 and ss

32 by implementing the hypersingular

equation in the real computation. For shear stress sqz on the

boundary, the same procedure of vector decomposition is

required.

In order to avoid decomposing the w field into two parts,

Bird and Steele [3] have used a bounded-domain approach

with the equivalent stress srzZsin q on the artificial far-away

boundary to simulate the Honein’s unbounded problem under

the remote shear. The stress srz applied on the artificial

boundary is equivalent to the Neumann boundary condition

vw

vn
Z Vw$n Z

1

m
srz Z

1

m
sin q on B0 (14)

where B0 is the artificial far-away boundary bounded by a

circle of radius R0. For all the inner boundaries, traction-free

conditions for vw
vn

instead of Eq. (11) are specified. Not only

the equivalent stress [3] but also the equivalent displacement

in the present paper on the artificial boundary are alternatives

to solving the problems by using the bounded-domain

approach in place of the infinite plane where

wðx; yÞjðx;yÞ2R0
ZR0 sin q. In the following cases, only Case

3 is solved by the equivalent displacement and stress

approaches.



Fig. 3. Graph of the separate expression of fundamental solution where the

source s located at RZ10.0 and qZp/3.
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3. Solution procedures

3.1. Dual boundary integral equations and dual null-field

integral equations

We apply the Fourier series expansions to approximate the

potential ws and its normal derivative on the boundary

wsðskÞ Z ak
0 C

XN

nZ1

ðak
ncosnqk Cbk

nsinnqkÞ;

! sk 2Bk; k Z 1; 2;/;N;

(15)

tsðskÞ Z pk
0 C

XN

nZ1

ðpk
n cos nqk Cqk

n sin nqkÞ;

! sk 2Bk; k Z 1; 2;/;N;

(16)

where ts(sk)Z
vwsðskÞ

vns
, ak

n, bk
n, pk

n and qk
n (nZ0, 1, 2, .) are the

Fourier coefficients and qk is the polar angle. The integral

equation for the domain point can be derived from the third

Green’s identity [5], we have

2pwsðxÞ Z

ð
B

Tðs; xÞwsðsÞdBðsÞ

K

ð
B

Uðs; xÞtsðsÞdBðsÞ; x2D;

(17)

2p
vwsðxÞ

vnx

Z

ð
B

Mðs; xÞwsðsÞdBðsÞ

K

ð
B

Lðs; xÞtsðsÞdBðsÞ; x2D;

(18)

where s and x are the source and field points, respectively, B is

the boundary, D is the domain of interest, ns and nx denote the

outward normal vector at the source point s and field point x,

respectively, and the kernel function U(s, x)Zln r, (rhjx-sj), is

the fundamental solution which satisfies

V2Uðs; xÞ Z 2pdðxKsÞ; (19)

in which d (x-s) denotes the Dirac-delta function. The other

kernel functions, T (s, x), L (s, x) and M (s, x), are defined by

Tðs; xÞh
vUðs; xÞ

vns

; Lðs; xÞh
vUðs; xÞ

vnx

;

Mðs; xÞh
v2Uðs; xÞ

vnsvnx

;

(20)

By collocating x outside the domain (x2Dc), we obtain the

dual null-field integral equations as shown below

0 Z

ð
B

Tðs; xÞwsðsÞdBðsÞK

ð
B

Uðs; xÞtsðsÞdBðsÞ; x2Dc; (21)

0 Z

ð
B

Mðs; xÞwsðsÞdBðsÞK

ð
B

Lðs; xÞtsðsÞdBðsÞ; x2Dc; (22)
where Dc is the complementary domain. Based on the

separable property, the kernel function U(s, x) can be expanded

into degenerate form by separating the source points and field

points in the polar coordinate [6]:

Uðs;xÞZ

UiðR;q;r;fÞZ ln RK
XN

mZ1

1

m

r

R

0
@

1
A

m

cos mðqKfÞ; RRr

UeðR;q;r;fÞZ ln rK
XN

mZ1

1

m

R

r

0
@

1
A

m

cos mðqKfÞ; rOR

;

8>>>>>><
>>>>>>:

(23)

where the superscripts “i” and “e” denote the interior (ROr)

and exterior (rOR) cases, respectively. The origin of the

observer system for the degenerate kernel is (0, 0). Fig. 3 shows

the graph of separate expressions of fundamental solutions

where source point s located at RZ10.0, qZp/3. By setting the

origin at o for the observer system, a circle with radius R from

the origin o to the source point s is plotted. If the field point x

is situated inside the circular region, the degenerate kernel

belongs to the interior case Ui; otherwise, it is the exterior case.

After taking the normal derivative with respect to Eq. (23), the

T(s, x) kernel can be derived as

Tðs;xÞZ

TiðR;q;r;fÞZ
1

R
C

XN

mZ1

rm

RmC1

0
@

1
Acos mðqKfÞ; ROr

TeðR;q;r;fÞZK
XN

mZ1

RmK1

rm

0
@

1
Acos mðqKfÞ; rOR

;

8>>>>>><
>>>>>>:

(24)

and the higher-order kernel functions, L(s, x) and M(s, x), are

shown below



Fig. 4. (a) Sketch of the null-field integral equation in conjunction with the

adaptive observer system, (b) Sketch of the boundary integral equation for

domain points in conjunction with the adaptive observer system.
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Lðs;xÞZ

LiðR;q;r;fÞZK
XN

mZ1

rmK1

Rm

0
@

1
Acos mðqKfÞ; ROr

LeðR;q;r;fÞZ
1

r
C

XN

mZ1

Rm

rmC1

0
@

1
Acos mðqKfÞ; rOR

;

8>>>>>><
>>>>>>:

(25)

Mðs;xÞZ

MiðR;q;r;fÞZ
XN

mZ1

mrmK1

RmC1

0
@

1
Acos mðqKfÞ; RRr

MeðR;q;r;fÞZ
XN

mZ1

mRmK1

rmC1

0
@

1
Acos mðqKfÞ; rOR

:

8>>>>>><
>>>>>>:

(26)

Since the potential resulted from T(s, x) and L(s, x) kernels

are discontinuous cross the boundary, the potentials of T(s, x)

for R/rC and R/r- are different. This is the reason why RZ
r is not included in expressional degenerate kernels of T(s, x)

and L(s, x) in Eqs. (24) and (25).

3.2. Adaptive observer system

After collocating points in the null-field integral equation

of Eq. (21), the boundary integrals through all the circular

contours are required. Since the boundary integral equations

are frame indifferent, i.e. objectivity rule, the observer system

is adaptively to locate the origin at the center of circle in the

boundary integrals. Adaptive observer system is chosen to

fully employ the property of degenerate kernels. Fig. 4 (a) and

(b) show the boundary integration for the circular boundaries

in the adaptive observer system. It is worthy noted that the

origin of the observer system is located on the center of the

corresponding circle under integration to entirely utilize the

geometry of circular boundary for the expansion of degenerate

kernels and boundary densities. The dummy variable in the

circular integration is angle (q) instead of radial coordinate

(R).

3.3. Linear algebraic system

By moving the null-field point xj to the jth circular boundary

in the limit sense for Eq. (21) in Fig. 4(a), we have

0 Z
XN

kZ0

ð
Bk

TiðR; q; rj;fjÞw
sðR; qÞdBkðR; qÞ

K
XN

kZ0

ð
Bk

UiðR; q; rj;fjÞt
sðR; qÞdBkðR; qÞ; xðrj;fjÞ2Dc;

(27)

where N is the number of inner circular holes. If the domain is

unbounded, the outer boundary B0 is a null set. Note that the

kernels Ui and Ti are assumed in the degenerate form given by

Eqs. (23) and (24), respectively while the boundary densities ws

and ts are applied in the Fourier series expansion forms given by

Eqs. (15) and (16), respectively. Then, the integrals multiplied
by separate expansion coefficients in Eq. (27) are non-singular

and the limit of the null-field point to the boundary is trivial.

Thus, the collocation point x(rj, fj) in the discretized Eq. (27)

can be considered on the boundary Bj, too. In contrast to the

standard discretized BIE formulation with nodal unknowns of

the physical boundary densities ws and ts, now the degrees of

freedom are given by coefficients employed in the Fourier

expansions of these densities. It is found that the compatible

relationship of the boundary unknowns is equivalent by moving

either the domain point or the null-field point to the boundary in

different directions. For clarity, we design a simple case of 2-D

circular region to demonstrate the validity of the present

formulation in Appendix A. It is noted that the integration path is

counterclockwise for the outer circle. Otherwise, it is clockwise.

In the Bk integration, we set the origin of the observer system to

collocate at the center ck to fully utilize the degenerate kernels

and Fourier series. By collocating the null-field point on the

boundary, a linear algebraic system is obtained

½U�ftsg Z ½T�fwsg; (28)

where [U] and [T] are the influence matrices with a dimension of

(NC1)(2MC1) by (NC1)(2MC1), {ws} and {ts} denote the



Table 1

Comparisons of the present method and conventional BEM

Boundary density discretization Auxiliary system Formulation Observer system Singularity

Fourier series

P
re

se
nt

 m
et

ho
d

Degenerate kernel Null-field integral

equation

Adaptive observer

system

No principal value

Constant element

C
on

ve
nt

io
na

l B
E

M

Fundamental solution Boundary integral

equation

Fixed observer system Principal value

(C.P.V., R.P.V.

and H.P.V.)

where C.P.V., R.P.V. and H.P.V. are the Cauchy principal value, Riemann principal value and Hadamard principal value, respectively

Fig. 5. Vector decomposition for the potential gradient in the hypersingular

equation.
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column vectors of Fourier coefficients with a dimension of

(NC1)(2MC1) by 1 in which [U], [T], {ws} and {ts} can be

defined as follows:

½U� Z

U00 U01 / U0N

U10 U11 / U1N

« « 1 «

UN0 UN1 / UNN

2
66664

3
77775;

½T� Z

T00 T01 / T0N

T10 T11 / T1N

« « 1 «

TN0 TN1 / TNN

2
66664

3
77775;

(29)

fwsg Z

ws
0

ws
1

ws
2

«

ws
N

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
; ftsg Z

ts
0

ts
1

ts
2

«

ts
N

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
; (30)

where the vectors fws
kg and fts

kg are in the form of

fak
0 ak

1 bk
1 / ak

M bk
Mg

T and fpk
0 pk

1 qk
1 / pk

M qk
Mg

T ,

respectively; the first subscript “j” (jZ0, 1, 2, . N) in [Ujk]

and [Tjk] denotes the index of the jth circle where the collocation

point is located and the second subscript “k” (kZ0, 1, 2, . N)

denotes the index of the kth circle where boundary data fws
kg or

fts
kg are specified, N is the number of circular holes in the domain
and M indicates the truncated terms of Fourier series.

The coefficient matrix of the linear algebraic system is

partitioned into blocks, and each off-diagonal block corresponds

to the influence matrices between two different circular

cavities. The diagonal blocks are the influence matrices due to

itself in each individual hole. After uniformly collocating the

point along the kth circular boundary, the submatrix can be

written as



ðf1Þ UMs
jk ðf1Þ

ðf2Þ UMs
jk ðf2Þ

ðf3Þ UMs
jk ðf3Þ

«

f2MÞ UMs
jk ðf2MÞ

2MC1Þ UMs
jk ðf2MC1Þ

3
777777777777775

; ð31Þ

1Þ TMs
jk ðf1Þ

2Þ TMs
jk ðf2Þ

3Þ TMs
jk ðf3Þ

«

2MÞ TMs
jk ðf2MÞ

C1Þ TMs
jk ðf2MC1Þ

3
777777777777775

: ð32Þ
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½Ujk� Z

U0c
jk ðf1Þ U1c

jk ðf1Þ U1s
jk ðf1Þ / UMc

jk

U0c
jk ðf2Þ U1c

jk ðf2Þ U1s
jk ðf2Þ / UMc

jk

U0c
jk ðf3Þ U1c

jk ðf3Þ U1s
jk ðf3Þ / UMc

jk

« « « 1 «

U0c
jk ðf2MÞ U1c

jk ðf2MÞ U1s
jk ðf2MÞ / UMc

jk ð

U0c
jk ðf2MC1Þ U1c

jk ðf2MC1Þ U1s
jk ðf2MC1Þ / UMc

jk ðf

2
666666666666664

½Tjk� Z

T0c
jk ðf1Þ T1c

jk ðf1Þ T1s
jk ðf1Þ / TMc

jk ðf

T0c
jk ðf2Þ T1c

jk ðf2Þ T1s
jk ðf2Þ / TMc

jk ðf

T0c
jk ðf3Þ T1c

jk ðf3Þ T1s
jk ðf3Þ / TMc

jk ðf

« « « 1 «

T0c
jk ðf2MÞ T1c

jk ðf2MÞ T1s
jk ðf2MÞ / TMc

jk ðf

T0c
jk ðf2MC1Þ T1c

jk ðf2MC1Þ T1s
jk ðf2MC1Þ / TMc

jk ðf2M

2
666666666666664

Although both the matrices in Eqs. (31) and (32) are not

sparse, it is found that the higher order harmonics, the

lower influence coefficients in numerical experiments. It is

noted that the superscript “0s” in Eqs. (31) and (32)

disappears since sin (q)Z0. The element of [Ujk] and [Tjk]

are defined respectively as

Unc
jk ðfmÞ Z

ð
Bk

Uðsk; xmÞcosðnqkÞRkdqk;

n Z 0; 1; 2;/;M; m Z 1; 2;/; 2m C1;

(33)

Uns
jk ðfmÞ Z

ð
Bk

Uðsk; xmÞsinðnqkÞRkdqk;

n Z 1; 2;/;M; m Z 1; 2;/; 2M C1;

(34)

Tns
jk ðfmÞ Z

ð
Bk

Tðsk; xmÞcosðnqkÞRkdqk;

n Z 0; 1; 2;/;M; m Z 1; 2;/; 2M C1;

(35)

Tns
jk ðfmÞ Z

ð
Bk

Tðsk; xmÞsinðnqkÞRkdqk;

n Z 1; 2;/;M; m Z 1; 2;/; 2M C1;

(36)

0 18
Lðs;xÞZ

LiðR;q;r;fÞZK
XN

mZ1

rmK1

Rm
@ Acos mðqKfÞcosðzKxÞK

LeðR;q;r;fÞZ
1

r
C

XN

mZ1

Rm

rmC1

0
@

1
Acos mðqKfÞcosðzK

>>>>>>><
>>>>>>>:
where k is no sum and fm is the polar angle of the

collocating points xm along the boundary. By rearranging

the known and unknown sets, the unknown Fourier

coefficients are determined. Eq. (21) can be calculated by

employing the relations of trigonometric function and the

orthogonal property in the real computation. Only the finite

M terms are used in the summation of Eqs. (15) and (16).

After obtaining the unknown Fourier coefficients, the origin

of observer system is set to ck in the Bk integration as

shown in Fig. 4 (b) to obtain the interior potential by

employing Eq. (17). The differences between the present

formulation and the conventional BEM are listed in Table 1.
3.4. Vector decomposition technique for the potential

gradient in hypersingular equation

Eq. (18) shows the normal derivative of potential for domain

points, special treatment is considered here. Potential gradient

on the boundary is required to calculate for sqz. For the

nonconcentric cavities, special treatment for the potential

gradient should be taken care as the source point and field point

locate on different circular boundaries. As shown in Fig. 5, the

normal direction on the boundary (1, 1’) should be super-

imposed by the radial derivative (3, 3’) and angular derivative

(4, 4’). We called this treatment “vector decomposition

technique”. According to the concept of vector decomposition

technique, Eqs. (25) and (26) can be modified to

XN

mZ1

rmK1

Rm

0
@

1
Asin mðqKfÞcos

p

2
Kz Cx

0
@

1
A; ROr

xÞK
XN

mZ1

Rm

rmC1

0
@

1
Asin mðqKfÞcos

p

2
Kz Cx

0
@

1
A; rOR

; ð37Þ



xÞK
XN

mZ1

mrmK1

RmC1

0
@

1
Asin mðqKfÞcos

p

2
Kz Cx

0
@

1
A; RRr

xÞK
XN

mZ1

mRmK1

rmC1

0
@

1
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where z and x are shown in Fig. 5. For the special case, the circles

with respect to the same origin of observer, the potential gradient

is derived free of special treatment since zZx.

4. Illustrative examples and discussions

What is being discussed here are the problems of two

circular cavities, whose centers lie on the line joining the two
Fig. 6. (a) Two circular holes with centers on the line making 45 deg
centers making 45 degrees and touch each other solved by

Honein et al.. All the numerical results are given below by

using the twenty terms of Fourier series (MZ20) except for

Case 2 of interacting cavities. The extension to three holes is

also conducted.

Case 1: Two circular holes lie on the line joining the two

centers making 45 degrees
rees, (b) sqz around the hole of radius a1, (c) Honein’s data [11].



Fig. 7. (a) Two circular holes touching each other, (b) sqz around the hole of radius a1, (c) Honein’s data [11].

Fig. 8. (a) A bounded-domain approach using equivalent displacement applied on the remote boundary of radius R0, (b) A bounded-domain approach using

equivalent stress applied on the remote boundary of radius R0. (c) sqz around the hole of radius a1 using equivalent stress approach, (d) Steele’s data [3], (e) sqz

around the hole of radius a1 using equivalent displacement approach, (f) Honein’s data [11], (g) Convergence rate of stress sqz at qZ458 versus R0 in the equivalent

displacement and stress approaches.
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Fig. 8 (continued)
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Figure 6 (a) shows the geometry of the two circles whose

radii are a1 and a2 (a2Z2a1). In Fig. 6 (b), the maximum stress

appears at qZp/4 as the holes are close to each other on the

line joining their centers. Our numerical results are compared

with the data of Honein’s results in Fig. 6 (c), good agreement

can be obtained.

Case 2: Two circular holes touching each other

The case of two holes touching each other is treated as Case

2 as shown in Fig. 7 (a). Figures 7 (b) and (c) show the graphs

of stress field around the circle centered at the origin. We see

that the stress is infinite at the neighbor point of the two circles.

Figure 7 (b) shows our solution by using different terms (MZ
10, 20, 30, 40). It is worthy noted that our data agree well with

the Honein’s data except the intersecting point as the numbers
of terms increases. Physically speaking, the geometry of the

two circles is like a peanut and the shear stress at qZ0C and

qZ2p- is discontinuous. However, the stresses at the closest

points have impulses due to the fact that they are continuous

when using the present method.

Case 3: Two equivalent bounded-domain approaches with

specified displacement or stress on the remote circular

boundary

The concept of equivalent bounded-domain approach to

approximating the results of infinite problems was reported in

Bird and Steele’s paper [3] by using the stress approach. Here,

the displacement approach as well as the stress approach is

considered as shown in Fig. 8 (a) and (b), respectively. Figure 8

(c) shows sqz along the boundary of small circle with the
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Fig. 9. (a) Parseval’s sum for the outer circle using the displacement approach, (b) Parseval’s sum for the circle of radius a1 using the displacement approach, (c)

Parseval’s sum for the circle of radius a2 using the displacement approach, (d) Parseval’s sum for the outer circle using the stress approach, (e) Parseval’s sum for the

circle of radius a1 using the stress approach, (f) Parseval’s sum for the circle of radius a2 using the stress approach.

Fig. 10. (a) Three circular holes with centers on the line making 45 degrees, (b)

sqz around the hole of radius a1 using the present formulation.
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equivalent stress which is applied on the remote circular

boundary. The results better match the Honein’s solutions than

those of Bird and Steele in Fig. 8 (d). Furthermore, the

displacement approach works well as shown in Fig. 8 (e). It is

quite clear to see that the results for the radius of the outer

boundary R0Z30.0 agree very well with those resulting from

infinite plane investigated by Honein et al. in Fig. 8 (f). The

relative error at qZp/4 of Bird and Steele’s data (O13%) is

greater than any one of our solution (!1%) using either

displacement or stress approach. The convergence of the stress

sqz versus the outer radius R0 is plotted in Fig. 8 (g). It is

interesting to find that both the two approaches converge to the

Honein’s solution of infinite domain in opposite directions. It can

be explained that the displacement approach makes the system

stiffer and these results in the upper bound solution. On the other

hand, the stress approach makes the system more flexible, so we

obtain the lower bound solution. Nevertheless, they converge to

the same solution. Furthermore, we adopted the Parseval’s sum to

examine how many terms of Fourier series are required for

ð2p

0

½wsðqÞ�2dq ^
_

2pa2
0 Cp

XM

nZ1

ða2
n Cb2

nÞ: (39)

According to Eq. (39), we plotted the Parseval’s sum versus M

(numbers of Fourier series) for each circle by using displacement

and stress approaches in Fig. 9 (a)–(f), respectively. It indicates

that twenty terms are required.

Case 4: Three circular holes lie on the line joining the

centers making 45 degrees

Fig. 10 (a) shows the positions of the three holes. In Fig. 10

(b), the stress sqz on the hole of radius a1 at the closest points

becomes larger as the distance d is very small.
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5. Conclusions

A semi-analytical formulation for multiple arbitrary

circular holes using degenerate kernels and Fourier series

in an adaptive observer system was developed. The

singularity and hypersingularity were avoided after introdu-

cing the concept of degenerate kernels. Two examples with

two circular holes investigated by Honein et al. were

revisited. Furthermore, the bounded-domain approaches

using either the equivalent displacement or equivalent stress

were proposed. Good agreements were made after comparing

with the Honein’s data. Regardless of the number of circles,

the proposed method can offer good results. The three-hole

problem was successfully demonstrated to see the validity of

the present method. The “semi-analytical” result of three-

cavity problem may provide a datum for comparison when

other numerical methods are used. Moreover, our method

presented here can be applied to circular problems which

satisfy the Laplace equation.
Appendix A

To demonstrate the validity of the present formulation, the

compatible relationship of the boundary data can be derived in

two ways by moving the point to the boundary. One is from the

boundary integral equation for the domain point. The other is

the null-field integral equation. By moving either the domain
2pK2p 0 0 / 0
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9>>>>>>>>=
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:

point or the null-field point to the boundary in the different

directions, we will prove the equivalence for the compatible

relationship of the boundary data. A 2-D case is considered

below.
The 2-D circular region is shown in Fig. 11. First, we use

the null-field integral equation of Eq. (27) to determine the

unknown boundary data. By moving x to the boundary of rZ
1C and substituting the appropriate degenerate kernels in Eqs.

(23) and (24) into Eq. (27), we have
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(A1)

Similarly, we move the domain point in Eq. (17) to the

boundary of rZ1- and employ the appropriate degenerate

kernels. We obtain

0

0

0

«

0

KpÞsin mf

3
77777777775

a0

a1

b1

«

am

bm

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

(A2)

Both Eqs. (A1) and (A2) are found be the same. In the real

implenentation, we select the null-field integral since the

diagonal terms of Eq. (A1) is more simple than those of

Eq. (A2). It is noted that the singular matrices in Eqs. (A1)



Fig. 11. Laplace problem in 2-D region.

J.-T. Chen et al. / Engineering Analysis with Boundary Elements 30 (2006) 205–217 217
and (A2) can be explained as the rigid body solution for

the Neumann problem and the degenerate scale (so called

logarithmic capacity) for the Dirichelet problem.
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