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a b s t r a c t

The purpose of this paper is to present an analytical formulation to describe the free vibration of a

circular flexural plate with multiple circular holes by using the null field integral formulation, the

addition theorem and complex Fourier series. Owing to the addition theorem, all kernel functions are

represented in the degenerate form and further transformed into the same polar coordinates centered

at one of circles, where the boundary conditions are specified. Thus, not only the computation of the

principal value for integrals is avoided but also the calculation of higher-order derivatives in the flexural

plate problem can be easily determined. By matching the specified boundary conditions, a coupled

infinite system of simultaneous linear algebraic equations is derived as an analytical model for the title

problem. According to the direct searching approach, natural frequencies are numerically determined

through the singular value decomposition (SVD) in the truncated finite system. After determining the

unknown Fourier coefficients, the corresponding mode shapes are obtained by using the direct

boundary integral formulations for the domain points. Several numerical results are presented. In

addition, the inherent problem of spurious eigenvalue using the integral formulation is investigated and

the SVD updating technique is adopted to suppress the occurrence of spurious eigenvalues. Excellent

accuracy, fast rate of convergence and high computational efficiency are advantages of the present

method thanks to its analytical features.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Circular plates with multiple circular holes are widely used in
engineering structures [1], e.g. missiles, aircraft, etc., either to
reduce the weight of the structure, to increase the range of
inspection or to satisfy other engineering applications. These
holes in a structure usually invoke natural frequency change and
loading capacity decrease. It is important to comprehend the
corresponding effects in the process of mechanical design.

As quoted by Leissa and Narita [2]: ‘‘The free vibrations of
circular plates have been of practical and academic interest for at
least a century and a half’’, over the past few decades, most of the
researches have focused on the analytical solutions for natural
frequencies of the circular or annular plates [3–6]. Recently some
researchers tried to extend the analysis of an annular plate [7,8] to
that of a plate with an eccentric circular hole. Laura et al. [8]
determined the natural frequencies of circular plate with an
eccentric circular hole by using the Rayleigh–Ritz variational
ll rights reserved.

ee), jtchen@mail.ntou.edu.tw
method where the assumed function does not satisfy the natural
boundary condition in the inner free edge. Lee and Chen [9,10]
proposed a semi-analytical approach to solve the free vibration
analysis of a circular plate with multiple holes by using the
indirect boundary integral method and the null field boundary
integral equation method (BIEM) and pointed out certain
insufficient accurate results in [8] after careful comparisons.

It is clear that unknowns of problem can be dramatically
reduced by using boundary element method (BEM) or BIEM in
comparison to the traditional domain type methods such as FDM
or FEM. For applications of the BEM on plate problems, readers
may consult with the review article [11]. By using the BIEM to
analytically solve the problem of a circular plate with multiple
circular holes, two questions need to be solved. One is the
improper integral in the boundary integral equation; the other is
that both field point and source point are not located on the same
circular boundary. These problems have been treated by using the
degenerate kernel and tensor transformation [9,10], respectively.
However, tensor transformation accompanied by higher order
derivatives, such as those in effective shear force, tends to
increase the complexity of computation and then affect the
accuracy of its solution [9]. In addition, the collocation method in
[9,10] belongs to a point-matching approach instead of an
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analytical derivation. It also increases the effort of computation
since boundary nodes for collocation are required.

This paper presents an analytical methodology to solve the free
vibration problem of a multiply-connected domain plate free of
collocation points and the tensor transformation. When consider-
ing a circular plate with multiple circular holes in the direct
boundary integral formulation, the transverse displacement field
is represented by all local coordinates centered at each center of
circles. By using the addition theorem, it can be transformed into
the same coordinate centered at one of circles, where the
boundary conditions are specified. By this way, the higher
derivative such as bending moments and effective shear forces
can be easily determined due to one variable involved. According
to the specified boundary conditions, a coupled infinite system of
simultaneous linear algebraic equations is obtained. In the finite
truncated system, the direct searching approach [12] is adopted to
determine the natural frequency through the singular value
decomposition (SVD) technique [13] by finding the zero determi-
nant of the matrix. After determining the unknown Fourier
coefficients, the corresponding mode shapes are obtained by
using the direct boundary integral equation for domain points.
The convergence analysis is performed on the terms of the
complex Fourier series. The proposed results of a circular plate
with three circular holes are compared with those of the semi-
analytical method [10] and of the FEM using the ABAQUS [14].
Moreover, the inherent problem of spurious eigenvalue using the
BEM is investigated and the SVD updating technique [10] is
employed to suppress the appearance of spurious eigenvalues.
2. Problem statement and a direct boundary integral
formulation

2.1. Problem statement of a plate eigenproblem

A uniform thin circular plate with H nonoverlapping circular
holes centered at the position vector Ok (k¼0, 1,y,H; O0 is the
position vector of the outer circular boundary of the plate) has a
domain O which is enclosed with boundary,

B¼
[H

k ¼ 0

Bk ð1Þ

as shown in Fig. 1, where Rk denotes the radius of the kth circle
and Bk is its corresponding boundary. The governing equation of
the free vibration for this flexural plate is expressed as

r4uðxÞ ¼ l4uðxÞ, xAO ð2Þ
Rj
Bj

o0

o1

oj
R0

oi
x ∈ΩC

B0

Bi

B1
R1

∇4 u (x) = �4 u (x)
x ∈Ω

Ri

Fig. 1. Problem statement for an eigenproblem of a circular plate with multiple

circular holes.
wherer4 is the biharmonic operator, u is the lateral displacement,
l4
¼o2r0h=D, l is the dimensionless frequency parameter, o is

the circular frequency, r0 is the volume density, h is the plate
thickness, D¼ Eh3=12ð1�m2Þ is the flexural rigidity of the plate, E

denotes the Young’s modulus and m is the Poisson’s ratio.
2.2. Direct boundary integral formulation

The integral representation for the plate problem can be
derived from the Rayleigh–Green identity [12] as follows:

uðxÞ ¼

Z
B

Uðs,xÞvðsÞdBðsÞ�

Z
B
Yðs,xÞmðsÞdBðsÞ

þ

Z
B

Mðs,xÞyðsÞdBðsÞ�
Z

B
Vðs,xÞuðsÞdBðsÞ, xAO ð3Þ

yðxÞ ¼
Z

B
Uyðs,xÞvðsÞdBðsÞ�

Z
B
Yyðs,xÞmðsÞdBðsÞ

þ

Z
B

Myðs,xÞyðsÞdBðsÞ�
Z

B
Vyðs,xÞuðsÞdBðsÞ, xAO ð4Þ

mðxÞ ¼

Z
B

Umðs,xÞvðsÞdBðsÞ�

Z
B
Ymðs,xÞmðsÞdBðsÞ

þ

Z
B

Mmðs,xÞyðsÞdBðsÞ�
Z

B
Vmðs,xÞuðsÞdBðsÞ, xAO ð5Þ

vðxÞ ¼

Z
B

Uvðs,xÞvðsÞdBðsÞ�

Z
B
Yvðs,xÞmðsÞdBðsÞ

þ

Z
B

Mvðs,xÞyðsÞdBðsÞ�
Z

B
Vvðs,xÞuðsÞdBðsÞ, xAO ð6Þ

where B is the boundary of the domain O, u(x), y(x), m(x) and v(x)
are the displacement, slope, moment and shear force. The
notations s and x mean the source and field points, respectively.
The kernel functions U(s,x), Y(s,x), M(s,x), V(s,x), Uy(s,x), Yy(s,x),
My(s,x) ,Vy(s,x), Um(s,x), Ym(s,x), Mm(s,x), Vm(s,x), Uv(s,x), Yv(s,x),
Mv(s,x) and Vv(s,x) in Eqs. (3)–(6) can be expanded to degenerate
kernels by separating the source and field points and will be
elaborated on later. The kernel function U(s,x) in Eq. (3):

Uðs,xÞ ¼
1

8l2D
Y0ðlrÞ�iJ0ðlrÞþ

2

p
K0ðlrÞ

� �
ð7Þ

is the fundamental solution which satisfies

r4Uðs,xÞ�l4Uðs,xÞ ¼ dðs�xÞ ð8Þ

where d(s�x) is the Dirac-delta function, Y0(lr) and K0(lr) are the
zeroth-order of the second-kind Bessel and modified Bessel
functions, respectively, J0(lr) is the zeroth-order of the first-kind
Bessel function, r�9s�x9 and i2¼�1. The other three kernel
functions, Y(s,x), M(s,x) and V(s,x) in Eq. (3) can be obtained by
applying the following slope, moment and effective shear
operators defined by

KY ¼
@ðUÞ

@n
ð9Þ

KM ¼�D mr2
ðUÞþð1�mÞ @

2ðUÞ

@n2

" #
ð10Þ

KV ¼�D
@

@n
r

2
ðUÞþð1�mÞ @

@t

@

@n

@

@t
ðUÞ

� �� �� �
ð11Þ

to the kernel U(s,x) with respect to the source point, where q/qn

and q/qt are the normal and tangential derivatives, respectively,
r2 means the Laplacian operator.
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Fig. 2. Degenerate kernel for U(s,x).
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2.3. Null-field integral equations

The null-field integral equations can be derived from boundary
integral equations of Eqs. (3)–(6) and by moving the field point
outside the domain (including the boundary point if exterior
degenerate kernels are properly adopted). They are explicitly
expressed as follows:

0¼

Z
B

Uðs,xÞvðsÞdBðsÞ�
Z

B
Yðs,xÞmðsÞdBðsÞ

þ

Z
B

Mðs,xÞyðsÞdBðsÞ�

Z
B

Vðs,xÞuðsÞdBðsÞ, xAOC
[ B ð12Þ

0¼

Z
B

Uyðs,xÞvðsÞdBðsÞ�

Z
B
Yyðs,xÞmðsÞdBðsÞ

þ

Z
B

Myðs,xÞyðsÞdBðsÞ�

Z
B

Vyðs,xÞuðsÞdBðsÞ, xAOC
[ B ð13Þ

0¼

Z
B

Umðs,xÞvðsÞdBðsÞ�

Z
B
Ymðs,xÞmðsÞdBðsÞ

þ

Z
B

Mmðs,xÞyðsÞdBðsÞ�

Z
B

Vmðs,xÞuðsÞdBðsÞ, xAOC
[ B ð14Þ

0¼

Z
B

Uvðs,xÞvðsÞdBðsÞ�

Z
B
Yvðs,xÞmðsÞdBðsÞ

þ

Z
B

Mvðs,xÞyðsÞdBðsÞ�

Z
B

Vvðs,xÞuðsÞdBðsÞ, xAOC
[ B ð15Þ

where OC is the complementary domain of O. It is noted that once
kernel functions are expressed in proper degenerate forms, which
will be elaborated in the next subsection, the field points can be
exactly located on the real boundary, that is xAOC

[B. Since the
four equations of Eqs. (12)–(15) in the plate formulation are
provided, there are 6 (C4

2 ) options for choosing any two equations
to solve the problem. To simply treat spurious eigenvalues,
Eqs. (12)–(14) are all employed to solve this plate problem.

2.4. Degenerate kernels and Fourier series for boundary densities

In the polar coordinates, the field point and source point can be
expressed as (r,f) and (R,y), respectively. By employing the
addition theorem [15], the kernel function U(s,x)is expanded in
the series form as follows:
U :

UIðs,xÞ ¼
1

8l2D

X1
m ¼ �1

fJmðlrÞ½YmðlRÞ�iJmðlRÞ�þ
2

p
ImðlrÞKmðlRÞgeimðf�yÞ, roR,

UEðs,xÞ ¼
1

8l2D

X1
m ¼ �1

fJmðlRÞ½YmðlrÞ�iJmðlrÞ�þ
2

p ImðlRÞKmðlrÞgeimðf�yÞ, rZR,

8>>>><
>>>>:

ð16Þ
where the superscripts ‘‘I’’ and ‘‘E’’ denote the interior and exterior
cases for U(s,x) degenerate kernel to distinguish roR and r4R,
respectively, as shown in Fig. 2. The degenerate kernels of Y(s,x),
M(s,x) and V(s,x) in the null-field boundary integral equations can be
obtained by applying the operators of Eqs. (9)–(11) to the degenerate
kernel U(s,x) in Eq. (16) with respect to the source point s.

In order to fully utilize the geometry of circular boundary and
to solve the multiply-connected problem, the displacement u(s),
slope y(s), moment m(s) and shear force v(s) along the circular
boundaries in the null-field integral equations can be expanded in
terms of complex Fourier series, respectively, as follows:

ukðskÞ ¼
X1

n ¼ �1

ak
neinyk , skABk, k¼ 0,. . .,H ð17Þ
yk
ðskÞ ¼

X1
n ¼ �1

bk
neinyk , skABk, k¼ 0,. . .,H ð18Þ

mkðskÞ ¼
X1

n ¼ �1

ck
neinyk , skABk, k¼ 0,. . .,H ð19Þ

vkðskÞ ¼
X1

n ¼ �1

dk
neinyk , skABk, k¼ 0,. . .,H ð20Þ

where ak
n, bk

n, ck
nand dk

n are the complex Fourier coefficients of the
kth circular boundary and yk is its polar angle, H is the number of
inner holes.
3. An analytical eigensolution for a circular plate with
multiple circular holes

For simplicity, a clamped circular plate (u0
¼y0
¼0) with H

circular holes subject to the free-traction boundary conditions
(mk
¼vk
¼0, k¼1,y,H) is demonstrated. Considering the null field

point near the circular boundary B0 and the geometrical relation
between this point and each circular boundary, substitution of the
proper degenerated kernel functions into Eq. (12) gives
0¼

Z
B0

UEðs0,x0Þv
0ðs0ÞdB0ðs0Þ�

Z
B0

YE
ðs0,x0Þm

0ðs0ÞdB0ðs0Þ

�
XH

k ¼ 1

Z
Bk

MEðsk,xkÞy
k
ðskÞdBkðskÞ�

Z
Bk

VEðsk,xkÞu
kðskÞdBkðskÞ

" #

ð21Þ

By substituting the degenerate kernels, such as Eq. (16), and
the boundary densities of Eqs. (17)–(20) into Eq. (21) in the
adaptive coordinate system [10], we have

0¼

Z
B0

1

8l2D

X1
m ¼ �1

JmðlR0Þ½Ymðlr0Þ�iJmðlr0Þ�,
� 
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Fig. 3. Notation of the Graf’s addition theorem for Bessel functions.
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þ
2

p ImðlR0ÞKmðlr0Þ

�
eimðf0�y0ÞÞ

X1
n ¼ �1

d0
neiny0

 !
dB0ðs0Þ

�

Z
B0

1

8lD

X1
m ¼ �1

(
JumðlR0Þ½Ymðlr0Þ�iJmðlr0�

 

þ
2

p IumðlR0ÞKmðlr0Þ

)
eimðf0�y0Þ

! X1
n ¼ �1

c0
neiny0

 !
dB0ðs0Þ

�
XH

k ¼ 1

�

Z
Bk

1

8l2

X1
m ¼ �1

(
JmðlrkÞ½a

Y
mðlRkÞ�iaJ

mðlRkÞ�

 "

þ
2

p
ImðlrkÞa

K
mðlRkÞ

)
eimðfk�ykÞ

! X1
n ¼ �1

bk
neinyk

 !
dBkðskÞ

þ

Z
Bk

1

8l2

X1
m ¼ �1

JmðlrkÞ½b
Y
mðlRkÞ�ibJ

mðlRkÞ�

n 

þ
2

p
ImðlrkÞb

K
mðlRkÞ

�
,eimðfk�ykÞÞ

X1
n ¼ �1

ak
neinyk

 !
dBkðskÞ� ð22Þ

where the (r0,f0), (r1,f),y,(rH,fH) are the coordinates for the
field point x with respect to each center of circles. From Eqs. (10)
and (11), the moment and the effective shear operators, aX

mðlrÞ
andbX

mðlrÞ are defined by, respectively,

aX
mðlrÞ ¼D ð1�mÞXumðlrÞr � ð1�mÞm

2

r2
8l2

� �
XmðlrÞ

� �
ð23Þ

bX
mðlrÞ ¼D m2ð1�mÞ7ðlrÞ2

h iXumðlrÞ
r2

�m2ð1�mÞXmðlrÞ
r3

� �
ð24Þ

where the upper (lower) signs refer to X¼ J, Y, (I, K), respectively.
The second order differential equations for these functions have
been used to simplify aX

mðlrÞ and bX
mðlrÞ .

By employing the analytical integration along each circular
boundary in the local coordinate and applying the orthogonal
property, Eq. (22) can be rewritten as

0¼
pR0

4l2D

X1
m ¼ �1

(
JmðlR0Þ½Ymðlr0Þ�iJmðlr0Þ�

þ
2

p ImðlR0ÞKmðlr0Þ

)
d0

meimf0

�
pR0

4lD

X1
m ¼ �1

(
JumðlR0Þ½Ymðlr0Þ�iJmðlr0Þ�

þ
2

p
IumðlR0ÞKmðlr0Þ

)
c0

meimf0

�
XH

k ¼ 1

�
pRk

4l2

X1
m ¼ �1

(
JmðlrkÞ½a

Y
mðlRkÞ�iaJ

mðlRkÞ�

"

þ
2

p
ImðlrkÞa

K
mðlRkÞ

)
bk

meimfk

þ
pRk

4l2

X1
m ¼ �1

(
JmðlrkÞ½b

Y
mðlRkÞ�ibJ

mðlRkÞ�

þ
2

p ImðlrkÞb
K
mðlRkÞ

)
ak

meimfk

#
ð25Þ

Based on Graf’s addition theorem for Bessel functions
given in [15,16], we can express the theorem in the following
form:

JmðlrkÞe
imfk ¼

X1
n ¼ �1

Jm�nðlrkpÞe
iðm�nÞykp JnðlrpÞe

infp ð26Þ

ImðlrkÞe
imfk ¼

X1
n ¼ �1

Im�nðlrkpÞe
iðm�nÞykp InðlrpÞe

infp ð27Þ
YmðlrkÞe
imfk ¼

X1
n ¼ �1

Ym�nðlrkpÞe
iðm�nÞykp JnðlrpÞe

infp , rporkp

X1
n ¼ �1

Jm�nðlrkpÞe
iðm�nÞykp YnðlrpÞe

infp , rp4rkp

8>>>><
>>>>:

ð28Þ

KmðlrkÞe
imfk ¼

X1
n ¼ �1

ð�1ÞnKm�nðlrkpÞe
iðm�nÞykp InðlrpÞe

infp , rporkp

X1
n ¼ �1

ð�1Þm�nIm�nðlrkpÞe
iðm�nÞykp KnðlrpÞe

infp , rp4rkp

8>>>><
>>>>:

ð29Þ

where (rp,fp) and (rk,fk) as shown in Fig. 3 are the polar
coordinates of a typical field point x with respect to Op and Ok,
respectively, which are the origins of two polar coordinate
systems and (rkp,ykp) are the polar coordinates of Op with
respect to Ok.

By using the addition theorem for Bessel functions Jm(lrk),
Ym(lrk) and Km(lrk), under the condition of r04rk0, Eq. (25) can
be expanded as follows:

0¼
pR0

4l2D

X1
m ¼ �1

JmðlR0Þ Ymðlr0Þ�iJmðlr0Þ
	 


þ
2

p ImðlR0ÞKmðlr0Þ

� �
d0

meimf0

�
pR0

4lD

X1
m ¼ �1

JumðlR0Þ Ymðlr0Þ�iJmðlr0Þ
	 


þ
2

p IumðlR0ÞKmðlr0Þ

� �
c0

meimf0

þ
XH

k ¼ 1

pRk

4l2

X1
m ¼ �1

(
½aY

mðlRkÞ�iaJ
mðlRkÞ�

X1
n ¼ �1

Jm�nðlrk0Þe
iðm�nÞyk0 Jnðlr0Þ

"

þ
2

pa
K
mðlRkÞ

X1
n ¼ �1

Im�nðlrk0Þe
iðm�nÞyk0 Inðlr0Þ

)
einf0 bk

m

�
pRk

4l2

X1
m ¼ �1

½bY
mðlRkÞ�ibJ

mðlRkÞ�
X1

n ¼ �1

Jm�nðlrk0Þe
iðm�nÞyk0 Jnðlr0Þ

(

þ
2

pb
K
mðlRkÞ

X1
n ¼ �1

Im�nðlrk0Þe
iðm�nÞyk0 Inðlr0Þ

)
einf0 ak

m

#
ð30Þ
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Furthermore, Eq. (30) can be rewritten as

0¼
X1

m ¼ �1

eimf0

*
A0

mðlr0Þd
0
mþB0

mðlr0Þc
0
m

þ
XH

k ¼ 1

X1
n ¼ �1

Ak
mnðlr0Þb

k
nþ

X1
n ¼ �1

Bk
mnðlr0Þa

k
n

" #+
ð31Þ

where

A0
mðlr0Þ ¼

pR0

4l2D
JmðlR0Þ½Ymðlr0Þ�iJmðlr0Þ�þ

2

p ImðlR0ÞKmðlr0Þ

� �
ð32Þ

B0
mðlr0Þ ¼�

pR0

4lD
JumðlR0Þ½Ymðlr0Þ�iJmðlr0Þ�þ

2

p IumðlR0ÞKmðlr0Þ

� �
ð33Þ

Ak
mnðlr0Þ ¼

pRk

4l2
eiðn�mÞyk0

(
Jn�mðlrk0ÞaJ

nðlRkÞ½Ymðlr0Þ�iJmðlr0Þ�

þ
2

p ð�1Þn�mIn�mðlrk0ÞaI
nðlRkÞKmðlr0Þ

)
ð34Þ

Bk
mnðlr0Þ ¼�

pRk

4l2
eiðn�mÞyk0

(
Jn�mðlrk0Þb

J
nðlRkÞ½Ymðlr0Þ�iJmðlr0Þ�

þ
2

p ð�1Þn�mIn�mðlrk0Þb
I
nðlRkÞKmðlr0Þ

)
ð35Þ

By differentiating Eq. (31) with respect to r0, the equation for
the slope y near the circular boundary B0 is given as

0¼
X1

m ¼ �1

eimf0

*
C0

mðlr0Þd
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where C0
mðlr0Þ, D0

mðlr0Þ, Ck
mnðlr0Þ and Dk

mnðlr0Þ can be obtained
by differentiating A0

mðlr0Þ, B0
mðlr0Þ, Ak

mnðlr0Þ and Bk
mnðlr0Þ in Eqs.

(32)–(35) with respective to r0.
Similarly, considering the null field point near the circular

boundary Bp (p¼1,y,H) and the geometrical relation between
this point and each circular boundary, substitution of the proper
degenerated kernel functions into Eq. (12) gives
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where q¼ I, p¼k; q¼E, pak.
By substituting the proper degenerate kernel functions and the

complex Fourier series into Eq. (37), employing the analytical
integration along each circular boundary, applying the orthogonal
property and then using the addition theorem, Eq. (37) yields
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By differentiating Eq. (38) with respect to rp, the equation of
the slope y near the circular boundary Bp is given as
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where Gp
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mnðlrpÞ are obtained by
differentiating Ep
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mðlrpÞ, Ek

mnðlrpÞ and Fk
mnðlrpÞ in Eqs.

(39)–(42) with respect to rp.
By setting rp to Rp and applying the orthogonal property of

feimfP g (p¼0, 1,y,H), Eqs. (31), (36), (38) and (43) yield
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for m¼0, 71, 72,y; n¼0, 71, 72,y; p¼1,y,H.
Eq. (44) is a coupled infinite system of simultaneous linear

algebraic equations which is an analytical model for the free
vibration of a circular plate with multiple circular holes. These
coefficients ak

m, bk
m, ck

m and dk
m(k¼0,y,H) are determined by

the boundary conditions. In the following computation, only the
finite M terms are used in Eq. (44). According to the direct-
searching scheme [12], the natural frequencies are determined by
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finding the drop of the minimum singular value of the influence
matrix of the truncated finite system from Eq. (44) by performing
the frequency sweep. Once the eigenvalues are found, the
associated mode shapes can be obtained by substituting the
corresponding boundary eigenvectors (i.e. the complex Fourier
series for the boundary density) into the boundary integral
equations.
10-2
4. Spurious eigenvalues for multiply-connected plate
eigenproblems using the BEM

For the 2-D multiply-connected problem [17], spurious
eigenvalues occur when using the BEM even though the
complex-valued kernel function is employed to solve the
eigenproblem. This may mislead the wrong judge of true
eigenvalues. Consequently, the SVD updating technique is
adopted to suppress the appearance of spurious eigenvalue. The
concept of this technique is to provide sufficient constrains to
overcome the rank deficiency of the system.

The approach to suppress the appearance of spurious frequency
is the criterion of satisfying Eqs. (12)–(15) at the same time.
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Fig. 4. A circular clamped plate with three circular free holes.
In Section 3, the first and the second null field equations (i.e. Eqs.
(12) and (13)) are employed in the formulation which is called the
UY formulation. To provide sufficient constrains, the UM formulation
is an alternative. Applying the moment operator of Eq. (23) to Eq.
(31) with respect to the field point r0 and to Eq. (38) with respect to
the field point rp we have, respectively,
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where P0
mðkr0Þ, Q0
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mnðkr0Þ, can be obtained by
applying the moment operator to A0
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By setting rp to Rp and applying the orthogonal property of

feimfP g (p¼0, 1,y,H), Eqs.(31), (45), (38) and (46) yield
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for m¼0, 71, 72,y; n¼0, 71, 72,y; p¼1,y,H, which is
called the UM formulation.

To obtain an overdetermined system, we can combine Eqs.
(44) and (47) by using the SVD technique of updating terms. In
other words, natural frequencies without spurious ones can be
obtained by using the SVD technique to the complete system
which includes Eqs. (44) and (47).
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Fig. 8. The lower five natural frequency parameters and mode shapes for a circular cla

analytical method and the FEM.
5. Numerical results and discussions

To demonstrate the validity of proposed method, the FORTRAN
code was implemented to determine natural frequencies and
modes of a circular plate with multiple circular holes. It was
independently solved by using the FEM (the ABAQUS software)
for comparison. The inner boundary is subject to the free
boundary condition. The thickness of plate is 0.002 m and the
Poisson’s ratio is m¼1/3. The general-purpose linear triangular
elements of type S3 were employed to model the flexural plate
problem by using the ABAQUS. Although the thickness of the
flexural plate is 0.002 m, these elements do not suffer from the
transverse shear locking based on the theoretical manual of
ABAQUS [14].

A circular plate with three holes is considered as shown in
Fig. 4. The radii of holes are 0.4, 0.2 and 0.2 m and the coordinates
of the centers are (0.5,0), (�0.3,0.4) and (�0.3,�0.4),
respectively, in the coordinate system with the origin at the
center of outer circle. The lower six natural frequency parameters
versus the numbers of terms of Fourier series N are shown in
Fig. 5. It can be seen that the proposed solution promptly
converges with few terms of Fourier series. By using the UY
formulation and thirteen terms of Fourier series (N¼13), the
minimum singular value of the influence matrix versus the
frequency parameter l is shown in Fig. 6. Since the direct-
searching scheme is used, the drop location indicates the possible
eigenvalue. The spurious eigenvalue of 7.9906 occurs when using
the UY formulation and it is found to be the true eigenvalue of a
clamped circular plate with a radius of 0.4 m. Fig. 7 shows the
minimum singular value of the influence matrix versus
the frequency parameter l by using three different approaches:
the UY formulation (dotted line), the UM formulation
(dot–dashed line) and the SVD updating technique (solid line). It
indicated that the spurious eigenvalue of 5.5811 occurs when
using the UM formulation and it is the true eigenvalue of a simply
3 4 5 
4.8158 6.0231 6.1064 

4.8158 6.0231 6.1071 

4.8162 6.0225 6.1113 

mped plate with three circular free holes by using the present method, the semi-



W.M. Lee, J.T. Chen / Engineering Analysis with Boundary Elements 34 (2010) 1064–1071 1071
supported circular plate with a radius of 0.4 m. It demonstrates
that the spurious eigenvalue can be filtered out by using the SVD
updating technique. The same problem is also solved by using the
ABAQUS and its model needs 308 960 elements in order to obtain
acceptable results for comparison. The lower five natural
frequency parameters and modes by using the present method,
the semi-analytical method [10] and the FEM are shown in Fig. 8.
Good agreement between the results of the present method and
those of the ABAQUS is observed.
6. Concluding remarks

The free vibration analysis of a circular plate with multiple
circular holes has been done in an analytical way. The proposed
method consists of the null field integral formulation, the addition
theorem and complex Fourier series. Owing to the addition
theorem, two critical issues for the improper integration in the
boundary integration equation and the higher order derivatives in
the multiply-connected domain problems were successively solved
in a novel way. By satisfying the boundary conditions, a coupled
infinite system of simultaneous linear algebraic equations was
derived with no approximation. By truncating the higher order
terms, natural frequencies and modes were numerically deter-
mined by using the SVD technique. The convergence analysis was
examined on the number of terms for the complex Fourier series. A
numerical example for a clamped circular plate with three circular
holes was presented. The proposed results match well with those
provided by the FEM where a huge number of elements were
required to obtain acceptable solutions for comparison. Numerical
results show that the SVD technique of updating terms can
successfully suppress the appearance of spurious eigenvalues.
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