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Green’s functions of Laplace problems containing circular boundaries are solved by using analytical and

semi-analytical approaches. For the analytical solution, we derive the Green’s function using the bipolar

coordinates. Based on the semi-analytical approach of image method, it is interesting to find that the

two frozen images for the eccentric annulus using the image method are located on the two foci in the

bipolar coordinates. This finding also occurs for the cases of a half plane with a circular hole and an

infinite plane containing two circular holes. The image method can be seen as a special case of the

method of fundamental solutions, which only at most four unknown strengths are required to be

determined. The optimal locations of sources in the method of fundamental solutions can be captured

using the image method and they are dependent on the source location and the geometry of problems.

Three illustrative examples were demonstrated to verify this point. Results are satisfactory.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

A number of physical and engineering problems governed by the
Lapalce equation in two independent variables, e.g., steady-state
heat conduction, electrostatic potential and fluid flow, were solved
using the conformal mapping to obtain an analytical solution.
Besides, we can formulate the same problems using special
curvilinear coordinates to obtain a solution, e.g., bipolar coordinates
and elliptic coordinates. Carrier and Pearson [1] employed the
bilinear transformation of conformal mapping to solve certain kinds
of potential problems. An eccentric case was mapped to an annular
domain through a bilinear transformation. For a polygonal shape, it
can also be mapped to a regular region using the Schwarz–
Christoffel transformation [2]. For a regular geometry, it is easy to
solve the Laplace problem using the polar or Cartesian coordinates.
Muskhelishvili [3] gave us a detailed description how an eccentric
annulus can be mapped into a concentric annulus using a simple
form of linear fractional transformation. Chen and Weng [4] also
used a similar method to solve eccentric annulus problems.
Although a bilinear transformation was used, the mapping functions
were not exactly the same between the one of Carrier and Pearson
[1] and that of Muskhelishvili [3]. Problems of eccentric annulus, a
half plane with a circular hole or an infinite plane containing two
circular holes were usually solved by using the bipolar coordinates
ll rights reserved.
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to derive the analytical solution [5]. Ling [6], Timoshenko and
Goodier [7], and Lebedev et al. [8] all presented an analytic solution
by using the bipolar coordinates for the torsion problem of an
eccentric bar. However, the mapping functions were not exactly the
same. One is a cotangent function [6], another is a hyperbolic
tangent function [8] and the other is a hyperbolic cotangent function
[7]. After the bipolar coordinate system is introduced, the problem
of special domain can be solved by using the separation of variables.
Although Carrier and Pearson [1], Muskhelishvili [3], Ling [6],
Timoshenko and Goordier [7] have solved the eccentric Laplace
problems, their approaches are very similar, but not identical. Chen
et al. [9] found that all the above-mentioned approaches can be
unified after suitable transformations, translation, rotation and
taking log in the conformal mapping. However, we will focus on
Green’s function instead of BVP without sources [10] in this paper.

Green’s function has been studied and applied in science and
engineering by mathematicians as well as engineers, respectively
[11]. A computer-friendly solution for the potential generated by
a point source in the ring-shaped region was studied by Melnikov
and Arman [12]. In order to derive Green’s function, Thomson [13]
proposed the concept of reciprocal radii to find the image source
to satisfy the homogeneous Dirichlet boundary condition using
the image method. Greenberg [14] and Riley et al. [15] employed
a trick to satisfy the boundary condition for two special points,
then the image location can be determined. Chen and Wu [16]
proposed a natural and logical way to find the location of
image and the strength by employing the degenerate kernel. The
image method is a classical approach for constructing Green’s
function. In certain cases, it is possible to obtain the exact
solution for a concentrated source in a bounded domain through
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Fig. 1. Geometry relation of bipolar coordinates.
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superimposing the infinite plane solution for the given source and
its image source. Although the scope of this method is limited, it
yields a great deal of insight into the solution when it works [17].
Here, we will extend to a semi-analytical approach once the
closed-form solution using the image method is not possible. Our
goal is to broaden the scope of applications on the image method.

In this paper, we have three issues. First, the image method is
seen as a special case of the method of fundamental solutions since
its image singularities locate outside the domain. Second, the
optimal locations of the method of fundamental solutions sources
are found to be dependent on the source location and the geometry
of the problems. Third, it is found that the two frozen images of the
image method are located on the two foci in the bipolar coordinates.
Using the bipolar coordinates and the image method, three cases, an
eccentric annulus, a half plane with a circular hole and an infinite
domain containing two circular holes, are solved. The bipolar
coordinates are reviewed for the eccentric ring in Section 2. In
Section 3, the image method is employed to derive Green’s function
for problems containing circular boundaries. Numerical results are
given in Section 4. Finally, a conclusion is drawn in Section 5.

2. Geometric characterization of the bipolar coordinates

The relation between the bipolar coordinates (x, Z) and the
Cartesian coordinates (x, y) [9] is defined by

xþ iy¼ iccot
1

2
z

� �
, z¼ xþ iZ, ð1Þ

where c is a positive constant. Eq. (1) yields

x¼ c
sinhZ

coshZ�cosx
, y¼ c

sinx
coshZ�cosx

, ð2Þ

where �prxop,�NoZoN. By eliminating x in Eq. (2), we
obtain a circle with the center at ðccothZ,0Þ and the radius ccschZ
as follows:

ðx�ccothZÞ2þy2 ¼ c2csch2Z: ð3Þ
Gðx,Z; x0,Z0Þ ¼

1

2p
ðZ1�ZÞðZ2�Z0Þ

Z1�Z2
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X1
n ¼ 1
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" #
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1
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Z1�Z2
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X1
n ¼ 1

sinhnðZ2�ZÞsinhnðZ1�Z0Þ

nsinhnðZ1�Z2Þ
cosnðx�x0Þ

" #
, Z0ZZZZ2,

8>>>>><
>>>>>:

ð13Þ
Elimination of Z from Eq. (2) results in the other circle with the
center at ð0, ccotxÞ and the radius of ccscx as follows:

x2þðy�ccotðxÞÞ2 ¼ c2csc2ðxÞ: ð4Þ

Denoting by ðG1,j1Þ and ðG2,j2Þ, we have

xþ iyþc¼G1eij1 , xþ iy�c¼G2eij2 , ð5Þ

Z¼ logðG1=G2Þ, x¼j2�j1: ð6Þ

It follows that a curve x¼constant is a family of circles passing
through the poles (7c, 0). The curve of Z¼constant shows a curve
for which G1/G2¼constant. The eccentric annulus is shown in
Fig. 1. The outer radius b, inner radius a and the distance d are
determined from Eq. (3) as follows:

a¼ ccschðZ1Þ, ð7Þ

b¼ ccschðZ2Þ, ð8Þ

d¼ c½cothðZ2Þ�cothðZ1Þ�: ð9Þ
To describe an eccentric annulus in the bipolar coordinates, the
three parameters, c, Z1 and Z2 are determined as follows:

c¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4þb4�2a2b2�2d2ða2þb2Þþd4

p
2d

, ð10Þ

Z1 ¼ sinh�1 c

a

� �
, ð11Þ

Z2 ¼ sinh�1 c

b

� �
, ð12Þ

where Z1 and Z2 denote the inner and outer circles, respectively.
Then, we can describe an eccentric annulus using the bipolar
coordinates. In this case, Green’s function was derived in terms of
the bipolar coordinates as shown below [5]
where ðx0,Z0Þ is the position of the source point.
3. Image method

For a problem of two-dimensional eccentric annulus as shown
in Fig. 2, Green’s function G(x, s) satisfies

r2Gðx, sÞ ¼ dðx�sÞ, xAO, ð14Þ

where O is the domain of interest, x is the field point and d
denotes the Dirac-delta function for the source at s. For simplicity,
Green’s function is considered to be subject to the homogeneous
Dirichlet boundary conditions. In this case, we obtain the location
of image point using the fundamental solution and matching the
boundary condition. The eccentric annulus can be seen as a
combination of interior and exterior problems as shown in Fig. 3.
The source point and the image point are s and s0 in Fig. 3,
respectively. By matching the homogeneous Dirichlet boundary
conditions for the interior or exterior boundaries, the position of
the image source is at (a2/Rs,y), where s¼(Rs,y). We consider the
fundamental solution U(x, s) for the infinite plane that is governed
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by

r
2Uðx,sÞ ¼ 2pdðx�sÞ: ð15Þ

The closed-form fundamental solution is given as

Uðx,sÞ ¼ lnr, ð16Þ

where r is the distance between s and x (r�9x�s9). Based on the
separable property of the addition theorem or the so-called
degenerate kernel, the fundamental solution U(x, s) can be
expanded into a series form by separating the field point x(r, f)
and the source point s(Rs, y) in the polar coordinates

Uðx,sÞ ¼

UIðr,f;Rs,yÞ ¼ lnRs�
X1

m ¼ 1

1

m

r
Rs

� �m

cosmðy�fÞ, RsZr,

UEðr,f;Rs,yÞ ¼ lnr�
X1

m ¼ 1

1

m

Rs

r

� �m

cosmðy�fÞ, Rsor:

8>>>><
>>>>:

ð17Þ

The image method can solve Green’s function of eccentric case
in a semi-analytical manner. Following the successive image
process, it is found that the final two image locations freeze at the
sc1 and sc2. For the eccentric case, the distance from the center of
s(0.75,0)
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Fig. 2. Problem sketch for Green’s function of an eccentric annulus.

Fig. 3. Sketch of position of image point (a) a
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Green’s functions for the two cases: (a) an eccentric annulus and
(b) a half plane containing a circular hole, can be represented by

Gðx,sÞ ¼
1

2p ln9x�s9� lim
N-1

XN

i ¼ 1

ðln9x�s4i�39þ ln9x�s4i�29�ln9x

"(

�s4i�19�ln9x�s4i9Þþc1ðNÞln9x�sc1
9þc2ðNÞln9x�sc2

9þeðNÞ
�)

,

ð20Þ

where s4i�3, s4i�2, s4i�1 and s4i are the successive image locations
[18], e(N) can be understood as a rigid body term, c1(N) and c2(N)
are the singularity strengths of the two frozen points at sc1 and sc2,
which can be determined by matching the boundary conditions. For
the case of infinite plane containing two circular holes, the
expression of Green’s function is given in Table 1. Table 1
demonstrates that the frozen image points sc1 and sc2 happen to
be two foci in the bipolar coordinates.
n interior case and (b) an exterior case.



Table 1
Frozen points of the image method and foci in the bipolar coordinates.

Method Cases

Image
method Gðx, sÞ ¼ 1

2p ln9x�s9þ lim
N-1

 PN
m ¼ 1
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9þc2ðNÞln9x�sc2
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Fig. 4. Final images and the foci of the bipolar coordinates (a) an eccentric annulus, (b) a half plane containing a circular hole and (c) an infinite plane with two circular

holes.
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4. Illustrative examples

Case 1. An eccentric case (a special case: annular case [12])

The problem sketch of an eccentric annulus is shown in Fig. 2.

The location of image source and bipolar coordinates are shown in

Fig. 4(a). The source point is located at s¼(0,0.75). The centers of

two holes are set at (0,0) and (�0.4,0), and the radii are 0.4 and

1.0 for the inner and outer boundaries, respectively. Following the

success of annulus case for the iterative images, we now extend to

the eccentric case. In a similar way of finding the successive

images for matching the inner and outer boundary conditions

[18], the solution can be superimposed using Eq.(20). Finally, we
can find that the final frozen image points and the foci of the

bipolar coordinates are the same. After collocating some points to

match the boundary conditions, all the unknown coefficients can

be determined. The results are compared well with the analytical

solution using the bipolar coordinates. The contour plots using the

present method of Eq. (20), the bipolar coordinates of Eq. (13) and

the null-field BIEM [19] are shown in Fig. 5.

Case 2. A half plane containing a circular hole

Fig. 4(b) depicts Green’s function for the half plane containing a

circular hole and the homogeneous Dirichlet boundary condition.

The source point is located at s¼(3,0). The center and radius of the



-1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fig. 5. Green’s function using (a) an analytical solution using the bipolar coordinates, (b) an image solution, (c) a solution using the superposition technique and the null-

field BIEM [18,19] and (d) solution using Green’s third identity in the null-field BIEM.

J.T. Chen et al. / Engineering Analysis with Boundary Elements 35 (2011) 236–243240
circular hole is (1.25,0) and a¼1, respectively. The d/2¼1.25 is the

distance from the center to the ground line. Similarly, the analytical

and semi-analytical solutions are obtained using the bipolar

coordinates and the image method, respectively. The results agree

well with those of the null-field BIEM [18,19] in Fig. 6.

Case 3. An infinite plane containing two circular holes

Following the successful experiences of the eccentric annulus

case for the iterative images, we now extend to the infinite

plane containing two circular holes as shown in Table 1. The
problem sketch of the infinite plane containing two circular holes

is shown in Fig. 4(c). The source point is located at s¼(3.85,0).

The centers of two holes are set at (0,0) and (2.1,0), and their radii

are 0.4 and 1, respectively. In a similar way of finding the image

sources for matching boundary conditions [18], an image solution

is derived.

We also found that the final frozen image points approach to

the foci of the bipolar coordinates. Based on the image solution for
an infinite plane containing a circular hole subject to the
homogeneous Neumann BC, an extra source at the center of hole
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is required. This motivates us to put sources at two centers of
the holes to obtain acceptable results. Therefore, Eq. (20) is
extended to

Gðx,sÞ ¼
1

2p
ln9x�s9þ lim

N-1

XN

i ¼ 1

ln9x�s2i�19þ ln9x�s2i9

 !"(

þc1ðNÞln9x�sc1
9þc2ðNÞln9x�sc2

9

#

þd1 ln9x�sd19þ lim
M-1

XM
j ¼ 1

ln9x�s1
j 9

3
5

2
4

þd2 ln9x�sd29þ lim
M-1

XM
j ¼ 1

ln9x�s2
j 9

3
5
9=
;,

2
4 ð21Þ

where two extra sources sd1 and sd2 are located at the two
centers of holes, s1

j and s2
j are the successive images due to sd1

and sd2, respectively. The results agree well with those of the
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null-field BIEM [18,19] and the conventional MFS in Fig. 7. It is
interesting to find that the final images also freeze at foci in the
bipolar coordinates. The results are summarized in Table 1.

For arbitrary boundaries, it is not easy to have such a neat semi-
analytical solution. Furthermore, the simple case is extension to a
straight boundary and can be found in textbooks. Our approach can
also be easily extended to solve inclusion problems by taking
free body. One part is a boundary value problem without a source,
the other is also a BVP with a source. Additionally, matching the
boundary conditions on the interface is required.
5. Conclusions

In this paper, Green’s functions were derived using the image
method. It is found that final image points terminate at the two
foci of the bipolar coordinates for all the three cases, an eccentric
annulus, a half plane containing a circular hole and an infinite
plane containing two circular holes. The optimal source distribu-
tion in the MFS is dependent on the given geometry and the
source location. An image method can guide us to search for an
optimal source location of the MFS and can determine the
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strengths of sources except the two frozen images. Three examples
were demonstrated to find all the image sources for constructing
Green’s function. The dimension of the influence matrix in the
linear algebraic equation is at most four by four in all the examples.
Agreement is made after comparing with other solutions.
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