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In this paper, the torsion problem is analyzed by boundary element method (BEM). After applying a new error 

estimation technique in the BEM, we can derive the numerical error of BEM. We extend the research of previous 

literature by the authors Chen and Chen [1] , to the real engineering problem. This paper estimates the discretiz- 

ing error caused by using BEM for solving the torsion problem with inclusions. The main characteristic of this 

technique is that the exact solution is not known in prior. In the technique, we need to create an auxiliary prob- 

lem that the government equation, domain shape, and boundary condition type are the same as the given real 

problem. Besides, it has an analytical solution that satisfies the governing equation. We can derive the suitable 

number of elements by solving the auxiliary problem. Subsequently, by using the suitable number of elements in 

the BEM, we can obtain the appropriate solution for the real problem. Finally, several cases in the literature are 

given to illustrate the validity of the novel approach applied in the BEM to solve the real problem. 
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. Introduction 

During the last decade, some themes of research focused on how to
mprove the numerical method. How to discrete the time domain is an
mportant issue in the time-dependent problem. The finite difference
cheme is a common method [2] . To improve the computer efficiency,
esearchers have developed the new discrete technique, such as Euler–
aruyama method [3] , Crank-Nicolson scheme [4] et al. These meth-

ds have been successfully applied to solve the Boussinesq equation, the
ahn–Hilliard–Cook equation, the Swift–Hohenberg equation, the mag-
etohydrodynamics (MHD) equation et al. To solve the space domain
roblem, the common computational methods have Trefftz method and
oundary element method. Although the exponential convergence of the
pproximation error with respect to the order of the approximating har-
onic polynomial is proved in the Trefftz solution space, the accuracy

f such the analytical solution may not be sufficient for some complex
roblems since Trefftz method is a type of domain method. A novel tech-
ique was proposed to expand a function to the local region which is
amed as the fast multipole expansion method. Recently, the conven-
ional Trefftz method was extended to the multipole Trefftz method to
reat with the large scale problem by introducing the multipole expan-
ion to overcome the problem in the following reference [6] . Recent
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esearch on the local BIE, the local RBF and the local MFS can also
olve complex problems. On the other hand, highly accurate collocation
refftz method [5] is also one of the methods of improved accuracy. In
his paper, Trefftz basis of Trefftz method is extended to estimate the
umerical error of numerical method. We introduce the Trefftz basis as
 quasi-analytical solution to substitute for the analytical solution of real
roblem. 

Discretizing in boundary integral equation is a main process of the
EM for solving engineering problems [7–13] . When we transform a
ontinuous system into a discrete system with a finite number of de-
rees of freedom, it would result in errors. In general, the discretizing
rror is defined by the difference between the analytical solution and
he numerical result. The analytical solution of real problems is difficult
o be obtained by mathematical formulation. There is no criterion in the
hoice of how many elements to derive one sufficiently accurate numer-
cal solution. Sometimes, we can obtain a precise numerical result, and
ometimes we can obtain the poor result when we choose a specified
umber of elements. Thus, estimation of discretizing error in the BEM
s a key study. 

There are very large quantities of studies in applying the hypersingu-
ar equation to find the residual as the error estimator [1 , 10] . In the liter-
ture [1 , 10] , various versions of integral equations can be employed to
tw (J.H. Kao), jtchen@mail.ntou.edu.tw (J.T. Chen). 
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Fig. 1. Sketch of the torsion problem. 
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btain the residual in discretizing process, accordingly both the strongly
ingular integral equation and hypersingular integral equation can in-
ependently resolve the unknown boundary data. The residuals derived
y these two equations can be employed as indexes of estimating error.
his provides a criterion for remeshing. Unfortunately, the index cannot
e compared for different number of meshes because it is a pointwise
rror which depends on the number of meshes. The error trends can
nly be recognized by the derived index, but the index does not present
he error magnitude. By using the new error estimation technique, we
eed to present an objective guideline to compare the error quantities
n a different number of meshes. 

. Problem statement 

Saint-Venant torsion problem of solid mechanics is very important
opic; it can be described by using warping function, conjugate warp-
ng function or the stress function. Early related research has Muskhe-
ishvili(1953) [14] , Sapountzakis and Mokos (2003) [15] and Timo-
henko and Gooder (1970) [16] , and so on. Following the approach
f Saint-Venant torsion problem [15] , the displacement field can be as-
umed as 

 𝑥 ≡ 𝑢 = − 𝜃𝑦𝑧 (1)

 𝑦 ≡ 𝑣 = 𝜃𝑧𝑥 (2)

 𝑧 ≡ 𝑤 = 𝜃𝜑 ( 𝑥, 𝑦 ) (3)

here 𝜃 is the angle of twist per unit length along the z-direction and
 is the warping function. The coordinate system is depicted in Fig. 1 .
he relation of strain and displacement is satisfied with the generalized
ook’s law and can be found in the common elasticity book as shown
 𝜇  

169 
elow: 

 𝑥 = 

𝜕𝑢 

𝜕𝑥 
, (4) 

 𝑦 = 

𝜕𝑢 

𝜕𝑦 
, (5) 

 𝑧 = 

𝜕𝑢 

𝜕𝑧 
, (6) 

𝑥𝑦 = 

𝜕𝑢 

𝜕𝑦 
+ 

𝜕𝑣 

𝜕𝑥 
, (7)

𝑦𝑧 = 

𝜕𝑣 

𝜕𝑧 
+ 

𝜕𝑤 

𝜕𝑦 
, (8)

𝑧𝑥 = 

𝜕𝑤 

𝜕𝑥 
+ 

𝜕𝑢 

𝜕𝑧 
. (9)

After substituting the displacement of Eqs. (1) –(3) into Eqs. (4) –(6)
nd Eqs. (7) –(9) , we obtain the strain components as follows: 

 𝑥 = 𝜀 𝑦 = 𝜀 𝑧 = 𝛾𝑥𝑦 = 0 , (10)

𝑥𝑧 = 𝜃

( 

𝜕𝜑 

𝜕𝑥 
− 𝑦 

) 

, (11) 

𝑦𝑧 = 𝜃

( 

𝜕𝜑 

𝜕𝑦 
+ 𝑥 

) 

(12) 

By applying the generalized Hook’s law, we obtain the stress field 

𝑥 = 𝜏𝑦 = 𝜏𝑧 = 𝜏𝑥𝑦 = 0 (13)

𝑥𝑧 = 𝜇𝜃

( 

𝜕𝜑 

𝜕𝑥 
− 𝑦 

) 

, (14) 

𝑦𝑧 = 𝜇𝜃

( 

𝜕𝜑 

𝜕𝑦 
+ 𝑥 

) 

. (15) 

here 𝜇 is the shear modulus. There is no distortion in the planes of
ross-sections since Eq. (10) . We have the state of pure shear at each
oint defined by the stress components 𝜏xz and 𝜏yz . The force equilib-
ium equation is shown below: 

𝜕 𝜏𝑥 

𝜕𝑥 
+ 

𝜕 𝜏𝑥𝑦 

𝜕𝑦 
+ 

𝜕 𝜏𝑥𝑧 

𝜕𝑧 
+ 𝐹 𝑥 = 0 (16)

𝜕 𝜏𝑦 

𝜕𝑦 
+ 

𝜕 𝜏𝑥𝑦 

𝜕𝑥 
+ 

𝜕 𝜏𝑦𝑧 

𝜕𝑧 
+ 𝐹 𝑦 = 0 (17)

𝜕 𝜏𝑧 

𝜕𝑧 
+ 

𝜕 𝜏𝑥𝑧 

𝜕𝑥 
+ 

𝜕 𝜏𝑦𝑧 

𝜕𝑦 
+ 𝐹 𝑧 = 0 (18)

Substituting Eqs. (13) –(15) into Eqs. (16) - (18) , we can obtain the
arping function, 𝜑 , which satisfies the Laplace equation as 

𝜕 2 𝜑 

𝜕 𝑥 2 
+ 

𝜕 2 𝜑 

𝜕 𝑦 2 
= 0 , ( 𝑥, 𝑦 ) in domain D , (19)

On the cylindrical surface, the stress in Eqs. (13) –(15) results in zero
raction of t x = t y = t z = 0, where t x, t y , and t z are the traction in x, y ,
nd z-direction. By substituting the normal vector, t z becomes 

 𝑧 = 𝜏𝑧𝑥 𝑛 𝑥 + 𝜏𝑧𝑦 𝑛 𝑦 , ( 𝑥, 𝑦 ) on B 0 (20)

Substitution of Eqs. (14) and (15) into Eq. (20) , we have 

𝜕𝜑 

𝜕𝑥 
𝑛 𝑥 + 

𝜕𝜑 

𝜕𝑦 
𝑛 𝑦 = ∇ 𝜑 ⋅ 𝑛 = 

𝜕𝜑 

𝜕𝑛 
= 𝑦𝑛 𝑥 − 𝑥𝑛 𝑦 , ( 𝑥, 𝑦 ) on B 0 (21) 

hile the cross-section of a bar with holes and/or inclusions is shown
n Fig. 2 , the ideal boundary condition (BC) between the matrix and
oles/inclusions satisfies with the continuity conditions for the displace-
ent and the equilibrium condition for traction [17 , 18] as follows 

 

Mr = 𝜑 𝐼 , ( 𝑥, 𝑦 ) on 𝐵 𝑖 , 𝑖 = 1 , 2 , 3 , … . (22) 

0 
𝜕𝜑 𝑀𝑟 

𝑖 − 𝜇𝑖 

𝜕𝜑 𝐼 
𝑖 = 

(
𝜇0 − 𝜇𝑖 

)(
𝑦 𝑛 𝑥 − 𝑥 𝑛 𝑦 

)
, ( 𝑥, 𝑦 ) on 𝐵𝑖, i = 1 , 2 , 3 , … . (23)
𝜕𝑛 𝜕𝑛 
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Fig. 2. Sketch of cross section of the bar with inclusions for torsion problem. 
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here n x and n y are the x and y components of the outward unit normal
 on the boundary B i , 𝜕 𝜑 / 𝜕 n is the normal derivative, the superscripts
Mr ” and “I ” denote the matrix and inclusion, respectively, B i is the i th
nterface boundary, 𝜇0 is the shear modulus for matrix and 𝜇i is the shear
odulus for the i th inclusion. 

We can obtain the resultant moment applied at the end of the bar by
olving the warping function. It is statically equivalent to the sum of the
orsion couple of the system of stresses defined by Eqs. (13) –(15) . The
orsion rigidity G is [19] 

 = 𝜇 ∫𝐷 
( 

𝑥 2 + 𝑦 2 + 𝑥 
𝜕𝜑 

𝜕𝑦 
− 𝑦 

𝜕𝜑 

𝜕𝑥 

) 

𝑑𝐷 

= 𝜇 ∫𝐷 
(
𝑥 2 + 𝑦 2 

)
𝑑𝐷 + 𝜇 ∫𝐷 

( 

𝑥 
𝜕𝜑 

𝜕𝑦 
− 𝑦 

𝜕𝜑 

𝜕𝑥 

) 

𝑑𝐷 

= − 𝜇 ∮𝐵 𝜑 
(
𝑦 𝑛 𝑥 − 𝑥 𝑛 𝑦 

)
𝑑𝐵 + 

𝜇

16 ∮𝐵 
𝜕 
(
𝑥 2 + 𝑦 2 

)
𝜕𝑛 

𝑑𝐵 

= − 𝜇 ∮𝐵 𝜑 
𝜕𝜑 

𝜕𝑛 
𝑑𝐵 + 

𝜇

16 ∮𝐵 
𝜕 
(
𝑥 2 + 𝑦 2 

)
𝜕𝑛 

𝑑𝐵 (24)

The total rigidity G containing matrix and inclusion domain is sepa-
ated into 

 = 𝐺 

𝑀 + 𝐺 

𝐼 (25)

. Boundary element method 

The boundary integral equation for the domain point of Laplace
roblem can be derived from Green’s third identity as: 

 𝜋𝑢 ( 𝑥 ) = ∫ 𝑇 ( 𝑠, 𝑥 ) 𝑢 ( 𝑠 ) 𝑑𝐵( 𝑠 ) − ∫ 𝑈 ( 𝑠, 𝑥 ) 𝑡 ( 𝑠 ) 𝑑𝐵( 𝑠 ) , 𝑥 ∈ 𝐷 (26)

here U ( s, x ) is the fundamental solution which satisfies: 

 

2 𝑈 ( 𝑠, 𝑥 ) = 2 𝜋𝛿( 𝑥 − 𝑠 ) (27)

n which U ( s, x ) = ln r and 𝛿( x − s ) is the Dirac-delta function. x and s
re collocation and source points, respectively. T ( x, s ) is defined by 

 ( 𝑠, 𝑥 ) = 

𝜕𝑈 ( 𝑠, 𝑥 ) 
𝜕 𝑛 𝑠 

(28)

here n s is the out-normal direction at the boundary point s . By ap-
roaching the field point x to the boundary, the integral equation of the
q. (26) can be rewritten as: 

𝑢 ( 𝑥 ) = 𝐶𝑃 𝑉 ∫𝐵 𝑇 ( 𝑠, 𝑥 ) 𝑢 ( 𝑠 ) 𝑑𝐵( 𝑠 ) − 𝑅𝑃 𝑉 ∫𝐵 𝑈 ( 𝑠, 𝑥 ) 𝑡 ( 𝑠 ) 𝑑𝐵( 𝑠 ) , 𝑥 ∈ 𝐵 (29)

here CPV and RPV are the Cauchy principal value and Riemann princi-
al value, respectively. The Eq. (29) is the singular integral formulation
n the conventional BEM, we can call UT method. The linear algebraic
170 
ystem of Eq. (29) can be obtained by discretizing N number of constant
oundary elements. 

 𝑈 ] { 𝑡 } = [ 𝑇 ] { 𝑢 } (30)

The problem in Fig. 2 can be decomposed into two parts by using
he concept of domain decomposition. One is the torsion problem of a
haft with multiple holes and the other is a problem of each inclusion,
ach domain satisfies the Laplace equation. The linear algebraic system
n the matrix can be obtained as: 

 

 

 

 

 

𝑇 𝑀𝑟 
00 … 𝑇 𝑀𝑟 

0 𝑘 

⋮ ⋱ ⋮ 

𝑇 𝑀𝑟 
𝑘 0 … 𝑇 𝑀𝑟 

𝑘𝑘 

⎤ ⎥ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝜑 𝑀𝑟 
0 

⋮ 

𝜑 𝑀𝑟 
𝑘 

⎫ ⎪ ⎬ ⎪ ⎭ 
= 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝑈 

𝑀𝑟 
00 … 𝑈 

𝑀𝑟 
0 𝑘 

⋮ ⋱ ⋮ 

𝑈 

𝑀𝑟 
𝑘 0 … 𝑈 

𝑀𝑟 
𝑘𝑘 

⎤ ⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝜕𝜑 𝑀𝑟 
0 
𝜕𝑛 

⋮ 

𝜕𝜑 𝑀𝑟 
𝑘 

𝜕𝑛 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
(31)

here the superscripts “Mr ” denote matrix, the first subscript, i

 i = 1,2,…,k), in 𝑇 𝑀𝑟 
𝑖𝑗 

and 𝑈 

𝑀𝑟 
𝑖𝑗 

denote the index of i th hole/inclusion
here the collocation point is located and the second subscript “j ”
 j = 1,2,…,k) denotes the j th hole/inclusion when integrating on each

oundary data { 𝜑 𝑀𝑟 
𝑗 

} and { 
𝜕𝜑 𝑀𝑟 

𝑗 

𝜕𝑛 
} , k is the number of inclusions embed-

ed in the matrix. For each inclusion, we have 

 

 

 

 

 

𝑇 𝐼 00 … 𝑇 𝐼 0 𝑘 

⋮ ⋱ ⋮ 

𝑇 𝐼 
𝑘 0 … 𝑇 𝐼 

𝑘𝑘 

⎤ ⎥ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝜑 𝐼 0 

⋮ 

𝜑 𝐼 
𝑘 

⎫ ⎪ ⎬ ⎪ ⎭ 
= 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝑈 

𝐼 
00 … 𝑈 

𝐼 
0 𝑘 

⋮ ⋱ ⋮ 

𝑈 

𝐼 
𝑘 0 … 𝑈 

𝐼 
𝑘𝑘 

⎤ ⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝜕𝜑 𝐼 0 
𝜕𝑛 

⋮ 

𝜕𝜑 𝐼 
𝑘 

𝜕𝑛 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
(32)

here the superscripts “I ” denotes the inclusion. In order to satisfy the
ontinuity conditions of displacement and equilibrium condition of trac-
ion on the interface in Eqs. (22) and (23) , the arrangement matrix is
iven 

 

 

 

 

 

 

 

 

 

 

 

 

𝑇 𝑀𝑟 
00 𝑇 𝑀𝑟 

01 ⋯ 𝑇 𝑀𝑟 
0 𝑘 − 

𝜇1 
𝜇0 
𝑈 

𝑀𝑟 
01 ⋯ − 

𝜇𝑘 

𝜇0 
𝑈 

𝑀𝑟 
0 𝑘 

𝑇 𝑀𝑟 
10 𝑇 𝑀𝑟 

11 ⋯ 𝑇 𝑀𝑟 
1 𝑘 − 

𝜇1 
𝜇0 
𝑈 

𝑀𝑟 
11 ⋯ − 

𝜇𝑘 

𝜇0 
𝑈 

𝑀𝑟 
1 𝑘 

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ 

𝑇 𝑀𝑟 
𝑘 0 𝑇 𝑀𝑟 

𝑘 1 ⋯ 𝑇 𝑀𝑟 
𝑘𝑘 

− 

𝜇1 
𝜇0 
𝑈 

𝑀𝑟 
𝑘 1 ⋯ − 

𝜇𝑘 

𝜇0 
𝑈 

𝑀𝑟 
𝑘𝑘 

0 𝑇 𝐼 11 ⋯ 𝑇 𝐼 1 𝑘 − 𝑈 

𝐼 
11 ⋯ − 𝑈 

𝐼 
1 𝑘 

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ 

⋮ 𝑇 𝐼 
𝑘 1 ⋯ 𝑇 𝐼 

𝑘𝑘 
− 𝑈 

𝐼 
𝑘 1 ⋯ − 𝑈 

𝐼 
𝑘𝑘 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

𝜑 𝑀𝑟 
0 

𝜑 𝑀𝑟 
1 

⋮ 

𝜑 𝑀𝑟 
𝑘 

𝜕𝜑 𝐼 1 
𝜕𝑛 

⋮ 

𝜕𝜑 𝐼 
𝑘 

𝜕𝑛 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑈 

𝑀𝑟 
00 𝑈 

𝑀𝑟 
01 ⋯ 𝑈 

𝑀𝑟 
0 𝑘 

𝑈 

𝑀𝑟 
10 𝑈 

𝑀𝑟 
11 ⋯ 𝑈 

𝑀𝑟 
1 𝑘 

⋮ ⋮ ⋱ ⋮ 

𝑈 

𝑀𝑟 
𝑘 0 𝑈 

𝑀𝑟 
𝑘 1 ⋯ 𝑈 

𝑀𝑟 
𝑘𝑘 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

𝑦 𝑛 𝑥 − 𝑥 𝑛 𝑦 

( 𝜇0 − 𝜇1 ) 
𝜇0 

(
𝑦 𝑛 𝑥 − 𝑥 𝑛 𝑦 

)
⋮ 

( 𝜇0 − 𝜇𝑘 ) 
𝜇0 

(
𝑦 𝑛 𝑥 − 𝑥 𝑛 𝑦 

)

⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ 

(33) 

After solving the unknown vector, 𝜑 𝐼 
𝑖 

and 
𝜕𝜑 𝐼 

𝑖 

𝜕𝑛 
, in Eq. (33) , the tor-

ional rigidity can be easily determined by Eqs. (24) and (25) . 

. New error estimation technique [20] 

By comparing the numerical solution with the analytical solution, we
ain the error norm, however, in the realistic engineering problem it is
ot obtained easily. To overcome the drawback, an alternative problem
s defined to substitute for the original problem. The domain shape and
oundary condition type in the new specific problem are the same as
he original problem. Furthermore, the exact solution to the auxiliary
roblem, similar to the exact solution of the original problem, can be
asily derived by the aid of the set of complementary solutions. 

Through simplification, analytical solutions can be obtained. By
omparing numerical and analytical solutions, we can obtain the er-
or norm. However, the analytical solution is not easily obtained in the
eal engineering problem. In this research, we will overcome this draw-
ack through the defined alternative problem. The domain shape and
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Table 1 

T-complete set for Laplace equation. 

Laplace equation 

G.E ▽2 𝜑 ( x ) = 0 

Interior basis Exterior basis 

1D 1, x 1, x 

Basis function 2D 

𝜌n cos( n 𝜃) , 𝜌n sin( n 𝜃) 

n = 0, 1, 2, …

𝜌− n cos( n 𝜃) , 𝜌− n sin( n 𝜃) 

n = 1, 2, …

3D 

𝜌𝑚 𝑃 𝑛 
𝑚 
cos ( 𝜃) cos ( 𝑛𝜃) 

𝜌𝑚 𝑃 𝑛 
𝑚 
cos ( 𝜃) sin ( 𝑛𝜃) 

𝑛 = 0 , 1 , 2 , ⋯ 

𝑚 = 0 , 1 , 2 , ⋯ 

𝜌−( 𝑚 +1 ) 𝑃 𝑛 
𝑚 
cos ( 𝜃) cos ( 𝑛𝜃) 

𝜌−( 𝑚 +1 ) 𝑃 𝑛 
𝑚 
cos ( 𝜃) sin ( 𝑛𝜃) 

𝑛 = 0 , 1 , 2 , ⋯ 

𝑚 = 0 , 1 , 2 , ⋯ 
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Fig. 3. Flowchart of the new error estimation technique. 

Fig. 4. Sketch of problem in the case 1. 

w  

c  

i  

e  

p

oundary condition type in the alternative problem are the same as the
riginal problem. Furthermore, we can easily derive the exact solution
n the alternative problem, this exact solution approximates the analyt-
cal solution of the original problem. We call alternative problem is the
uxiliary problem. 

.1. Defining the G.E., contour and B.C. type 

In the auxiliary problem, we set the governing equation, geometry
ontour and the boundary condition type to be the same as the original
roblem. 

.2. Constructing the exact solution 

The exact solution, 𝜑 q ( x ), in the auxiliary problem at an arbitrary
oint x in the domain is the linear combination of the set functions as
ollows: 

 

𝑞 ( 𝑥 ) = 

𝑀 ∑
𝑗=1 

𝑣 𝑗 Ω𝑗 ( 𝑥 ) , 𝑥 ∈ 𝐷 (34) 

here the Ωj ( x ) is chosen by the T-complete set functions which sat-
sfy the G.E., M is the total number of the complementary solutions
nd V j denotes the undetermined coefficient. T-complete sets are repre-
ented in Table 1 for the Laplace equation. Each of the function Ωj ( x ) of
-complete set functions satisfies the G.E. as: 

 

2 Ω𝑗 ( 𝑥 ) = 0 , 𝑗 = 1 , … , 𝑀 (35)

Because of the linear property of the differential operator in G.E.,
he potential, 𝜑 𝑞 

𝑗 
( 𝑥 ) , satisfies the G.E. as: 

 

2 𝜑 𝑞 ( 𝑥 ) = 

𝑀 ∑
𝑗=1 

𝜈𝑗 ∇ 

2 Ω𝑗 = 0 (36) 

.3. Specifying B.C 

The boundary-value in the auxiliary problem at the N number of
ollocation points is specified with the B.C. in the original problem. The
oundary condition of the auxiliary problem is the same as the orig-
nal problem. The undetermined coefficient, v j , can be determined by
atching the B.C. of the real problem. Therefore, the exact solution of

he auxiliary problem is similar to the exact solution of the original prob-
em. The two problems have the same boundary contour and B.C. type,
nd the B.C. of the auxiliary problem is given as: 

 

𝑞 

( 𝑥 ) = 

𝑀 ∑
𝑗=1 

𝜈𝑗 Ω𝑗 ( 𝑥 ) , 𝑥 ∈ 𝐵 1 (37) 

he derivative of the normal direction (flux) is shown below: 

𝜕 𝜑 
𝑞 

( 𝑥 ) 
𝜕𝑛 𝑥 

= 

𝑀 ∑
𝑗=1 

𝜈𝑗 

𝜕Ω𝑗 ( 𝑥 ) 
𝜕𝑛 𝑥 

= 

𝑀 ∑
𝑗=1 

𝑣 𝑗 𝑤 𝑗 ( 𝑥 ) , 𝑥 ∈ 𝐵 2 (38) 
171 
here 𝜑 
𝑞 

( 𝑥 ) and 𝜕 𝜑 
𝑞 
( 𝑥 ) 

𝜕𝑛 𝑥 
are the known potential. The auxiliary problem

an be solved by using the Trefftz method and the BEM. By compar-
ng the numerical solution with the exact solution, we can obtain the
rror norm. Difference between the auxiliary problem and the original
roblem are formulated as follows: 
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Fig. 5. The error analysis versus the number of boundary elements 

for the different terms of Trefftz basis in the case 1 ( 𝜇1 / 𝜇0 = 0). 
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Fig. 6. The error analysis versus the number of boundary elements 

for the different terms of Trefftz basis in the case 1 ( 𝜇1 / 𝜇0 = 0.2). 
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Fig. 7. The error analysis versus the number of boundary elements 

for the different terms of Trefftz basis in the case 1 ( 𝜇1 / 𝜇0 = 0.6). 
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Fig. 8. The error analysis versus the number of boundary elements 

for the different terms of Trefftz basis in the case 1 ( 𝜇1 / 𝜇0 = 1). 
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Fig. 9. The error analysis versus the number of boundary elements 

for the different terms of Trefftz basis in the case 1 ( 𝜇1 / 𝜇0 = 5). 
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Fig. 10. The field solution of warping function in the case 1 

( 𝜇1 / 𝜇0 = 0). 
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Fig. 11. The field solution of warping function in the case 1 

( 𝜇1 / 𝜇0 = 0.2). 
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Fig. 12. The field solution of warping function in the case 1 

( 𝜇1 / 𝜇0 = 0.6). 
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Fig. 13. The field solution of warping function in the case 1 ( 𝜇1 / 𝜇0 = 1). 
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Fig. 14. The field solution of warping function in the case 1 ( 𝜇1 / 𝜇0 = 5). 
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Fig. 15. The field solution of shear flow by adopting the optimal number of 

elements in the case 1 ( 𝜇1 / 𝜇0 = 0). 

Fig. 16. The field solution of shear flow by adopting the optimal number of 

elements in the case 1 ( 𝜇1 / 𝜇0 = 0.2). 
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𝐺

w

𝐼  
The relationship of the real exact solution and the auxiliary solution
an be written as: 

 

𝑒 ( 𝑥 ) = 𝜑 𝑞 ( 𝑥 ) + 𝑅 𝑀 

( 𝑥 ) (39)

here 𝜑 e ( x ) is the exact solution of the real problem and 𝑅 𝑀 

( 𝑥 ) =
∞
𝑗= 𝑀+1 𝑣 𝑗 Ω𝑗 ( 𝑥 ) . The remainder function satisfies the G.E. and it is ex-

onential convergence as: 

|𝑅 𝑀 

( 𝑥 ) || = 𝑂 

(
𝑟 − 𝑀 

)
, 𝑟 > 1 (40)

here r = ‖x ‖. Therefore, the difference in the two solvers of space is
erived as: 

𝜑 𝑒 ( 𝑥 ) − 𝜑 𝑞 ( 𝑥 ) ‖ = 

‖‖𝑅 𝑀 

( 𝑥 ) ‖‖ ≤ 𝐶 
(
𝑟 − 𝑀 

)
, 𝑟 > 1 (41)

here C is the bounded constant. 

.4. Error analysis in the auxiliary problem 

The error norm of numerical solution of the auxiliary problem adopts
he relative root mean squared (RMS) error by comparing the numer-
cal solution with the exact solution in the auxiliary problem which is
efined as shown below: 

 . M . S = 

√ √ √ √ √ 

1 
𝑁 

𝐹 

𝑁 

𝐹 ∑
𝑖 =1 

[
𝜑 𝐹 

(
𝑥 𝑖 
)
− 𝜑 𝑞 

(
𝑥 𝑖 
)]2 ∕ 

√ √ √ √ √ 

1 
𝑁 

𝐹 

𝑁 

𝐹 ∑
𝑖 =1 

[
𝜑 𝑞 

(
𝑥 𝑖 
)]2 

(42)

here N 

F is the total number of field points and 𝜑 F ( x i ) is the numerical
olution of the BEM in the auxiliary problem. Besides, the error norm
an also be adopted by the relative error of rigidity as follows: 

elative error of rigidity = 

𝑁 

𝐹 ∑
𝑖 =1 

𝐺 

𝐹 
(
𝑥 𝑖 
)
− 𝐺 

𝑞 
(
𝑥 𝑖 
)

𝐺 

𝑞 
(
𝑥 𝑖 
) (43)

Fig. 3 is shows a flowchart of the new error estimation technique.
y the auxiliary problem, the error curve can be obtained through the
rror convergence analysis. Based on the specified criteria, the optimal
umber of elements can be found in the neighboring region of the corner
n the error curve. 

.5. Solving the solution of the original problem 

Adopting the optimal number of elements, the unknown boundary
ensities can be solved by collocating observation points to match the
Cs in the original problem, and then the optimal solutions for the do-
ain of interest of the original problem can be calculated. 

. Numerical examples 

In this section, three cases with different cross-sections are con-
idered. The three cases with circular, elliptical and rectangular do-
ains given by Muskhelishvili [14] , Chen and Lee [21] , Katsikadelisand

apountzakis [17] and Shams-Ahmadiand Chou [18] are solved, respec-
ively, by using the BEM. By applying the error technique, we also derive
he optimal ratio of the number of collocation elements/points between
he exterior and interior boundaries. 

Case 1: A circular bar with an eccentric inclusion [14 , 21] 
In this case, a circular bar with an eccentric hole/inclusion is consid-

red as shown in Fig. 4 . The radius of the circular bar is R 0 and radius of
ccentric hole/inclusion is R 1 . The dimensional ratio of R 1 /R 0 is 0.3 and
 x /R 0 is 0.6. The shear modulus ratio 𝜇1 / 𝜇0 is considered 0, 0.2, 0.6,
, and 5 in numerical results. Figs. 5–9 are shown the result of the rela-
ive error of rigidity and R.M.S error, respectively. After comparing with
he literature [14 , 21] , we can obtain good results using more than 60
lements. So, the optimal number of elements will choose about 90 ele-
ents in this case. After adopting optimal number of elements to solve

he original problem by using the BEM formulation, we can obtain the
eld solutions of the warping function and the shear flow as shown in
igs. 10–19 , respectively. 
182 
Through the error technique, the optimal results of torsional rigidity
ompared with Muskhelishvili’s solution [14] for different shear mod-
lus ratio 𝜇1 / 𝜇0 are listed in Table 2 . Muskhelishvili’s solution [14] is
iven below: 

 = 𝜇0 𝐼 + ( 𝜇1 − 𝜇0 ) 𝐼 ′ − 

𝜋𝑅 

2 
1 𝑒 

2 
𝑥 
( 𝜇1 − 𝜇0 ) 2 

( 𝜇1 + 𝜇0 ) 
− 2 𝜇0 𝜋𝑒 2 𝑥 𝜈𝜌

2 
1 

∞∑
𝑘 =1 

𝛼𝑘 𝜈𝑘 

(1 − 𝑎 2 𝜌2 1 𝛼
𝑘 ) 
, 

(44) 

here 

 = 𝜋𝑅 

4 
0 ∕2 , (45)
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Fig. 17. The field solution of shear flow by adopting the optimal number of 

elements in the case 1 ( 𝜇1 / 𝜇0 = 0.6). 

Fig. 18. The field solution of shear flow by adopting the optimal number of 

elements in the case 1 ( 𝜇1 / 𝜇0 = 1). 

Table 2 

Comparison with torsional rigidity in the case 1. 

2 G/ 𝜋𝜇0 R 0 
4 

𝜇1 / 𝜇0 Muskhelishvili (1953) Chen and Lee (2009) BEM 

0.0 0.82370 0.82370 0.82357 

0.2 0.89180 0.89180 0.89165 

0.6 0.96246 0.96246 0.96230 

1.0 1.00000 1.00000 0.99984 

5.0 1.10800 1.10800 1.10783 

Fig. 19. The field solution of shear flow by adopting the optimal number of 

elements in the case 1 ( 𝜇1 / 𝜇0 = 5). 

Fig. 20. Sketch of problem in the case 2. 
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′ = 𝜋𝑅 

4 
1 ∕2 + 𝜋𝑅 

2 
1 𝑒 

2 
𝑥 
, (46)

 = 𝑒 𝑥 ∕ 
√ (

𝑅 

2 
1 − 𝑅 

2 
0 
)2 − 2 𝑒 2 

𝑥 

(
𝑅 

2 
1 + 𝑅 

2 
0 
)
+ 𝑒 4 

𝑥 
, (47)

= 𝜌2 1 ∕ 𝜌
2 
0 , (48)

= 

(
𝜇0 − 𝜇1 

)
∕ 
(
𝜇0 + 𝜇1 

)
, (49)

1 = 

√ 

1 + 4 𝑅 

2 
1 𝑎 

2 − 1∕2 𝑅 1 𝑎 
2 , (50) 

1 = 

√ 

1 + 4 𝑅 

2 
1 𝑎 

2 − 1∕2 𝑅 1 𝑎 
2 . (51)

By comparing with the Table 2 , the presented results matched well
ith the Muskhelishvili solution [14] .The relative error of rigidity is
resented in Tables 5 –9 . N 0 /N 1 denotes the ratio of element number in
oundary. We can see that the error of results is different when adopt-
ng corresponding configurations of the distribution of the number of
lements on the different boundaries, thus we can obtain better results
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Table 3 

Comparison of the torsional rigidity in 

the case 2. 

G/ 𝜇0 a 1 
4 

𝜇1 / 𝜇0 Katsikadelis (1985) BEM 

0.0 0.2953 0.2944 

0.2 0.2992 0.2984 

0.4 0.3032 0.3023 

0.6 0.3071 0.3062 

0.8 0.3111 0.3101 

1.0 0.3150 0.3141 

Table 4 

Comparison of the torsional rigidity in the case 3. 

G/ 𝜇0 L 
4 

𝜇1 / 𝜇0 Shams-Ahmadi and Chou (1997) BEM 

0.0 0.1345 0.1343 

1.0 0.1405 0.1405 

2.0 0.1465 0.1467 

3.0 0.1524 0.1528 

5.0 0.1644 0.1651 
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Table 5 

Relative error of rigidity for differ- 

ent N 0 /N 1 in a circular case with an 

eccentric inclusion ( 𝜇1 / 𝜇0 = 0). 

N 0 /N 1 Relative error of rigidity 

1/9 0.11660 

1/8 0.08347 

1/5 0.10547 

1/4 0.04333 

1/2 0.01106 

1/1 0.00607 

2/1 0.00724 

4/1 0.01632 

5/1 0.02315 

8/1 0.05385 

9/1 0.06922 

Table 6 

Relative error of rigidity for differ- 

ent N 0 /N 1 in a circular case with an 

eccentric inclusion ( 𝜇1 / 𝜇0 = 0.2). 

N 0 /N 1 Relative error of rigidity 

1/9 0.14387 

1/8 0.11372 

1/5 0.07804 

1/4 0.04304 

1/2 0.01387 

1/1 0.00651 

2/1 0.00487 

4/1 0.00701 

5/1 0.00908 

8/1 0.01854 

9/1 0.02324 

Table 7 

Relative error of rigidity for differ- 

ent N 0 /N 1 in a circular case with an 

eccentric inclusion ( 𝜇1 / 𝜇0 = 0.6). 

N 0 /N 1 Relative error of rigidity 

1/9 0.15825 

1/8 0.12987 

1/5 0.06673 

1/4 0.04328 

1/2 0.01498 

1/1 0.00657 

2/1 0.00365 

4/1 0.00255 

5/1 0.00243 

8/1 0.00245 

9/1 0.00268 

Table 8 

Relative error of rigidity for differ- 

ent N 0 /N 1 in a circular case with an 

eccentric inclusion ( 𝜇1 / 𝜇0 = 1). 

N 0 /N 1 Relative error of rigidity 

1/9 0.16104 

1/8 0.13216 

1/5 0.06065 

1/4 0.04244 

1/2 0.01540 

1/1 0.00679 

2/1 0.00361 

4/1 0.00198 

5/1 0.00152 

8/1 0.00015 

9/1 0.00029 
han the average distribution of the number elements on the different
oundary. 

Case 2: An elliptic bar with an elliptic inclusion [17] 
Here, we consider a composite cross-section consisting of two con-

entric, geometrically similar ellipses with a 1 /a 0 = 0.5, b 0 /a 0 = 0.5 and
 1 /b 0 = 0.25, as shown in Fig. 20 . The ratio of shear modulus 𝜇1 / 𝜇0 is
sing 0, 0.2, 0.4, 0.6, 0.8, and 1 in this case. The results of the relative
rror of rigidity and R.M.S error by using the BEM are shown in Figs.
1–26 , respectively. The results of the literature [ 17 ] are shown simul-
aneously in Figs. 21–26 . Comparing Figs. 21 –26 , we can find good re-
ults, when Trefftz term and the number of boundary elements are more
han the 24 and 90, respectively. In this case, we choose about 90 ele-
ents to solve the original problem. We can obtain the field solutions

f the warping function and the shear flow for different ratio of shear
odule by using the BEM as shown in Figs. 27–38 , respectively. The
eld solution of the warping function for different 𝜇1 / 𝜇0 are shown in
igs. 29–32 . We can find that results are agreeable. Figs. 33–38 show the
istribution of shear flow by adopting the optimal number of elements
or different 𝜇1 / 𝜇0 . 

The optimal results of torsional rigidity compared with Katsikadelis’s
olution [17] for different values of 𝜇1 / 𝜇0 are listed in Table 3.
ables 10 –15 for 𝜇1 / 𝜇0 = 0, 0.2, 0.4, 0.6, 0.8, 1.0 show the relative error
f rigidity. The preferred average distribution of the number of elements
an be obtained by comparing Tables 10 –15 . 

Case 3: A rectangular bar with a circular inclusion [18] 
Here, we consider a rectangular bar of length L with a circular inclu-

ion of radius L/4 , as shown in Fig. 39 . The results of the relative error
f rigidity and R.M.S error for the ratio of shear module 𝜇1 / 𝜇0 = 0, 1,
, 3, and 5 are shown in Figs. 40–44 , respectively. The dotted line is the
esult of the literature [18] in Figs. 40 (a)–44 (a). We can obtain the op-
imal number of elements of 96 by comparing Figs. 40–44 in this case.
y using the optimal number of elements and BEM formulation to solve
he original problem, we can obtain the field solutions of the warping
unction and the shear flow for 𝜇1 / 𝜇0 = 0, 1, 2, 3, and 5 in Figs. 45 –54 ,
espectively. 

The optimal results of torsional rigidity compared with Shams-
hmadi’s solution [18] for different ratio of shear module 𝜇1 / 𝜇0 are

isted in Table 4. The relative error of rigidity in different ratio of ele-
ent number for 𝜇1 / 𝜇0 = 0, 1, 2, 3, 5 are shown in Tables 15 –19 . We

an obtain better results than the average distribution of the number
lements on the different boundary. 
184 
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Fig. 21. The error analysis versus the number of boundary elements 

for the different terms of Trefftz basis in the case 2 ( 𝜇1 / 𝜇0 = 0). 
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Fig. 22. The error analysis versus the number of boundary elements 

for the different terms of Trefftz basis in the case 2 ( 𝜇1 / 𝜇0 = 0.2). 
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Fig. 23. The error analysis versus the number of boundary elements 

for the different terms of Trefftz basis in the case 2 ( 𝜇1 / 𝜇0 = 0.4). 
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Fig. 24. The error analysis versus the number of boundary el- 

ements for the different terms of Trefftz basis in the case 2 

( 𝜇1 / 𝜇0 = 0.6). 
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Fig. 25. The error analysis versus the number of boundary elements 

for the different terms of Trefftz basis in the case 2 ( 𝜇1 / 𝜇0 = 0.8). 
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Fig. 26. The error analysis versus the number of boundary el- 

ements for the different terms of Trefftz basis in the case 2 

( 𝜇1 / 𝜇0 = 1). 
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Fig. 27. The field solution of warping function in the case 2 ( 𝜇1 / 𝜇0 = 0). 
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Fig. 28. The field solution of warping function in the case 2 ( 𝜇1 / 𝜇0 = 0.2). 

192 



K.H. Chen, J.H. Kao and J.T. Chen et al. Engineering Analysis with Boundary Elements 115 (2020) 168–211 

Fig. 29. The field solution of warping function in the case 2 ( 𝜇1 / 𝜇0 = 0.4). 
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Fig. 30. The field solution of warping function in the case 2 ( 𝜇1 / 𝜇0 = 0.6). 
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Fig. 31. The field solution of warping function in the case 2 ( 𝜇1 / 𝜇0 = 0.8). 

195 



K.H. Chen, J.H. Kao and J.T. Chen et al. Engineering Analysis with Boundary Elements 115 (2020) 168–211 

Fig. 32. The field solution of warping function in the case 2 ( 𝜇1 / 𝜇0 = 1). 
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Fig. 33. The field solution of shear flow by adopting the optimal number of 

elements in the case 2 ( 𝜇1 / 𝜇0 = 0). 

Fig. 34. The field solution of shear flow by adopting the optimal number of 

elements in the case 2 ( 𝜇1 / 𝜇0 = 0.2). 

Fig. 35. The field solution of shear flow by adopting the optimal number of 

elements in the case 2 ( 𝜇1 / 𝜇0 = 0.4). 

Fig. 36. The field solution of shear flow by adopting the optimal number of 

elements in the case 2 ( 𝜇1 / 𝜇0 = 0.6). 

Fig. 37. The field solution of shear flow by adopting the optimal number of 

elements in the case 2 ( 𝜇1 / 𝜇0 = 0.8). 

Fig. 38. The field solution of shear flow by adopting the optimal number of 

elements in the case 2 ( 𝜇1 / 𝜇0 = 1). 

Table 9 

Relative error of rigidity for differ- 

ent N 0 /N 1 in a circular case with an 

eccentric inclusion ( 𝜇1 / 𝜇0 = 5). 

N 0 /N 1 Relative error of rigidity 

1/9 0.15217 

1/8 0.12319 

1/5 0.06048 

1/4 0.04094 

1/2 0.01486 

1/1 0.00684 

2/1 0.00433 

4/1 0.00440 

5/1 0.00506 

8/1 0.00809 

9/1 0.00944 

Table 10 

Relative error of rigidity for differ- 

ent N 0 /N 1 in aelliptic case with an 

elliptic inclusion ( 𝜇1 / 𝜇0 = 0). 

N 0 /N 1 Relative error of rigidity 

1/9 0.15743 

1/8 0.12576 

1/5 0.05295 

1/4 0.03603 

1/2 0.01231 

1/1 0.00506 

2/1 0.00205 

4/1 0.00075 

5/1 0.00217 

8/1 0.00735 

9/1 0.00937 
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Fig. 39. Sketch of problem in the case 3. 

Table 11 

Relative error of rigidity for differ- 

ent N 0 /N 1 in aelliptic case with an 

elliptic inclusion ( 𝜇1 / 𝜇0 = 0.2). 

N 0 /N 1 Relative error of rigidity 

1/9 0.15498 

1/8 0.12394 

1/5 0.05225 

1/4 0.03557 

1/2 0.01218 

1/1 0.00505 

2/1 0.00217 

4/1 0.00031 

5/1 0.00151 

8/1 0.00576 

9/1 0.00738 

Table 12 

Relative error of rigidity for differ- 

ent N 0 /N 1 in aelliptic case with an 

elliptic inclusion ( 𝜇1 / 𝜇0 = 0.4). 

N 0 /N 1 Relative error of rigidity 

1/9 0.15272 

1/8 0.12224 

1/5 0.05160 

1/4 0.03515 

1/2 0.01208 

1/1 0.00508 

2/1 0.00232 

4/1 0.00014 

5/1 0.00083 

8/1 0.00416 

9/1 0.00540 

Table 13 

Relative error of rigidity for differ- 

ent N 0 /N 1 in a elliptic case with an 

elliptic inclusion ( 𝜇1 / 𝜇0 = 0.6). 

N 0 /N 1 Relative error of rigidity 

1/9 0.15057 

1/8 0.12059 

1/5 0.05095 

1/4 0.03472 

1/2 0.01196 

1/1 0.00507 

2/1 0.00244 

4/1 0.00057 

5/1 0.00020 

8/1 0.00263 

9/1 0.00348 

Table 14 

Relative error of rigidity for differ- 

ent N 0 /N 1 in a elliptic case with an 

elliptic inclusion ( 𝜇1 / 𝜇0 = 0.8). 

N 0 /N 1 Relative error of rigidity 

1/9 0.14852 

1/8 0.11901 

1/5 0.05032 

1/4 0.03430 

1/2 0.01184 

1/1 0.00507 

2/1 0.00255 

4/1 0.00099 

5/1 0.00042 

8/1 0.00112 

9/1 0.00160 
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Fig. 40. The error analysis versus the number of boundary el- 

ements for the different terms of Trefftz basis in the case 3 

( 𝜇1 / 𝜇0 = 0). 
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Fig. 41. The error analysis versus the number of boundary el- 

ements for the different terms of Trefftz basis in the case 3 

( 𝜇1 / 𝜇0 = 1). 
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Fig. 42. The error analysis versus the number of boundary el- 

ements for the different terms of Trefftz basis in the case 3 

( 𝜇1 / 𝜇0 = 2). 
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Fig. 43. The error analysis versus the number of boundary el- 

ements for the different terms of Trefftz basis in the case 3 

( 𝜇1 / 𝜇0 = 3). 
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Fig. 44. The error analysis versus the number of boundary el- 

ements for the different terms of Trefftz basis in the case 3 

( 𝜇1 / 𝜇0 = 5). 
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Fig. 45. The field solution of warping function in the case 3 ( 𝜇1 / 𝜇0 = 0). 
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Fig. 46. The field solution of warping function in the case 3 ( 𝜇1 / 𝜇0 = 1). 
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Fig. 47. The field solution of warping function in the case 3 ( 𝜇1 / 𝜇0 = 2). 
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Fig. 48. The field solution of warping function in the case 3 ( 𝜇1 / 𝜇0 = 3). 
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Fig. 49. The field solution of warping function in the case 3 

( 𝜇1 / 𝜇0 = 5). 
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Fig. 50. The field solution of shear flow by adopting the optimal number of 

elements in the case 3 ( 𝜇1 / 𝜇0 = 0). 

Fig. 51. The field solution of shear flow by adopting the optimal number of 

elements in the case 3 ( 𝜇1 / 𝜇0 = 1). 

Table 15 

Relative error of rigidity for differ- 

ent N 0 /N 1 in a elliptic case with an 

elliptic inclusion ( 𝜇1 / 𝜇0 = 1). 

N 0 /N 1 Relative error of rigidity 

1/9 0.14656 

1/8 0.11748 

1/5 0.04971 

1/4 0.03389 

1/2 0.01173 

1/1 0.00507 

2/1 0.00267 

4/1 0.00140 

5/1 0.00103 

8/1 0.00034 

9/1 0.00024 

Fig. 52. The field solution of shear flow by adopting the optimal number of 

elements in the case 3 ( 𝜇1 / 𝜇0 = 2). 

Fig. 53. The field solution of shear flow by adopting the optimal number of 

elements in the case 3 ( 𝜇1 / 𝜇0 = 3). 

Table 16 

Relative error of rigidity for dif- 

ferent N 0 /N 1 in the rectangu- 

lar case with a circular inclusion 

( 𝜇1 / 𝜇0 = 0). 

N 0 /N 1 Relative error of rigidity 

1/7 0.06396 

1/5 0.03486 

1/3 0.01344 

1/2 0.00626 

1/1 0.00145 

2/1 0.00039 

3/1 0.00132 

5/1 0.00316 

7/1 0.00541 
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Fig. 54. The field solution of shear flow by adopting the optimal number of 

elements in the case 3 ( 𝜇1 / 𝜇0 = 5). 

Table 17 

Relative error of rigidity for dif- 

ferent N 0 /N 1 in the rectangu- 

lar case with a circular inclusion 

( 𝜇1 / 𝜇0 = 1). 

N 0 /N 1 Relative error of rigidity 

1/7 0.06135 

1/5 0.03343 

1/3 0.01297 

1/2 0.00614 

1/1 0.00168 

2/1 0.00029 

3/1 0.00005 

5/1 0.00029 

7/1 0.00037 

Table 18 

Relative error of rigidity for dif- 

ferent N 0 /N 1 in the rectangu- 

lar case with a circular inclusion 

( 𝜇1 / 𝜇0 = 2). 

N 0 /N 1 Relative error of rigidity 

1/7 0.05890 

1/5 0.03213 

1/3 0.01255 

1/2 0.00604 

1/1 0.00189 

2/1 0.00094 

3/1 0.00112 

5/1 0.00234 

7/1 0.00422 

C
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o  
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Table 19 

Relative error of rigidity for dif- 

ferent N 0 /N 1 in the rectangu- 

lar case with a circular inclusion 

( 𝜇1 / 𝜇0 = 3). 

N 0 /N 1 Relative error of rigidity 

1/7 0.05664 

1/5 0.03093 

1/3 0.01217 

1/2 0.00595 

1/1 0.00209 

2/1 0.00153 

3/1 0.00221 

5/1 0.00476 

7/1 0.00844 

Table 20 

Relative error of rigidity for dif- 

ferent N 0 /N 1 in the rectangu- 

lar case with a circular inclusion 

( 𝜇1 / 𝜇0 = 5). 

N 0 /N 1 Relative error of rigidity 

1/7 0.05260 

1/5 0.02881 

1/3 0.01148 

1/2 0.00579 

1/1 0.00245 

2/1 0.00259 

3/1 0.00413 

5/1 0.00906 

7/1 0.01592 
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onclusions 

In order to obtain the optimal solution by adopting various lengths
f elements on different boundaries, we employ different configurations
f the distribution of the number of elements on the boundaries using
he error technique. For the above cases of each 𝜇1 / 𝜇0 , we can obtain
he relative error of rigidity with different ratios of exterior and interior
lements, respectively. The feasibility for our method can be verified
210 
hrough three numerical cases. We can obtain better results by using
ur method. 
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