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In this paper, 2D eigenproblems with the multiply connected domain are studied by using the

multipole Trefftz method. We extend the conventional Trefftz method to the multipole Trefftz

method by introducing the multipole expansion. The addition theorem is employed to expand the

Trefftz bases to the same polar coordinates centered at one circle, where boundary conditions are

specified. Owing to the introduction of the addition theorem, collocation techniques are not required to

construct the linear algebraic system. Eigenvalues and eigenvectors can be found at the same time by

employing the singular value decomposition (SVD). To deal with the eigenproblems, the present

method is free of pollution of spurious eigenvalues. Both the eigenvalues and eigenmodes compare

well with those obtained by analytical methods and the BEM as shown in illustrative

examples.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustic problems become more and more important issues in
the design phase for the new product. Many scholars have studied
the sound radiation behavior and tried to find the connection
between the sound radiation and vibration. They aimed to find an
approach to decouple the sound radiation. Many well-developed
numerical methods such as the finite element method (FEM),
finite difference method (FDM) and boundary element method
(BEM) can be adopted. Especially, the BEM has become popular
in recent years due to its advantage of the reduction of
dimensionality. However, spurious and fictitious frequencies
occur and stem from the problem of non-uniqueness solution.
If an incomplete set is adopted in the solution representation
such as the real-part BEM [1] or the multiple reciprocity method
(MRM) [2–7], spurious eigensolutions occur in solving eigenpro-
blems with simply connected domain. Even though the complex-
valued kernel is adopted in BEM, the spurious eigensolution also
occurs for eigenproblems with the multiply connected domain [8]
as well as the appearance of fictitious frequency for exterior
acoustics [9]. Spurious eigensolutions and fictitious frequencies in
the integral formulation belong to spectral pollution since it
cannot be suppressed by refining the mesh. The origin of spurious
modes arises from an improper approximation of null space of the
ll rights reserved.
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integral operator [10]. This paper focuses on finding a meshless
method free of spurious eigenvalues.

In the recent years, the meshless methods started to
capture the interest of the researchers in the community of
computational mechanics because these methods are mesh
free and only boundary nodes are necessary [11–14]. Among
meshless methods, the Trefftz method is a boundary-type
solution procedure using only the T-complete functions satis-
fying the governing equation [15]. Since Trefftz presented the
Trefftz method for solving boundary value problems in 1926 [16],
various Trefftz methods such as direct formulations and
indirect formulations [17] have been developed. The key issue
in the use of the indirect Trefftz method is the definition of
T-complete function set, which ensures the convergence of the
subsequent expansions towards the analytical solutions. Many
applications to the Laplace equation [18], the Helmholtz equation
[19], the Navier equation [20,21] and the biharmonic equation
[22] were done. Readers can consult with the Li et al.’s book [15].
However, all the applications seemed to be limited on the
simply connected domain. The concept of the multipole method
to solve exterior problems was firstly devised by Zȧvis̆ka [23] and
was used for the interaction of waves with arrays of circular
cylinders by Linton and Evans [24]. Recently, Martin [25]
reviewed several methods to solve multiple scattering problems
in acoustics, electromagnetism, seismology and hydrodynamics.
However, the interior eigenproblems were not mentioned therein.
Extension to interior multiply connected eigenproblems by
using the multipole Trefftz method is also our concern in this
paper.

www.elsevier.com/locate/enganabound
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This paper employs the addition theorem to expand the Bessel
(J) and Hankel (H) functions [26] in the solution representation for
matching the boundary conditions in an analytical way. The so-
called multipole Trefftz technique is analytical and effective in
solving problems with the multiply connected domain. Numerical
experiments were performed to verify the present method. For
the multiply connected eigenproblems, the mode shapes were
plotted and compared with the other available results, e.g. exact
solutions and BEM data [27,28].
2. Multipole Trefftz method for multiply connected
eigenproblems with circular boundaries

2.1. Problem statement

The governing equation for the eigenproblem is the Helmholtz
equation as follows:

ðr2
þk2ÞuðxÞ ¼ 0; xAD; ð1Þ

where r2, k and D are the Laplacian operator, the wave number
and the domain of interest, respectively. The multiply connected
domain with circular boundaries is depicted in Fig. 1. The radius
of the jth circle and the position vector of its center are Rj and Oj,
respectively.

2.2. Conventional Trefftz method for the simply connected domain

In the Trefftz method, the field solution u(x) for a simply
connected domain is superimposed by the T-complete functions,
jm(x), as follows:

uðxÞ ¼
XM

m ¼ �M

amjmðxÞ; ð2Þ

where jm(x) is the Trefftz base with respect to the origin O,
(2M+1) is the number of complete functions and am is the mth
unknown coefficient which can be determined by matching the
boundary conditions. Since this paper focuses on problems with
circular boundaries, the polar coordinates are utilized and the
field point x is expressed as x=(r,f). For the circular boundary
with a radius R, the complete functions for 2D Helmholtz
problems are shown below:

jm ¼
jI

mðr;fÞ ¼ JmðkrÞeimf; roR; interior case; m¼ 0;71;72; . . .;7M;

jE
mðr;fÞ ¼Hð1Þm ðkrÞeimf; r4R; exterior case; m¼ 0;71;72; . . .;7M;

(

ð3Þ
Rj
Bj

O0

O1

Oj R0
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Fig. 1. A multiply connected domain with circular boundaries.
where the superscripts of ‘‘I’’ and ‘‘E’’ denote the interior and
exterior domains, respectively, and i is the imaginary number
with i2=�1.

2.3. Graf’s addition theorem

According to the Graf’s addition theorem for JmðkrpÞe
imfp and

Hð1Þm ðkrpÞe
imfp , we have

JmðkrpÞe
imfp ¼

X1
n ¼ �1

Jm�nðkbpqÞe
iðm�nÞypq JnðkrqÞe

infq

¼
X1

n ¼ �1

Jm�nðkrqÞe
iðm�nÞfq JnðkbpqÞe

inypq ; ð4Þ

Hð1Þm ðkrpÞe
imfp ¼

X1
n ¼ �1

Jm�nðkbpqÞe
iðm�nÞypq Hð1Þn ðkrqÞe

infq ; bpqorq;

X1
n ¼ �1

Hð1Þm�nðkbpqÞe
iðm�nÞypq JnðkrqÞe

infq ; bpq4rq;

8>>>><
>>>>:

ð5Þ

where (bpq,ypq) is the position vector (polar coordinates) of the qth
center with respect to the pth center as shown in Fig. 2.

2.4. Singular value decomposition

Suppose [^] is an m�n matrix whose entries come from the
field O, which is the field of complex numbers. Then there exists a
factorization of the form

½F� ¼ ½U�½S�½V �H ð6Þ

where [
P

] is the m�n diagonal matrix with nonnegative real
numbers on the diagonal, the superscript ‘‘H’’ is the Hermitian
operator, [U] and [V] are the m�m and n�n unitary matrices,
respectively, and their column vectors which satisfy

fuig
H
Ufujg ¼ dij ð7Þ

fvig
H
Ufvjg ¼ dij ð8Þ
Rq

Oq

x

bpq

Rp
Op

�p
�p

�pq

�q

�q

Fig. 2. Notations of the Graf’s addition theorem.
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in which [U]H[U]=[I]m�m and [V]H[V]=[I]n�n. For an eigenpro-
blem, we can obtain a nontrivial solution for the homogeneous
system from a column vector {vi} of [V] when the singular
value (si) is zero. Such a factorization is called a singular value
decomposition of [^]. We employ the SVD technique to
simultaneously obtain the eigenvalues and eigenvectors.
O1

x

Rj
Oj

R0

φj

�j �0

φ0

O0

�1 R1

�1

Fig. 3. Notations for the solution using the multipole Trefftz method.

Table 1
The former five eigenvalues for a multiply connected problem with an eccentric annul

Eccentric annulus

Multipole Trefftz method (M=5) BEM [27]

k1 1.74 1.75

k2 2.13 2.14

k3 2.46 2.47

k4 2.77 2.78

k5 2.96 2.98
2.5. Multipole Trefftz method

Since the multiply connected domain is considered, both the
interior and exterior complete functions are required. The field
solution can be represented by

uðx;r0;f0;r1;f1; . . .;rN ;fNÞ

¼
X1

m ¼ �1

a0
mJmðkr0Þe

imf0þ
XN

j ¼ 1

X1
m ¼ �1

aj
mHð1Þm ðkrjÞe

imfj ; ð9Þ

where aj
m is the unknown coefficient of the mth complete function

for Oj and the position vector of the field point x with respect to Oj

is noted (rj,fj), j=0,1,2, y, N, as shown in Fig. 3. In order to
enforce the boundary condition on B0 (r0=R0), we must express
each term as a function of (R0,f0) for the solution representation.
By translating Hð1Þm krn

� �
eimfn in terms of functions of (r0,f0) using

the addition theorem of Eq. (5), we have

uðx;R0;f0Þ ¼
X1

m ¼ �1

a0
mJmðkR0Þe

imf0

þ
XN

j ¼ 1

X1
m ¼ �1

aj
m

X1
n ¼ �1

Jm�nðkbj0Þe
iðm�nÞyj0 Hð1Þn ðkR0Þe

inf0 ;

xAB0; ð10Þ

where j, m and n in the three summation symbols denote indexes
of the number of the circular holes, number of the Trefftz bases
and number of terms in the addition theorem, respectively. For
the Dirichlet problem, the boundary condition on B0 is u0=0. By
comparing the coefficient of eimf0 , we have

a0
mJmðkR0ÞþHð1Þm ðkR0Þ

XN

j ¼ 1

X1
n ¼ �1

aj
nJn�mðkbj0Þe

iðn�mÞyj0 ¼ 0;

m¼ 0;71;72; . . .: ð11Þ
us and a concentric annulus using different approaches.

Concentric annulus

Multipole Trefftz method (M=5) BEM [27] Analytical solution

2.05 2.06 2.04884

2.22 2.23 2.22375

2.22 2.23 2.22375

2.66 2.67 2.65993

2.66 2.67 2.65993
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If we consider to enforce the boundary condition on Bl (rl=Rl),
Jmðkr0Þe

imf0 and Hð1Þm ðkrjÞe
imfj in Eq. (9), j=0,1,2, y, N and ja l, are
required to translate into (rl,fl) system using the addition
theorem. The field solution of Eq. (9) yields

uðx;Rl;flÞ ¼
X1

m ¼ �1

a0
m

X1
n ¼ �1

JnðkRlÞe
infl Jm�nðkb0lÞe

iðm�nÞy0l

þ
X1

m ¼ �1

al
mHð1Þm ðkRlÞe

imfl

þ
XN

j ¼ 1
j a l

X1
m ¼ �1

aj
m

X1
n ¼ �1

fmnðRl;fl; bjl; yjlÞ; xABl; ð12Þ
Table 2
The former five modes for a multiply connected problem with an eccentric hole.
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Fig. 4. Determinant versus the wave number by using the multipole Trefftz

method for the eccentric case.
where

fmnðRl;fl; bjl; yjlÞ ¼
Hð1Þn ðkRlÞe

infl Jm�nðkbjlÞe
iðm�nÞyjl ; bjloRl;

JnðkRlÞe
infl Hð1Þm�nðkbjlÞe

iðm�nÞyjl ; bjl4Rl:

8<
: ð13Þ

By satisfying the boundary condition ul=0 and comparing with
coefficients, we have

JmðkRlÞ
X1

n ¼ �1

a0
nJn�mðkb0lÞe

iðn�mÞy0lþal
mHð1Þm ðkRlÞ

þ
XN

j ¼ 1
j a l

X1
n ¼ �1

aj
nfmnðRl;fl;bjl; yjlÞe

�imfl ¼ 0;

m¼ 0;71;72; . . .: ð14Þ

Eqs. (11) and (14) form a system of equations of simultaneous
linear algebraic equations for the coefficients a0

m and aj
m,

m=0, 71, 72,y7M and n=0, 71, 72,y7M, as shown
below:

½F� ðNþ1Þ�ð2Mþ1Þ½ �� ðNþ1Þ�ð2Mþ1Þ½ �fcg ðNþ1Þ�ð2Mþ1Þ½ ��1 ¼ f0g; ð15Þ

where

½F� ¼

F00 F01 � � � F0N

F10 F11 � � � F1N

^ ^ & ^

FN0 FN1 � � � FNN

2
66664

3
77775; ð16Þ

fcg ¼

c0

c1

^

cN

8>>><
>>>:

9>>>=
>>>;
: ð17Þ

in which the dimension of [^] is (N+1)� (2M+1) by
(N+1)� (2M+1), {c} denotes the column vector of unknown
coefficients with a dimension of (N+1)� (2M+1) by 1. The
submatrix, [^pq], denotes the potential of the pth circular
boundary with respect to Oq. The formation of [^pq] can be
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written as
Fpq

� �
¼

J�MðkR0Þe
�iMf0 0 0

0 & 0

0 0 JMðkR0Þe
iMf0

2
64

3
75; p¼ q¼ 0;

Hð1Þ
�MðkRpÞe

�iMfp 0 0

0 & 0

0 0 Hð1ÞM ðkRpÞe
iMfp

2
664

3
775; p¼ qa0;

J�MðkRPÞe
�iMfP J�MþMðkb0pÞe

ið�MþMÞy0p � � � J�MðkRPÞe
�iMfP JMþMðkb0pÞe

iðMþMÞy0p

^ & ^

JMðkRPÞe
iMfP J�M�Mðkb0pÞe

ið�M�MÞy0p � � � JMðkRPÞe
iMfP JM�Mðkb0pÞe

iðM�MÞy0p

2
664

3
775; pa0 and q¼ 0

Hð1Þ
�MðkRpÞe

�iMfp J�MþMðkbqpÞeið�MþMÞyqp � � � Hð1Þ
�MðkRpÞe

�iMfp JMþMðkbqpÞeiðMþMÞyqp

^ & ^

Hð1ÞM ðkRpÞe
iMfp J�M�MðkbqpÞeið�M�MÞyqp � � � Hð1ÞM ðkRpÞe

iMfp JM�MðkbqpÞeiðM�MÞyqp

2
664

3
775; otherwise:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð18Þ
Moreover, the gradient of u(x) is

ru¼ruðx;r0;f0;r1;f1; . . .;rN ;fNÞ

¼r
X1

m ¼ �1

a0
mJmðkr0Þe

imf0þ
XN

j ¼ 1

X1
m ¼ �1

aj
mHð1Þm ðkrjÞe

imfj

2
4

3
5:
ð19Þ

For the Neumann problem, we have the normal derivative

ruUnx ¼r
X1

m ¼ �1

a0
mJmðkr0Þe

imf0þ
XN

j ¼ 1

X1
m ¼ �1

aj
mHð1Þm ðkrjÞe

imfj

2
4

3
5UnðxÞ;

m¼ 0;71;72; . . .: ð20Þ
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Fig. 5. Determinant versus the wave number by using the multipole Trefftz

method for the concentric case.
For satisfying the boundary conditions on B0 (t0=0) and Bl

(tl=0) and comparing with coefficients, we have

a0
mJ0mðkR0ÞþHð1Þ

0

m ðkR0Þ
XN

j ¼ 1

X1
n ¼ �1

aj
nJn�mðkbj0Þe

iðn�mÞyj0 ¼ 0;

m¼ 0;71;72; . . .;7M; xAB0 ð21Þ

and

J0mðkRlÞ
X1

n ¼ �1

a0
nJn�mðkb0lÞe

iðn�mÞy0lþal
mHð1Þ

0

m ðkRlÞ

þ
XN

j ¼ 1
j a l

X1
n ¼ �1

aj
n

@

@rl

f 0mnðrl;fl; bjl; yjlÞe
�imfl rl ¼ Rl

¼ 0;
��

m¼ 0;71;72; . . .7M; xABl; l¼ 1;2; . . .;N; ð22Þ

where

f 0mnðRl;fl; bjl; yjlÞ ¼
Hð1Þ

0

n ðkRlÞe
infl Jm�nðkbjlÞe

iðm�nÞyjl ; bjloRl;

J0nðkRlÞe
infl Hð1Þm�nðkbjlÞe

iðm�nÞyjl ; bjl4Rl:

8<
: ð23Þ

Eqs. (21) and (22) form a system of simultaneous linear
algebraic equations for the coefficients a0

m and aj
m, m=0, 71,

72,y,7M. In the implementation, the value of M is chosen five
to obtain acceptable results in following examples. By applying
the SVD technique to decompose the matrix [^], the determinant
versus k is used to detect eigenvalues and nontrivial vector of {c}.
To save the CPU time for the direct-searching approach, an
adaptive increment of k is used. In the adaptive scheme for the
direct-seaching approach, a larger value of Dk is adopted to find
the possible drop in the first trial. Then, a smaller value of Dk is
considered in the area near the drop location. The eigenmode is
obtained by searching the right unitary vector for {c} correspond-
ing to the zero singular value. The number of the zero singular
values implies the number of multiplicity roots.
3. Numerical examples

We consider two cases of Helmholtz eigenproblems with a
multiply connected domain subjected to the Dirichlet boundary
conditions.

Case 1. A circular membrane with an eccentric hole (special case:
annulus).
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Table 3
The former five modes for a multiply connected problem with a concentric hole.

Table 4
The former five eigenvalues for a multiply connected problem with four equal

holes using different approaches.

Multipole Trefftz method (M=5) BEM [28]

k1 4.499 4.47

k2 5.369 5.37

k3 5.369 5.37

k4 5.549 5.54

k5 5.949 5.95
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Fig. 6. Determinant versus the wave number by using the multipole Trefftz

method for the multiply connected case with four equal holes.
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The eccentric domain is shown in Table 1. The radii of the outer
and inner circular boundaries are R0=2 m and R1=0.5 m,
respectively. The eccentricity e=b01=b10 is 0.5 m. Both the
boundary conditions are uj=0, j=0,1. Extraction of eigenvalues
free of pollution of spurious eigenvalues by using the present
method is shown in Fig. 4. The eigenvalues and modes are
obtained as shown in Tables 1 and 2. By selecting M=5, the results
of this approach agree well with those of BEM [27].

A special case of eccentric ring is an annular domain which is
also considered in Table 1 and the radii of the outer and inner
circles are the same as those of the eccentric case. Since the two
circles are concentric, the distance between the two poles is zero
(b01=b10=0). The linear algebraic system reduces to that derived
by the conventional Trefftz method. Moreover, the analytical
solution could be derived by using this approach. Eqs. (11) and
(14) can be rewritten as

a0
mJmðkR0Þþa1

mHð1Þm ðkR0Þ ¼ 0; m¼ 0;71;72; . . .71; ð24Þ

a0
mJmðkR1Þþa1

mHð1Þm ðkR1Þ ¼ 0; m¼ 0;71;72; . . .71: ð25Þ

According to Eqs. (24) and (25), the analytical eigenequation is
derived as below:

JmðkR0ÞH
ð1Þ
m ðkR1Þ�JmðkR1ÞH

ð1Þ
m ðkR0Þ ¼ 0; m¼ 0;71;72; . . .71:

ð26Þ

The analytical eigenvalues are also shown in Table 1. By using
the SVD technique, the determinant of the influence matrix versus
the wave number is shown in Fig. 5. The true eigenvalues and
modes are shown in Tables 1 and 3, respectively. Although the
mode shape corresponding to the eigenvalues k2 and k3 seem
different from the results of the BEM, mode shapes of the
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Table 5
The former five modes for a multiply connected problem with four equal holes.

J.T. Chen et al. / Engineering Analysis with Boundary Elements 34 (2010) 463–470 469
present method can be linearly superimposed by using the two
independent modes of BEM, and vice versa.

Case 2. A circular membrane with four circular holes.

The outer boundary with a radius R0=1m and four holes
of equal size with radii Rj=0.1m, j=1,2,3,4 are considered
and the former five eigenvalues are shown in Table 4. The
positions of the four centers of the circular holes are (0.5,0),
(0,0.5), (�0.5,0) and (0,�0.5). Chen et al. [28] also used the BEM
for finding the eigenvalues of Dirichlet problems. The eigenvalules
extracted out by the SVD are shown in Fig. 6. Eigenvalues and
eigenmodes using the BEM and the present method are shown
in Tables 4 and 5, respectively. Although the shapes of modes 2
and 3 seem different from the results of the BEM, the modes of
the present method can be linearly superimposed by using the
two independent modes of BEM, and vice versa. Good agreement
is made.
4. Concluding remarks

In this paper, the Graf’s addition theorem was used to reform the
awkward situation of the classical Trefftz method for multiply
connected problems. This approach was coined the multipole
Trefftz method. The multipole Trefftz method has successively
provided an analytical model for solving eigenvalues and eigen-
modes of a circular membrane containing multiple circular holes.
The numerical experiments of the multiply connected problems
were performed to demonstrate the validity of the present
approach. Good agreements between the results of the multipole
Trefftz method and the BEM were made. In addition, the ability of
detecting the root of multiplicity can be achieved in the multipole
Trefftz method by using the SVD technique free of pollution of
spurious eigenvalues. Numerical results show high accuracy and
fast rate of convergence thanks to the analytical approach.
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