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Introduction
In studying the torsion problem using numerical techniques, the analyst may
encounter problems with singularities. Singular behavior is often ignored in the
expectation that the error will be limited to the vicinity of the singularity.
However, it is very important to show how strong the singular behavior is, e.g.
the stress intensity factor of fracture mechanics. In finite elements, special
singular or hybrid elements are sometimes used instead of the quarter-point
rule; MSC/NASTRAN Version 68[1] provides the capabilities of singular
CRAC3D and CRAC2D elements for crack problems, but the Laplace equation
with singularity has not been developed to the author’s knowledge. For
problems with a degenerate boundary, e.g. crack problems[2-7], flow around
sheet piles[8,9] and thin airfoil in aerodynamics[10,11], singularity exists, and
the dual integral formulation has been applied successfully. Using the dual
integral formulation, all the well-posed boundary value problems can be solved
even though a degenerate boundary is present. It is well known that dual
boundary element (DBEM) is particularly suitable for the problem of extreme
localization and concentration with singularity. The DBEM solution is based on
the complete formulation of the dual integral equations. The long standing
abstruseness of the nonunique problem in BEM has been solved, and the
general purpose program of boundary element potential 2-D (BEPO2D) has
been implemented[11].

In this paper, the dual BEM is extended to solve a problem of a cracked bar
under torsion. The condition number versus the finite thickness of the crack
will show the ill-conditioned behavior using conventional BEM. Numerical
experiments for solution instability due to ill-posedness will be shown. For the
sake of computational efficiency, the area integral formula for torsion rigidity
will be transformed into two boundary integrals. Finally, several examples will
be solved using two software packages, the BEPO2D and SDRC-IDEAS
programs using DBEM and FEM, respectively. The results will be compared
with analytical solutions to access their accuracy. Also, the torsion rigidities for
cracks with different lengths and orientations will be discussed.
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Formulation for torsion problems of a cracked bar
The problem of a cracked bar under torsion can be formulated as a Poisson
equation as follows[12,13]:

(1)

where Ψ is the torsion (Prandtl) function, ∇ 2 is the Laplacian operator and D is
the domain. The boundary condition is

(2)

where S is the normal boundary, and C+ and C– are the crack boundaries as
shown in Figure 1. Since equation (1) contains the body source term, the
problem can be reformulated as 

(3)

and the boundary condition is changed to
(4)

Where

This new problem of equation (3) can be used to find the solution for a Laplace
equation with Dirichelet data in equation (4), which is very easy to implement
using DBEM (e.g. the BEPO2D program is used in this study).

The torsion function Ψ can be obtained from Ψ* by superimposing Ψ~, and
the torque can then be determined by 

(5)

where τyz and τxz are the shearing stress determined by τyz = –αG ∂Ψ—∂x and τxz =
αG ∂Ψ—∂y , A is the area of the cross section, G is the shear modulus and α denotes
the twist angle per unit length.

Figure 1.
A cracked torsion bar

under torsion
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By employing the Green’s second identity and equation (1), the area integral in
equation (5) can be transformed into a boundary integral and an area integral
as follows: 

(6)

The induced area integral of the second term on the right hand side of the equal
sign in equation (6) can be reformulated into a boundary integral again by
using the Gauss theorem as follows: 

(7)

Dual boundary element analysis for a cracked bar
The torsion problem can be simulated by using the mathematical model of the
Laplace equation as shown in equation (3). Now, we will consider the boundary
integral formulation for numerical analyses. For the classical Laplace problem
in Figure 1, the equations may be generally described as follows:

Governing equation: 

(8)

Boundary conditions: 

(9)

(10)

where f (s) and g(s) denote the known boundary data, B1 and B2 are the
boundaries and ns is the normal vector on the boundary point s. In the torsion
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problem of equations (3) and (4), no Neumann boundary condition on B2 is
present.

Using the Green’s identity, the first equation of the dual regular boundary
integral equations for the domain point x can be derived as follows:

(11)

where

(12)

(13)

in which r is the distance between the field point x and the source point s. After
taking the normal derivative of equation (11), the second equation of the dual
regular boundary integral equations for the domain point x can be derived:

(14)

where

(15)

(16)

in which nx is the normal vector for the field point x. Equations (11) and (14) are
termed dual regular boundary integral equations for the domain point x. The
explicit form of the kernel functions can be found in[11]. By tracing the field
point x to the boundary, the dual singular boundary integral equations for the
boundary point x can be derived:

(17)

(18)

where R.P.V., C.P.V. and H.P.V. denote the Riemann principal value, Cauchy
principal value and Hadamard or Mangler principal value, respectively.
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Equations (17) and (18) are called dual singular boundary integral equations
for the boundary point x. It must be noted that equation (18) can be derived just
by applying the operator of the normal derivative to equation (17).
Differentiation of the Cauchy principal value should be carried out carefully
using Leibnitz’ rule, and then the finite part can be obtained. The finite part has
been termed the Hadamard principal value in fracture mechanics[2] or
Mangler’s principal value in aerodynamics[14]. The commutative property
provides us with two alternatives to calculate the Hadamard principal value
analytically[2].

The boundary B contains two parts, the normal boundary S and degenerate
boundary, C+ + C–, as shown in Figure 1 and equation (3).

For x ∈ S, equations (17) and (18) can be rewritten as 

(19)

(20)

For x ∈ C+, the equations can be expressed as

(21)

(22)

where the sum and difference for the boundary data on C are defined by 

(23)

(24)

(25)

(26)



Analysis for
cracked bars

under torsion

737

Equations (23) to (26) tell us that the number of unknowns on the degenerate
boundary doubles; therefore, the additional hypersingular integral equation of
equation (22) is necessary. The dual boundary integral equations for the
boundary point provide the complete constraints of all the boundary data for
the well-posed boundary value problem. It must be noted that the compatible
relations of boundary data are dependent no matter whether x is on C+ or on C–

in equations (21) and (22), respectively. Equation (21) has the same equation for
x on C+ or C–, but equation (22) equations with different signs which are also
linearly dependent on each other for x on C+ and C–. Nevertheless, equations
(21) and (22) for x on C+ or C– are linearly independent for the unknowns on the
two sides of the degenerate boundary. Hence, equation (22) plays the most
important role in a problem with a degenerate boundary.

Dual boundary element discretization and the closed-form integral
formulae for the kernel functions 
After deriving the above compatible relationships of the boundary data in
equations (17) and (18), the boundary integral equations can be discretized by
using constant elements, and the resulting algebraic system can be obtained as 

(27)

(28)

where [ ] denotes a square matrix, { } a column vector and the elements of the
square matrices are 

(29)

(30)

(31)

(32)
All the above formulae can be integrated analytically; the quadrature rule is
used to check the regular integral only. The closed-form solutions of equations
(29) to (32) are summarized below.

First, the components of the normal vectors, n(x) and n(s), are defined in the
following form, respectively:

(33)
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(34)
where θ and ø are shown in Figure 2(a). Then, the inner and cross products are 

(35)

(36)
using the following transformation as shown in Figure 2(b), we have

(37)

For the regular element, the integral formulae is

(38)

Figure 2.
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(39)

(40)

(41)

where Lj is the length of the jth element.
In calculating the above limiting values xr → 0, yr → 0) for the singular

element, the l’Hospital rule and inverse triangular relations should be
considered as follows:

(42)

(43)

The closed-form integration for the singular element has the tangent and
normal properties of the classical potential theory by way of the sin(ø – θ) and
cos(ø – θ) behavior in equation (41).

To determine the torsion rigidity using equation (6), the following boundary
integral can be integrated analytically as follows:

(44)

where Nt is the total number of boundary elements, ( ∂Ψ*—∂N )j is the normal
gradient of Ψ* for the jth element, and 

(45)

(46)

in which (s1j, s2j ) is the center coordinate of the jth element and Bj is the
boundary of the jth element.

To find the contribution of the contour integral around the the crack tip as
shown in Figure 3, we have

(47)
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after using the order of ∂Ψ—∂n approaching
1—

√—ε/2 near the crack tip.
Another boundary integral in equation (7) can be integrated as follows: 

(48)

where 

(49)

According to equations (46) and (49), the integrals along the crack surfaces
vanish automatically; i.e. the variation of the torsion rigidity due to a crack is
only influenced by Dj.

Ill-posedness and its regularization for modeling the degenerate
boundary using BEM 
To simulate the zero-thickness crack for the bar, a limiting process with a finite
thickness, ε, is often employed if a convergent solution can be obtained. In this
section, it will be proved that this concept fails using the conventional BEM (UT
or LM only) numerically. Figures 4 and 5 show the influence of ε on the torsion
function along y = 0 for the torsion problem by using the conventional BEM,
UT and LM methods, respectively. As ε approaches 0+, the torsion function in
the interior points along the crack does not converge to the exact solution. This
numerical error occurs even when the boundary point spacing is very small 
(ε → 0). This could easily lead the analyst to believe that he is approaching the
correct solution even when his answers actually contain a large error. The cause
of the error in the preceding solution is the ill-conditioning of the coefficient
matrix instead of the singularity of the crack tip. The ill-conditioned behavior
depends on the thickness of the crack as shown in Figure 6 using UT only, LM
only or dual methods. It is found that the condition number of dual BEM is less
than that of the two methods, UT and LM, respectively. As the thickness

Figure 3.
Contour integration
around the crack tip

ε
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Figure 4.
UT method of solution
for the torsion function
by means of a limiting
process of ε = 0.1, 0.01,

0.001 for the crack
thickness
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Figure 5.
LM method of solution
for the torsion function
by means of a limiting
process of ε = 0.1, 0.01,

0.001 for the crack
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becomes zero, the algebraic equation leads to a singular matrix using UT or LM
only. The difficulty with an infinitely thin crack has been solved by dividing the
region into two separate zones, the so-called multi-zone method[15-17]. The
drawback of the multi-zone method is obvious in that the introduction of
artificial boundaries is arbitrary, nonunique, and thus not qualified as an
automatic scheme. Also, it results in a larger system of equations than is
needed. Instead of employing the multi-zone method, dual BEM can be applied
to avoid the ill-conditioned problem as shown in Figure 6. If the thickness of the
crack approaches zero but does not equal zero, the order of dependence for the
constraint equations by collocating the boundary points on the two sides of the
crack is high using the UT or LM methods. To obtain more independent
equations on the two sides of the crack boundary, dual BEM must be
considered; i.e. one is the UT equation for one side of the crack boundary, and
the other is the LM equation for the other side of the crack boundary. When the
thickness of the crack is exactly zero, the method combining the UT and LM
equations is called dual BEM. Also, dual BEM can be applied to solve the
problem when the finite thickness is near zero. Since the constraint equations
obtained by collocating the points on the normal boundary have two choices,
the UT or LM equations as shown in Figures 7(a) and 8(a), the two results are
satisfactory as shown in Figures 7(b) and 8(b), respectively.

Figure 6.
Condition number using
the UT, LM and dual
BEM (UT combined
LM) methods for
different crack
thicknesses of ε = 0.1, 
0.01, 0.001

1018

1015

1012

109

106

103

1
10–15 10–5

condition number

UT
LM
Dual method (UT + LM)

Key

10–13 10–11 10–9 10–7

ε (thickness)



Analysis for
cracked bars

under torsion

743

Results and discussion of analytical and numerical solutions
The analytical solutions for the torsion rigidities of different length direct
cracks are shown below[18]:

(1) For the case of a–d = 0.50, where a is the crack length and d is the diameter
of the torsion bar, we have the torsion function in polar coordinate 
(r, ø) and torsion rigidity (Mz) as shown below: 

Figure 7.
(a) constraint equations
obtained, (b) dual BEM
solution by UT method
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Figure 8.
(a) constraint equations
obtained, (b) dual BEM
solution by LM method
(mixed with UT method)
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(2) For the case of a–d = 0.25, the torsion function in bipolar coordinate 
(α, β) can be expressed as 

(52)

where

(53)

(54)

The torsion rigidity (Mz) is obtained as

(55)

where

(56)

After some lengthy calculations, we have

(3) For the case of no crack,  a–d = 0, we have the torsion function in the (x,y)
coordinate as shown:

The torsion rigidity is found to be

For the case of a–d = 0.5, the values of the torsion function along x = 0 and 
y = 0 are those shown in Figures 9(a) and 9(b), respectively. It is found that the
results of dual BEM agree with those of the analytical solution[18] and
conventional BEM[13]. According to the two boundary integrals in equations
(6) and (7) for torsional rigidity, the nondimensional torsional rigidity is that
shown in Figure 10 for a radial crack with different lengths. It is found that the
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Figure 9.
(a) airy stress function
along x =0, (b) airy
stress function along 
y = 0
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torsion rigidities for a–d = 0, 0.25 and 0.5 match the analytical solutions in[18].
Also, the results of dual BEM are better than the FEM solutions using the
SDRC-IDEAS software.

Similarly, by changing the orientations of the crack angle θ as shown in
Figure 11(a), we can construct the curve for Mz versus θ (0° ~ 45°) for a slant
crack as shown in Figure 11(b). Although no analytical solutions can be used
for comparison, the DBEM results agree well with the FEM solutions.

Conclusions 
The dual boundary element method has been applied to solve the torsion
problems for a cracked bar. The results show that DBEM provides high solution
accuracy and greatly simplifies the modeling. DBEM involves modeling only on
the boundary without introducing the artificial boundary as the multi-zone
method proposes even though the thickness of the crack is zero. Also, the area
integral for torsion rigidity is transformed into two boundary integrals by
using the Green’s second identity and Gauss theorem; therefore, the domain cell
does not need to be discretized. The results have been compared with analytical
and FEM solutions, and found to be in good agreement.

Figure 10.
Torsion rigidities for

cracks of different
lengths
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