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Abstract: It is well known that many approaches can yield the orthog-
onal matrix. Householder employed the mirror technique to derive the
symmetric orthogonal matrix. The Householder matrices of odd orders
are found to have the matrix forms of e! and /%, and those of even
orders are found to have the matrix forms of ¢*#, respectively, where 4
is an anti-symmetric matrix, B is a symmetric matrix and ¢ is a specified
tizne. Householder mairices with dimension of one by one to five by five
are constructed by the proposed formulation. Also, the rejation among
orthogonal, Householder and Hermitian matrices are discussed.
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1. Introduction

Orthogonal matrices are always encountered not only in mathematics
but also in engineering. In mathematics, orthogonal matrices play an
important role in linear algebra (17, 19] and matrix theory [1, 5, 6, &, 11].
In engineering practice, orthogonal matrices are the basis for rigid body
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dynamics and constitutive law for finite deformation [3, 7, 13, 14, 16].
How to construct an orthogonal matrix is of our concern [5, 9, 13].

Matrix exponentials were always used in biological, physical, eco-
nomical and control processes [4, 9, 10, 12, 18, 20]. Nineteen dubious
ways to calculate the matrix exponential were developed [16]. Chen de-
veloped the residue theorem for matrix [2] and calculated the matrix
exponential efficiently in conjunction with the Cayley-Hamiiton Theo-
rem [9]. Householder matrix is one kind of symmetric orthogonal matrix
which is derived by geometric transformation of mirror mapping. Only a
few papers [13] have discussed the zelation between Householder matrix
and matrix exponential.

In this paper, the matrix exponential ¢! and ¢'B* are derived by
using an anti-symmetric matrix A and symmetric matrix B to construct
the orthogonal matrices. The Householder matrix will be treated as a
gpecial case of the matrix exponential. Also, several examples will be
demonstrated to check the validity of the present formulation.

2. Review of Householder Matrix

If y € R® is a nonzero vector, an n by n matrix of the form H =
T

I- ;f—g is called a Householder matrix. In the references [1, 6, 8], we
can find that H has many properties, as shown below:

(a) HT = H (symmetry).

(b) HTH = HHT = H* = I, where I is an identity matrix.

(c}) Hy = P = H(Hy) =y, where y is an arbitrary vector, P is a
mirror-mapped vector by the Householder transformation.

{d) For the special case, it can be shown in Figure 1. Given

cosa
i:'_[sina:]’ (1)
2upT
wecanobtainH,,:I—j—y, where ¥ € R? and

-~ -

~cos(2a) - sin(2a)

H, = —sin(2a) cos(20) |° (2)



A NEW POINT OF VIEW FOR THE... 201

3. Similarity Theorem and Residue Theorem for a Matrix
3.1, Similarity Theorem for Matrix

An n by n matrix A is similar to a matrix D, if and only if C and &}
exist and

A=CDC™. (3)
The eigenvalues of A are denoted by Ay, Az, ..., An, and the correspond-

ing eigenvectors of A are ¢, ¢4, ..., ¢p, respectively. The diagonal ma-
trix with the diagonal elements of eigenvalues is shown below:

M 0 0 O
0 x 0 O

-1. 7 .. @
0 0 0 A,

The modal matrix can be composed by assembling the eigenvectors as
shown below:

C=[é1 ¢ - ¢ ]. (5)
Eq. (3) is the relation between the similar matricez A and D.

3.2. Residue Theorem for Matrix

Given a real-variable function f(z), it can be divided by (z - &) with
the residue, f(a). The formula can be written as

f{z) = (z ~ a)Q(a) + f{a}, (6)

where (J{z) is a quotient term and f(a) i8 a residue. If the divided term
is an n'* order polynomial, we have

Hz) = (@nz™ + an—12" ' + .-+ + 12 + 6g)Q(T) + rp- 12"}
+---+rz4r.  (7)
Eq. (7) can be extended to a matrix form {2, 9] as shown below:

F(A) = (an A" +an_1 A"+ + 014 + ao])Q(A) + rp_1 4™
+--+rA+rel, (8)
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where anA™ + ap_ A} + .-+ 4 gy A + agl = 0 stems from the Cagley-
Hamilton Theorem for the A matzix. If the matrix A has multiple eigen-
values, we must differentiate Eq. (8) because the number of equations
is less than that of the undetermined coefficients. For this reason, we
should differentiate n-times if the matrix A has n-multiple eigenvalues.
Residue Theorem for Matrix is particularly powerful for the case of n-
multiple eigenvalues, since it is not necessary to calculate the eigenvec-
tors in advance. We will illustrate this point by using the following two

examples.

201
Example 1. Given a matrix E = [ 02090 ], we can calculate

003
the matrix exponential

Bt = (—6te® — 3% + 4e¥)T + (5te% + 4e¥ - 4e*)E
+(—te® — e + SHER,  (9)

where the divided term is zero since it obeys the Cayley-Hamilton The-
orem.

1 0 0 4 05
Basedon I=| 0 1 0 {,andE2=]0 4 0 |, we can obtain
0 01 009

e® 0 8-
Pt | o 0 .
0 0o e

(=2 — %
2 e pa
b -~ ]

Example 2. Given a matrix F = [ ], we can calculate

the matrix exponential

A2¢2 2
eft = (1-At+ -—2--6’“1"’ + E-e“Fz), (10)

where the divided term is zero since it obeys the Cayley-Hamilten The-
orem.
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100 A2 o2 1
Bmdonf:[olo],andﬂ= 0D X 2A},wecan
001 0 0 X
obtain

Ft 1
e = 0
0

GO =
— 03| R

4. Relationship Between ¢** and 3 by 8 Householder Matrix

By setting a column vector = { b }, we can calculate the 3 by 3
[+
Householder matrix by

2T 1-2a2 -2b ~-2ac
H=T1-3F | -2 1-20 -2c |, (1)
kE 20 —2b 1-22

where the length of v is unity, ie., Ty = 1.

=& a O
three eigenvalues of A are 0, va? + 5% + ¢ i, and —v/a? + b2 + ¢2 i. By

using the Residue Theorem for Matrix, we can obtain

0 —« b
By choosing the anti-symmetric matrixA=l c 0 —a],the

sinwt

At = (120 2y (=441, (12)

o2
where w = Va2 + b2 + ¢ = 1. Eq. (12) is also termed Fuler-Rodrigues
Formula. If ¢ is equal to , we can obtain

222 -1 2ab 2ac
e*=| 2a 2W-1 22 |. (13)
2ca 25 2% -1

By comparing Eq. (13) with Eq. (12), we find that the relation between
the matrix exponential and the Householder matrix is

et = ~H. (14)
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5. Relationship Between an Odd-~order Anti-symmetric
Matrix A and ¢4

For an anti-symmetric matrix A with odd dimension, it i easy to find
that AAT is equal to ~ A?, where AAT is positive definite and symmetric.
The eigenvalues for the matrix are imaginary numbers and conjugate to
each other. Algo, zero must be one of the eigenvalues, ie.,

Ar=0-yg, (16)

where g i the corresponding eigenvector for the zero eigenvalue. By set-

ting the eigenvalw of Atobe 0: ﬂ'li: "ﬂli‘l ﬁzii —Pat, v, and ﬂnia _ﬁni:

the corresponding eigenvectors are ¥, ¢, 1, ¢, 93, - * , $n, and ¢, where

v and ¢y, ¢1, 92,93, °** , Pn, and ¢ vectors are orthogonal to each other.
We will elaborate it later on.

By setting p + ig to be the complex eigenvector of A, we have

A(p+iq) = iBalp +i9). (18)
By taking the conjugate of Eq. (16), we have
Alp — ig) = ~ifalp — ig)- (17)
If Eq. (16) is prepultiplied by (p + ig)7, we have
(p+ ia)TAlp + ig) = iBa(p + ig)" (p + ig). (18)

Eq. (18) can be rearranged as
(?"Ap - q" Aq) +i(pT Aq +d" Ap)
=Bul~(pTe +d"P) +ilpTp - ¢Tg)). (19)
By setting pT Ap to be a real constant 5, we have
CEL N (20)

ie,
(0" Ap)T =p"ATp = —pT Ap. (21)
From Eq. (21), we have
0= (22)
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By comparing Eq. (22} with Eq. (20), we can obtain
n=p Ap=0. (23)
In a similar way, we can Gerive
gt Ag=0. (24)

Therefore, the real-part of the left hand side in Eq. (19} is zero. By

setting p” Ap, and q7 Ap to be real constants, £ and {, respectively, we
have

£ =¢, (25)
(T=¢, (26)
(pTA)T =¢"ATp=~¢"Ap=—(=¢T=¢. (27)
From Eq. (27), we have
£=-(, (28}
ie.,
pT Ag=—q" Ap. (29)

By comparing Eq. (29} with Eq. (19), the imaginary-part of Eq. (19)
is also zero. Therefore, we have

P’r=4q"q (30)
Since
plqg=q"p, (31)
we have
pTg=q"p=0. (32)
By setting p”p = 1, we have
Pp=qdq=1 (33)

Because the matrix, 42, is a symmetric matrix, we have
A2=0D%0' = 0D%0". (34)
Therefore, the relation between A and ® is

AD = DDy, (35)
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le.,
A=0Ds07 ! = 3D 87, (36)
where
Dy=
0 0 0 0 0 0 0
0 11 O 0 0 0 0
¢ 0 —-fi 0O 0 0 0
0 0 0 i 0 0 0
# (37
¢ 0 0 0 —pBai 0 0 ’
0 0 0 0 Bni O
1 0 0O 0 0 0 D0 =Bt (2n+1)x(2n+1)
o= [E,, ¢1=¢‘{1¢21¢;1'” 1¢ﬂ1¢:|.]1 (38)
3T =o' "_—Lli':ﬁbla Ta‘ﬁ?aqf’;i"' 1¢m¢;]T' (39)
Therefore, we have
et = @Dpd ! = dDEdT, (40)
where
Dg =
F Ot 0 0 0 0 0
0 eﬁlti 0 0 0 4] 0
0 0 e At 0 0 0
0 0 0 P 0 0 0
0 0 0 0 e Pt 0 0
60 0 0 0 0 I o9
| 0 0 0 0 0 : 0 e Pt | (2n-+1)x(2n+1)

(41}
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x

If 8 =ﬁ2=---=ﬁ,.=k,amlt="c

, we have

et = A" = 0D, 8! = 8{D, + Dy}¥T = -1 + 2T = —H,

where k is a real constant and
Dz = D) + Ds,
in which
1 0 0 0 0 0 0 T
g -1 0 0 O 0 0
0 0 -1 0 0 0
0 0 0 -1 © 0 0
0 0 0 0 -1 0 o
0 0 ~1 @
L 0 0 -1 (3n+t)x(2n+1)
[ -1 0 0 0 0 0 0 7
¢ -1 0o o0 o 0 0
0 ~1 0 0 0
0 O -1 0 0 0
D, =
0 0 0 o0 -1 0 0

)
=]
=]
o]
o
L

=

(2n+1)%(2n+1)
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(42)

(43)

(44)

. {45)
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"2 06 0 0 0 0 0]
0 0 0 0 O 0 0
00 0 0 0 0 0
00 0 0 O 0 0
Dy = (46)
00 0 0 0 0 0
0 0 0 0 : 0
I 0 0 0 i 0 0l .o

Therefore, eA” is found to be =H. The Householder matrix constructed
by the r vector of dimension {2n + 1) can be expressed by

e = _H, (47)

where A is a {2n + 1) by (2n 4 1) anti-symmetric matrix with one zero
eigenvalue and eigenvector .

6. Relationship Between Real Symmetric Matrix B and ¢'Z*
Given a unit vector v, we can have a symmetric matrix B with a dimen-
sion of nn by n, where B = pi7. The corresponding eigenvalues of B are

1, and n — 1 zeros. The correaponding eigenvector for the eigenvalue of
1 is v, Based on the Similarity Theorem for Matrix, we have

{iB=9Dg¥ ! = ¢DpUT, (48)

where
N R (49)

T =0T =g o 92 - o], (50)



299

A NEW POINT OF VIEW FOR THE...

(61)

......

Dy =

(52)

“RXN

By setting the value of ¢ to be 7, we have

(53)

= H,

=1-2up

e = D, U7 = U(D; — Dg)uT

where

(54}

[ 1

Dy =
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o o o o O
[ o R e B e B e
[ e T s [ e N o
e S e T s N e B e
=R wa- B [ e S o

(55)

L == R - R o B o B
LR e TR e IR e S e B

o]
=
&=
o
=
=
o=

- ' ‘ < nxn

The n by n even-order Householder matrix, H, constructed by using the
v vector can be expressed as

BT — |, (56)

where B is a symmetric matrix with eigenvalues 1 and 0. The corre-
sponding eigenvector of the eigenvalue 1 is p.

7. Unique and Nonunique Solutions for A to Satisfy e4” = H

In this section, we illustrate by using anti-symmetric matrices with di-
mensions of 5 by 5 and 3 by 3 to construct the Householder matrix using
the matrix exponential.
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a
b
Example 1. By setting vz = { ¢ }, we have

d

e
T
Hy = I — 2502
Vg Vs

1—2a2 —2ab —2ac —2ad  —2ae
—2ba 1-28 —2bc —2bd —2be
—2ca  —2b 1-2¢ ~2d —2ce |, (B7)
—2da  —2db —2dc 1-2d° —2de
—2ea —2eb —2ec —2ed 1~ 2¢?

where [v5| = ugus = 1. In order to satisfy Ar = 0, we have many choices
for 4 as shown below:

[ 0 —¢ b —e d]
c 0 x x x
Ay=| -b x 0 x x|, (68)
e *x % 0 x
| -d x x x 0 ]
[ 0 ¢ x x x ]
—c 0 a =-e d
Ay=| x -2 0 x x|, {59}
* e x 0 x
[ x —d x x 0 ]

where “ x ” denotes an arbitrary real number.

G
Example 2. By setting 13 = { b }, we have
c

T 1-2a2 -2ab ~2ac
Valy 2
Hy =13 -2 = —2ba 1-2b —2bc . (60)
~2ca -2chb 1-2c%
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To satisfy Ay = 0, we have only one choice for the anti-symmetric
matrix,

0 —¢ b
A=} ¢ 0 -a|. (61}
-b a 0

Since the order of matrix A is n, the nummber of undetermined com-
ponents of ¢ vector is n — 1. The number of undetermined elements

-1
in matrix A is M — 1. In the case of n = 3, we have only one

solution since the number of unknowns are the same as the number of
equations. Por the case of n > 3, nomunique choices can be obtained
since the number of unknowns is larger.

8. Numerical Examples
8.1. Numerical Examples of Real Anti-symmetric Matrices
1. Square matrix with a dimension of one by one

By setting ¥ = 1, we have —e’'* = | = H,, where 4, = [0], and

2. Square matrix with a dimension of three by three

0.6
By setting v3 =< 0 }, we have —e47 = H,
0.8
0 -038 0 028 0 -0.96
where Az = | 0.8 0 —06 |,and Hz = 0 1 0
6 06 0 —096 0 -0.28

3. Square matrix with a dimension of five by five
0.1
0.3

By setting v = < 0.4 }, we have —ed%® = Hy,
0.5
0.7
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098 -0.06 —-0.08 —-0.1 -0.14
—0.06 082 -024 -03 -0.42
where H, = | —0.08 -0.24 068 -04 -0.56 |, and there are
-01 -03 -04 05 -07
—-0.14 -0.42 056 -0.7 0.02
many other choices for Ay as shown below:

0 -0.4 0.3
0.4 0 —0.772727
Aspy = | -0.3  0.772727 0

0.7 0.00909091 0.390909
-0.5 —0.390909 0.00909091

—0.7 0.5
~0.00909091  0.390909
—0.390909 —0.00909091 | , (62)
0 ~0.327273
0.00909091  0.327273

As(z) =
0 —04 0.869231 —0.1  -0.253846
0.4 0 —0.1 0.7 —0.5
-0.869231 0.1 0 0.253846 -0.1 , (63)
0.1 0.7 0.253846 0 0.430769
0.253846 0.5 01  -0.430769 0
Ap(s) =
0 ~0.928571 0.3 0.0571429 0.185714
0.928571 0 —0.1 —0.185714 0.0571429
~0.3 0.1 0 -0.7 0.5 . (64)
—0.0571429 0.185714 07 0 —0.471429
—0.185714 ~0.0571429 —0.5 0.471429 0

All the above matrices are Householder types. For the higher order
cases, more choices can be obtained.
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8.2. Numerical Examples of Real Symmetric Matrices

1. Square matrix with a dimension of one by one
By setting ¥1 = 1, we have ¢'B1* = H,;, where H; = -1, and B, =
(.
2. Square matrix with a dimension of two by two

By setting vy — { gg },we have /B2 = H, where

[ 0.28 —0.96 _[036 048
H“‘[-o.gs -0.28]’ and B”‘[o.4s 0.64]'

3. Square matrix with a dimension of three by three

0.6
By settingyz =¢ 0 }, we have ¢*%% = Hj, where
0.8
028 0 =096 036 0 048
Hy=| 0 1 0 |, and Bs=| & 0 0 |.
-096 0 -0.28 048 0 0.64
4, Square matrix with a dimension of four by four
0.1
- 0.5 'B t
By setting vq = 0.5 , we have €74 = H,; where
0.7
098 -0.1 —-01 -0.14
b | -01 05 —05 o7
1 -1 -05 05 —07 |’
-0.14 -0.7 0.7 0.02
and
001 0.05 0.05 0.07
B 005 025 0.25 0.35
4 =

005 025 025 035
007 035 0.35 0.49

5. Square matrix with a dimension of five by five
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0.1
0.3
By setting s = { 0.4
0.5
0.7

0.98
—0.06
Hy=1{ -0.08
-01
~0.14

0.01
0.03
Bs=1 0.04
0.05
0.07

=0.06
0.82

-0.24
—0.3

-(.42.

0.03
0.09
0.12
0.15
0.21

305

, we have €5t — Hy where

-0.08 —-01 -0.14
-024 03 -042
.68 -04 =056 |,

-4 05

-0.7

=056 —-0.7 0.02

0.04 0.05
012 0.15
016 0.2
02 0.25
0.28 0.35

9. Conclusions

0.07
0.21
0.28
0.35
0.49

In the paper, we have constructed the Householder matrix by using the
matrix exponentials. Also, their relations between matrix exponentials
and Householder matrices were discussed. Two cases for A in et were
considered. Oue is an anti-symmetric matrix exponential with add di-
mension, the other is a symmetric matrix exponential with even dimen-
sion. It is interesting to find that e(B+A)T 55 alzo an orthogonal matrix,
where the matrix B +iA is a Hermitian matrix. Several examples have
been shown to check the validity of the expressions. The inclusive and
exclusive sets for the orthogonal matrices are summarized in Figure 2.
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Figures

Figure 1: Mirror plane and mirror-mapped vector

All orthogonal matrices

Figure 2: Relationship between the orthogonal matrices
and the Householder matrices
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