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Abstract: In this paper, the singular value decomposition and polar
decomposition in continuuin mechanics are compared with and the re-
lation is constructed. The matrix analysis is studied and the geometric
interpretation is explained. The dual bases can be extracted from the
right and left vectors of singular value decomposition. An illustrative
example of the simple shear case is shown to see the validity of the
proposed formulation.
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1. Introduction

The polar decomposition theorem in the continuwm mechanics can be
found in the textbooks [1, 2, 3]. It is well known that the deforma-
tion gradient (F) can be decomposed into (VR) or (RU), where R is
a rotation matrix, U and V are stretching matrices. The former one
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(VR) can be explained that the total deformation process can be de-
composed into rotation first and then stretching, while the latter one
(RLJ) is stretching first and then rotation. In the matrix computation,
singular value decomposition (SVD) [4] is a very powerful technique for
the matrix decomposition and has been applied to engineering problems
successfully [5, 6. However, the relation between the SVD and the polar
decomposition was not discussed before and their geometric interpreta-
tions in continuum mechanics were not fully understood to the authors’
best knowledge.

In this paper, singular value decomposition technique is employed to
understand the deformation mechanism in continuum mechanics. The
role of the right and left unitary matrices in the singular value decompo-
sition and their relation to the orthogonal matrix (If) in polar decompo-
sition will be examined. Omue illustrative example with plane deforma-
tion, will be demonstrated to show the deformation mechanism by using
the SVD technique. It is shown that the two unitary matrices (© and W)
in SVD provide dual bases for the deformed and undeformed systeins.
If the deformed and undeformed infinitesimal elemnents are expanded
according to the dual bases, the transformed coordinates between the
deformed and undeformed states can be mapped by a diagonal matrix
only.

2. Polar Decomposition and SVD Technique

From the textbooks on continuum mechanics [1, 2, 3], we have
F = RU = VR, (1)

where F is the deformation gradient matrix, which maps undeformed
element dX to deformed element dx (dx = FdX), I is an orthogonal
matrix, [ and V are positive definite symmetric matrices. The U, V

and R matrices can be obtained by
U=VFTF, (2)
V =VFFT, (3)

R=FU"", (4)
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where the superseript “T™ denotes the transpose of a matrix. By em-
ploying the SVD technique [4], the F' matrix can be decomposed into

F=axuT, (5)

where ¥ is a diagonal matrix with elements of singular values of F', & and
U are the right and left unitary matrices, respectively. By substituting
Eq. (5) into Egs.(2) and (3), we obtain

U=unel, (6)
V=0oxeT, (7)

By substituting Eq.(6) into Eq.(4), we have
R=2ow" (8)

According to the property of SVD, we have
Fii = aidi, (9)
FT¢; = o3, (10)

where o; is the ith singular value of F, ¢ and t; are the ith column
vectors for © and W, respectively. According to Eqgs.(6) and (7). it
is easily found that U/ and V' matrices have the same singular values
(eigenvalues) (o;) and their eigenvectors are v; and ¢;, respectively. If
the undeformed element, dX, is expanded in terms of the ¢; (i = 1,2,3)
bases, we have the new coordinate, dY,

dY = ¢"dX. (11)

Similarly, the deformned element, dx, can be expanded in terms of ¢;
(¢=1,2,3) bases and the new coordinate for dy is

dy = ®Tdx. (12)

According to dx = FdX, the formula between the transformed coordi-
nates, dy and dY, can be derived as

dy = £dY. (L3)

It is found that the two transformed vectors (dy and dY) can be mapped
by the diagonal matrix (X) only.
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3. An Illustrative Example

Considering a simple shear problem [7] defined by

2
T = ;{]+7§}:2, (14)
Iz = X'.Z! [15]
r3 = Xj, {15}
we have
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Based on the SVD technique, F' can be decomposed into

where
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(21)

(22)

(23)

(24)

By substituting Eqs.(22) ~ (24) into Egs.(6) ~ (8) and comparing
with the results of Eqs.(18) ~ (20), the relations between (U, V, R) and
(®,%,¥) in Eqs.(6) ~ (8) are all verified. The dual bases for the unde-
formed (1,12, 13) and deformed states (¢, ¢2, ¢3) are shown in Figure
1{a). For the undeformed vector ), the deformation process (F' = RU)
can be decomposed into stretching with ratio v/3 and then rotation —30
degrees as shown in Figure 1(b). A reverse process (F = VR) can be
understood that rotation —30 degrees first and then stretching with ra-
tio /3 as shown in Figure 1(c). By considering the undeformed vector
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at the corner of the square as shown in Figure 1(b),
i T =
dX = (1,1,0) (25)

we have the transformed vector by using Eq.(11),

1 : -
dy =23 1-+8 \p (26)
2 2
By substituting dY into Eq.(13), we have
3+v3 -3+v3 ..
dy = ( , ,0)7. (27)

2 6
By substituting dy in Eq.(27) into Eq.(12), we have

dxz{l-t—\%?liﬂ}r, (28)

which is exactly the same as FdX. Although the derivation is lengthy,
the geometric interpretation in the rotation and stretching stages is clear.
Also, the relation of polar decomposition in continuum mechanics and
SVD in linear algebra is constructed.

4. Concluding Remarks

The mechanism of deformation can be understood by using the SVD
technique instead of polar decomposition in this paper. The relation
between the matrices in the SVD and those in the polar decomposi-
tion was constructed. Also, the deformation stages of stretching and
rotation were clearly interpreted in the shown example for plane defor-
mation. Dual bases for the deformed (¢;) and undeformed () states
are unbedded in the two unitary matrices of ® and ¥. The transformed
coordinates for the deformed state can be mapped into that of the de-
formed state by a diagonal matrix if the dual bases are adopted.
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Figure 1{a): The dual bases for the deformed shape
and undeformed shape.

Figure 1(b): The undeformed shape (solid line) and
deformed shape (dotted line).
Figure 1(c): The undeformed element ( ﬁ, 1,0)

|
and deformed element (1, ,Tﬁﬂj



