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Analytical study and numerical experiments for true
and spurious eigensolutions of a circular cavity
using the real-part dual BEM
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SUMMARY

It has been found recently that the multiple reciprocity method (MRM) (Chen and Wong. Engng. Anal.
Boundary Elements 1997; 20(1):25—-33; Chen. Processings of the Fourth World Congress on Computational
Mechanics, Onate E, Idelsohn SR (eds). Argentina, 1998; 106; Chen and Wong. J. Sound Vibration 1998;
217(1): 75-95.) or real-part BEM (Liou, Chen and Chen. J. Chinese Inst. Civil Hydraulics 1999; 11(2):
299-310 (in Chinese)). results in spurious eigenvalues for eigenproblems if only the singular (UT) or
hypersingular (LM') integral equation is used. In this paper, a circular cavity is considered as a demonstrative
example for an analytical study. Based on the framework of the real-part dual BEM, the true and spurious
eigenvalues can be separated by using singular value decomposition (SVD). To understand why spurious
eigenvalues occur, analytical derivation by discretizing the circular boundary into a finite degree-of-freedom
system is employed, resulting in circulants for influence matrices. Based on the properties of the circulants,
we find that the singular integral equation of the real-part BEM for a circular domain results in spurious
eigenvalues which are the zeros of the Bessel functions of the second kind, Y,(kp), while the hypersingular
integral equation of the real-part BEM results in spurious eigenvalues which are the zeros of the derivative
of the Bessel functions of the second kind, Y, (kp). It is found that spurious eigenvalues exist in the real-
part BEM, and that they depend on the integral representation one uses (singular or hypersingular; single
layer or double layer) no matter what the given types of boundary conditions for the interior problem are.
Furthermore, spurious modes are proved to be trivial in the circular cavity through analytical derivations.
Numerically, they appear to have the same nodal lines of the true modes after normalization with respect
to a very small nonzero value. Two examples with a circular domain, including the Neumann and Dirichlet
problems, are presented. The numerical results for true and spurious eigensolutions match very well with the
theoretical prediction. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Eigenproblems are often encountered not only in vibration problems, but also in acoustic prob-
lems. Since exact solutions are sometimes not available, numerical methods are needed. Using
the complex-valued boundary element method (BEM), the eigenvalues and eigenmodes can be
determined [1]. To avoid the complex-valued computation, real-part formulation, imaginary-part
formulation and multiple reciprocity method have been considered by some researchers. A simpli-
fied method using only the real-part or imaginary-part kernel was presented by DeMey [2]. How-
ever, only the first eigenvalue was studied in [2]. Also, Hutchinson replaced the complex-valued
kernel by the real-part one to solve the plate and membrane vibration problems [3]. This novel
method, using only the real-part BEM [4], was found to be equivalent to the multiple reciprocity
method (MRM) if the zeroth-order fundamental solution is properly chosen [5]. In Reference [6],
Chen and Wong found that MRM results in spurious eigensolutions for one-dimensional examples.
Numerical experiments using real kernels were performed for two-dimensional cases [7]. Also, the
relations among the conventional MRM, complete MRM, real-part BEM and complex-valued BEM
were discussed in a keynote lecture by Chen [5]. It is very obvious that one advantage of using
only the real-part kernels is that the real-valued computation is employed instead of complex-
valued computation as used in the complex-valued BEM. Another gain is that lengthy derivation
as required for the MRM can be avoided. However, two drawbacks of the real formulation have
been found to be the occurrence of spurious eigenvalues [6, 7] and failure when it is applied to
problems with a degenerate boundary [8]. To deal with these two problems, the framework of
the real-part dual BEM was constructed to filter out spurious eigenvalues and to avoid nonunique
solutions for problems with a degenerate boundary. As for the latter problem, the dual formulation
is the key to solving problems with a degenerate boundary [8—13]. The reader can refer to a
detailed review article on dual BEM, including 250 references, by Chen and Hong [14]. As for
the former problem, the reason why spurious eigenvalues occur in the MRM or real-part BEM
is the loss of constraints in the imaginary part, which was investigated in [15]. The fewer the
constraint equations, the larger the solution space. It is not surprising that spurious eigenvalues
occur in the MRM or real-part BEM formulation. By employing the dual MRM or real-part dual
BEM, spurious eigenvalues can be filtered out by checking the residue between the singular and
hypersingular equations, e.g. as in the two-dimensional cases studied in Reference [8]. A more
efficient way, the SVD technique, was employed to filter out spurious modes for a rod [16], an
Euler—Bernoulli beam [17], and a two-dimensional circular cavity [9]. The dual MRM and real-
part dual BEM can be used to simultaneously solve the problems of spurious eigenvalues and
nonunique solutions resulting from a degenerate boundary. However, the positions where spuri-
ous eigenvalues occur were not clearly understood in the past for two- and three-dimensional
cases. Although spurious eigensolutions were found in one-dimensional cases (rod [16] and beam
[17]) analytically and numerically, their existence for higher dimension cases were only discovered
numerically but not analytically [9, 18]. Predicting analytically where spurious eigenvalues will oc-
cur and how the spurious modes will behave was the goal of this study. That is to say, analytical
solutions for both true and spurious eigenvalues are of interest. Also, numerical experiments using
the real-part dual BEM were performed for comparison. Both direct and indirect methods will be
examined here analytically.

In this paper, we employ the real-part dual BEM to solve the acoustic problems of a circular
cavity. After assembling the dual equations, the singular value decomposition (SVD) technique
[17] is employed to filter out spurious eigenvalues for two-dimensional cavities. Also, the boundary
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modes can be obtained directly by extracting the corresponding right singular vector of the right
unitary matrix in SVD. Two examples for a circular domain, including the Dirichlet and Neumann
problems, are employed to check the validity of the proposed method. The spurious eigensolutions
are analytically predicted and are compared with those obtained by using the real-part dual BEM
program, DUALREL. Finally, the true eigenvalues are derived analytically by approaching the
discrete system as continuous using the analytical properties of circulants and are also compared
with the numerical solutions obtained using the dual BEM program to check the validity of the
present formulation.

2. REVIEW OF THE REAL-PART DUAL INTEGRAL FORMULATION
FOR A TWO-DIMENSIONAL ACOUSTIC CAVITY

The governing equation for an acoustic cavity is the Helmholtz equation:
(V2 + k) {u(x)} =0, xeD,

where V? is the Laplacian operator, D is the domain of the cavity and k is the wave number,
which is the frequency over the speed of sound. The boundary conditions considered here are
either of the Neumann or Dirichlet type.

Based on the complex-valued dual BEM [10, 19], the dual integral equations for the boundary
points are

nu(x):CPV/T(s,x)u(s)dB(s)—RPV/U(s,x)t(s)dB(s), XEB (1)
B B

mt(X) :HPV/M(S,X)u(s) dB(s) — CPV/L(s,x)t(s) dB(s), x€B 2)
B B

in which CPV, RPV and HPV denote the Cauchy principal value, the Riemann principal value
and Hadamard principal value; ¢(s) = du(s)/0ng; B denotes the boundary enclosing D; and the four
complex-valued kernels, U, T,L, and M can be found in References [10, 19]. Since the MRM has
been proved to be no more than the real-part of the complex-valued formulation [15, 20], only
real-part kernels will be adopted as follows:

(1)
Ur(s,x) =Real{U(s,x)} = m 5
TR(S X) = Real{T(S X)} — Y(l)(k )ylnz (4)
La(s:%) = Real{£(s, )} = 27 1" (kr) 2 ()
g PRENLY vy
Mg (s,x) =Real{M(s,x)} = 5 _p2 ~ Vi + Tnini "

where Yn(l)(kr) denotes the imaginary part of the nth order of the first-kind Hankel function
(H,gl)(kr)); r is the distance between the source point, s, and the field point x; n; is the ith
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component of the outnormal vector at s; 7; is the ith component of the outnormal vector at x; and
Vi =Si — Xi.

By employing the constant element scheme, Equations (1) and (2) can be discretized into the
following linear algebraic equations:

[Tr(k) — nl {u} = [Ur(k)){1} (7)
[Mr (k) {u} = [Lr (k) + nl1{z} (®)

where / is a unit matrix, and [Ur(k)], [Tr(k)], [Lr(k)] and [Mg(k)] are the influence matrices
constructed by the Ug, Tr,Lr and My kernels. The detailed formulation can be found in Refer-
ence [7].

3. DETECTION OF SPURIOUS EIGENVALUES USING THE REAL-PART DUAL BEM
IN CONJUNCTION WITH THE SINGULAR VALUE DECOMPOSITION TECHNIQUE

According to Equations (7) and (8), we can obtain the possible eigenvalues (true and spurious)
independently for problems without degenerate boundaries. However, spurious roots are imbedded
if the UT equation (Equation (7)) or LM equation (Equation (8)) is used alone. As mentioned
by Kamiya et al. [20], the equation derived using the MRM is no more than that of the real part
in the complex-valued formulation. Yeih et al [15] extended the general proof for one and two
dimensional problems and demonstrated it using a one-dimensional case. The loss of the imaginary
part in the real-part BEM or MRM results in spurious roots. Their spurious eigenvalues occur at
certain positions, which will be discussed in detail both analytically and numerically.

Since only the real part of the complex-valued kernels is of concern in the real-part BEM or
MRM, one approach to obtaining enough constraints for the eigenequation instead of the imaginary
part of the complex-valued formulation is to derive the secondary field equation by taking normal
derivative of the primary field in real-part BEM or conventional MRM [21] with respect to the
field point. This method results in the hypersingular formulation for the real-part BEM or MRM.
For demonstration purposes, we will deal with the Neumann problem. Therefore, Equations (7)
and (8) reduce to

[T ()In v {utn 1 ={0} 9)
[Mr(k)Inxnv{ufnxi ={0} (10)

where N is the number of boundary elements. To find spurious eigenvalues using the SVD tech-
nique, we can merge the two matrices in Equations (9) and (10) together to obtain

[J () avxn{ufnx1 = {0} (11)
where the [J(k)] matrix is assembled from the [7] and [M] matrices as shown below

Tm]

Mg (k) (12)

[J () lanxn = [

Even though the [J(k)] matrix has dependent rows resulting from the degenerate boundary, the
SVD technique can still be employed to find all the true eigenvalues since a sufficient number
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of constraints is imbedded in the overdeterminate matrix, [J(k)]. As for the true eigenvalues, the
rank of the [J(k)] matrix with dimension 2N x N must at most be N — 1 to obtain a non-trivial
solution. As for the spurious eigenvalues, the rank must be N to obtain a trivial solution. Based
on this criterion, the SVD technique can be employed to detect the true eigenvalues by checking
whether or not the first minimum singular values, g1, are zeros. Since discretization creates errors,
very small values for o, but not exactly zeros, will be obtained when k& is near the critical wave
number. In order to avoid the need to determine the threshold for the zero numerically, a value
of o) closer to zero must be obtained using a smaller increment near the critical wave number, k.
Such a value is confirmed to be a true eigenvalue.
Employing the SVD technique, we have

() av v = [Ulansan [Elanxv [V Iy s (13)
where [U] is a left unitary matrix constructed by the left singular vectors, and [X] is a diagonal
matrix which has singular values o}, 07,..., and gy allocated in a diagonal line as

oy - 0
Bl={0 - o (14)
0 --- 0
in which oy >0y_;--- =07 and [V]* is the complex conjugate transpose of a right unitary matrix

constructed by the right singular vectors. As we can see in Equation (14), there exist at most N
non-zero singular values.

Since we have employed the SVD technique to filter out spurious eigenvalues, we can obtain
the boundary mode by extracting the right singular vector in the right unitary matrix of SVD
corresponding to the near zero or zero singular value.

According to the properties of SVD [23,24], we have

UV, =0, p=1,2,3,...,n (15)

If the gth singular value, o, is zero, then we have the following equation immediately from
Equation (15):

Vv, =0u,=0, ¢=1,23,...,0 (16)

where the root is generally assumed to be a O-tuple root. Based on Equation (16), the non-trivial
boundary mode is found to be the right singular vector, v,, in the right unitary matrix.

4. ANALYTICAL STUDY OF TRUE AND SPURIOUS EIGENSOLUTIONS
USING DIRECT AND INDIRECT METHODS

Here, we will demonstrate analytical derivation for the true and spurious eigensolutions of a circular
cavity using both indirect and direct methods.
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Figure 1. (a) The definitions of p, 0, and R; (b) the definitions of p, 0, ¢,a and R.

Indirect formulation: Based on the degenerate (separable) properties for the Ur kernels, the
(17)

real-part U kernel can be expanded into
Ur(x,8) = gYo(kr) - gYo(k\/Rz T p? —2Rpcos0)

where p, r, R and 0 are shown in Figure 1(a). Since x and s are on circular boundaries with
radius p and R, respectively, U(x,s) can be expanded into
Ur(x.$)=U(0)= 3. TY,(kR)Jn(kp)cos(mb). R>p (18)

where the source and field points in the two-point function Ug(x,s) are separated and J,,(kp) is

the mth order Bessel function of the first kind. By superimposing 2N constant source distribution

{t} along the fictitious boundary with radius R and collocating the 2N points on the real boundary

with radius p, we have
ar a—2 -1 o

4]

(19)

ap

aN-—1 ay a aN-3 aN-2 J

{u} =[4){f} = | %2nv—2 dn-1 Qo aN—4 AN-3 1) ={0}
aN-—1 ap fv—1

aj ar as
for the Dirichlet problem, where 7; is the fictitious density of single layer potential distributed
on the circular boundary with radius R, and [A4] is the influence matrix with the elements shown
m=0,1,2,...,2N — 1 (20)

below:
(m+1/2)A0
am = / U(0)RAO ~ U(0,,)R A0,
(m—1/2)A0

where A0 =2n/2N and 6, =mASb.
Matrix [A4] in Equation (19) is found to be in circulant form since rotation symmetry for the influ-
L,

ence coefficients exists. By introducing the following bases for the circulants: 7, C1y, C3y,.
(21)

we can expand [4] into [22]
[Al=aol +a1Cpy + arCay + -+ + a_1Cap !

Int. J. Numer. Meth. Engng 2000; 48:1401-1422
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where

010 0 0
00 1 0 0

Cwv=|: 1 1 " 1 (22)
00 0 0 1
100 0 2N x2N

Based on the similar properties of the matrices of [A] and [Cyy], we have
de=ay+ajoy + a0t + a0 £=0,£1,42,..., (N — 1),N (23)

where J, and o, are the eigenvalues for [4] and [C,y], respectively. It is easily found that the
eigenvalues and eigenvectors for the circulants [Cpy] are the roots for «*Y =1 as shown below:

ay=e2™N  p=0,+1,42,...,+(N —1),N or n=0,1,2,...,2N — 1 (24)
1
On
%
{¢}n= o (25)
O(,%Nfl
respectively.

Substituting Equation (24) into Equation (23), we have

2N—1 2N—1 . ,
r= 3 anol = 3 a4 =0,41,42,...,£(N — 1),N (26)

m=0 m=0

According to the definition for a, in Equation (20), we have

am=ayN_m m=0,1,2,....2N —1 27)

Substituting Equation (27) into Equation (26), we have

, N—1
dp=ag+ (=1 ay + 3 (@) + N "™May,
m=1
IN—1
= > cos(m{AO)ay, (28)
m=0

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 48:1401-1422
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Substituting a,, in Equation (20) into Equation (28), we have
2N—1 2n
VI cos(m/AH)U(mAH)RAH:/ cos(Z0)YU(0)RAO
0

m=0

as N approaches infinity. Equation (29) reduces to

2n )
Jy = / cos(Z0) S gYm(kR)Jm(kp)cosmHRdH
0

m—=—0oQ

=R Y,(kR)J,(kp)

(29)

(30)

Since the wave number k is embedded in each element of the [4] matrix, the eigenvalues for [4]
are also functions of k. Finding the eigenvalues for the Helmholtz equation or finding the zeros
for the determinant of [A] is equal to finding the zeros for multiplication of all the eigenvalues of

[4]. Based on the following equation:
det[A] = ZoAn (4122 - - An—1)(A—td—z - A_(v—1))
the possible eigenvalues (true or spurious) occur at
Y (kR)J/(kp)=0, ¢=0,£1,%£2,....,(N —1),N
Since the alternating properties for the Bessel function can be obtained, i.e.
Y_s(kR)y=(—1YY/(kR), /€N
J_s(kR)=(=1)Js(kR), (/€N
Equation (31) can be reduced to

det[d] = Zo(A1 2 - - An—1 )ziN

(31)

(32)

(33)

(34)

(35)

The square term in Equation (35) implies that double roots occur for A, when /=1,2,...,N — 1.
In order to verify that either J,(kp)=0 or Y,(kR)=0 is a true eigenequation, another approach is

needed and is described in the following.

Based on the method of double-layer potential, we have the kernel Ug(x,s) shown below:

OYo(kr) _ m 0Yo(k+/R? + p> — 2Rp cos 0)
oR 2 OR

Uﬁ‘(x,s) =

N

Similarly, Uy (x,s) can be separated into

) . < mk
U (xs)=Ug )= > =

m=—o00 2

Y,,(kR)Ju(kp) cos(m0), R>p

In a similar way of using circulants, we have the possible eigenequations as follows:

Y/(kR)J,(kp)=0, ¢=0,%+1,42,...,+(N — 1),N

(36)

(37)

(38)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 48:1401-1422
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Comparing Equation (32) with Equation (38), we can easily find that J,(kp)=0 is the true
eigenequation. The spurious eigenequations are Y,,(kR)=0 and Y, (kR)=0 if single- and double-
layer potentials are employed, respectively.

Direct formulation: In the limiting case of R — p for comparison with the direct method, Equa-
tion (32) reduces to

Y, (kp)J/(kp)=0 (39)

Similarly, we have

2n
Jo= / Un'(0) cos(£0)p do (40)
0

if the double-layer potentials are superimposed. Since Uy (0) is singular for the case of R = p and
0 =0°, the regularization technique is employed as follows:

x 7k
UR(O)= 52 Z7,kp)Ju(kp) cos mo

koo koo
= S (Y + Y'Y cosmb + % S (V! — Yl ) cos mO)

4 m=—00 m=—0o0

:qﬂm+%&m (41)

using addition and subtraction techniques, where U*(0) is a regular function and the singular
function is decomposed, after using the Wronskian W, for J,, and Y,

2
W s Yn) =Yy I — Yy = — (42)
kp
and

io: cosmf =26(0) (43)

m=—0o0

in which 6(60) is the Dirac—Delta function. Therefore,

2n
Iy = / U (0) cos(£0)p dO
0
2n
=+ / U (0)cos(£0)p dO
0

2k
= L1 /kep) kp) + Yokp) T kp)] + 7
=n’kpY/(kp)J,(kp) (44)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 48:1401-1422
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after using Equation (41) such that the jump source can be separated. Comparing Equations (39)
and (44), we find that the true eigenvalue occurs at the zeros for J;(kp)=0 while the spurious
eigenvalues occur at the zeros for Y,(kp)=0 or Y/(kp)=0 if the singular equation (U,T) and
hypersingular equation (L, M) are employed, respectively.

Based on the same algorithm, we can summarize the corresponding results in the following
eigenequations:

Spurious eigenequations for both the Dirichlet and Neumann problems:

Y,(kR)=0, R>=p using the indirect method (single-layer, Ur(x,s), Tr(x,s)) (45)
Y/(kR)=0, R>p using the indirect method (double-layer, Uy (x,s), Tx (x,5)) (46)
Y,(kp)=0 using the direct method (UT equation, Ug(s,x), Tr(s,x)) 47)
Y/(kp)=0 using the direct method (LMequation, Lg(s,x), Mr(s,x)) (48)
where kR or kp using the indirect methods depend on the boundary where singularities are dis-
tributed, and the relations among the eight kernels (Ugr(s,x), Tr(s,x), Lr(s,x), Mr(s,x), Ur(x,s),
Ug (x,5), Tr(x,5), T5 (x,5)) between the direct and indirect methods in Equations (45)—(48) are

shown in Table I.
True eigenequations for both the direct and indirect methods are:

Jy(kp) =0 for the Dirichlet problem (49)
J/(kp)=0 for the Neumann problem (50)

The above results are summaized in Table II. After determining the eigenvalues, the boundary
modes are our concern. It is interesting to find that both the true and spurious boundary modes
are found to be the same as shown in Equation (25) since matrix [4] is similar to the circulant
in Equation (22).

5. ANALYTICAL DERIVATIONS FOR TRUE AND SPURIOUS INTERIOR MODES
For the case of the Dirichlet problem, we have
u(r,0) |-, =0, 0<0<2n (51)
The boundary eigenvectors using the methods of single or double layer are the same as the

eigenvectors in Equation (25) for the [C,y] matrix since [A] and [Cpy] are similar to each other.
The Ugr(x,s) kernel can be expressed as

Un(x8)= 3 2Jn(ka)Yu(kR) os(m(0 — $)) = U0~ $) (52)

m=—0o0

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 48:1401-1422
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Table 1. Relations of the kernels in the direct and indirect methods using the dual model where

Ur(s,x)=mnYo(kr)/2 for the Helmholtz equation.

Kernel
function
K(s,x)
direct
method

Kernel
function
K(x,s)
indirect
method

Singularity 1D
Singularity 2D
Singularity 3D

Density
function
()
Potential
type

J K(s,x)u(s)ds

Continuity
across
boundary

Principal
value
sense

Ur(s,x)

Ur(x,5)

o(r)
O(In(r))
o(1/r)

—t

Single
layer

Conti-
nuous

RPV

Tr(s,x)

Ur(x,5)

o)
o(1/r)
o(1/r?)

u

Double
layer

Disconti-
nuous

CPV

Lr(s,x)

Tr(x,s)

o(1)
o(1/r)
o(1/r*)

Normal
derivative
of single
layer
potential

Disconti-
nuous

CPV

Mg(s,x)

TR (x,5)

0(d(r))
o(1/r*)
o(1/r*)

u

Normal
derivative
of double

layer
potential

Pseudo-
conti-
nuous

HPV

Ly (s,x)

Tr(x,s)

o(1)
o(1/r)
o(1/r*)

Tangent
derivative
of single
layer
potential

Conti-
nuous

CPV

Mg(s,x)

TR (x,s)

0(d(r))
o(1/r*)
o(1/r*)

u

Tangent
derivative
of double

layer
potential

Disconti-
nuous

HPV

where the interior point for x =(a, ¢) in terms of the polar coordinate is shown in Figure 1(b).
Based on the single-layer potential solution, we have

2N—1

un(a, ) = Z Ud(4 A0 — §)nRAO =

/=0

-1
3 Ul(£A0 — dp)cos({nAO)RAD
(=0

2n
:/ U,(0 — ¢)cos(nB)RdO
0

2n

0

= n*RJ,(ka)Y,(kR) cos(nd),

m=—0o0

Copyright © 2000 John Wiley & Sons, Ltd.

O<a<p, 0<op<2m

io: ng(ka)Ym(kR) cos(m(0 — ¢))cos(nd)RdO

(53)

Int. J. Numer. Meth. Engng 2000; 48:1401-1422
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Table II. The true and spurious eigenequations for a circular cavity under Dirichlet and Neumann boundary
conditions using different formulations where n=0,1,2,3,... .

Interior Dirichlet problem Interior Neumann problem

Direct methods  True eigenequation Spurious eigenequation True eigenequation Spurious eigenequation

U(s,x), T(s,x) Ju(kp)=0 X Ji(kp)=0 X

L(s,x), M(s,x) Ju(kp)=0 X Ja(kp)=0 X

Ur(s, x), Tr(s, X) Ju(kp)=0 Yu(kp)=0 Ja(kp) =0 Yo(kp)=0
Lr(s, x), Mg(s, x) Ju(kp)=0 Y, (kp)=0 Ja(kp) =0 Y, (kp)=0
Indirect True Spurious True Spurious
methods eigenequation eigenequation eigenequation eigenequation
U(x,s), U*(x,s) Ju(kp)=0 X Ja(kp)=0 X
T(x,8),T"(x,s) Ju(kp)=0 X Ja(kp) =0 X
Ur(x,8), Tr(x,s) Ju(kp)=0 Yu(kR)=0, R=p Ja(kp) =0 Yu(kR)=0, R=p
Ur (x,8), Tr (X,s) Iu(kp)=0 Y, (kR)=0,R>p Ja(kp)=0 Y,(kR)=0, R=p

after considering the real part for the /th component, 7,,, in the eigenvector {¢}, of Equation (25).
If the sine part of the eigenvector in Equation (25) is chosen, the interior mode becomes

un(a, ¢) = n*RJ,(ka)Y,(kR)sin(ng), O0<a<p, 0<¢p<2n (54)

Equation (54) shows the interior modes when k represents true eigenvalues for the Dirichlet prob-
lems which satisfy J,(kp)=0. Also, Equation (54) shows the spurious modes when & represents
spurious eigenvalues which satisfy Y,(kR)=0. From a theoretical standpoint, it is interesting to
find that the spurious modes are trivial since the term Y,(kR)=0 is imbedded in Equation (54).
However, the spurious modes obtained numerically can be normalized as

up(a, (:b)

tn(a, @)= —7p Y, (kR)

=J,(ka)cos(ng) (55)

where i,(a, ) is a normalized mode. Equation (55) indicates that the nodal lines for true and

spurious modes are the same after normalization as shown in Equations (53) and (55) if Y,(kR)

approaches zero but is not exactly zero numerically. Nevertheless, true and spurious modes are

quite different since the values of £ are not the same (one is true and the other is spurious) [25].
Similarly, the kernel for Uy (x,s) can be expressed as

o0

Ur(x,8)= 3 %Jm(ka)erz(kR)COS(m(e —pN=U, (0~ ¢) (56)

m=—0o0
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Table III. True and spurious systems for the Dirichlet problem using the real-part UT and LM BEMs.

Eigenmode Eigenmode(interior): u,(a, ¢) (unnormalized)
Eigenequation (boundary) Eigenmode(interior): i,(a, ¢) (normalized)

un(a, @) =1’ RJ,(ka)Y,(kp) cos(ng)*

UT method True Ju(kp)=0 e’ in(a, §) =Ju(ka) cos(ng)t
un(a, ) = 1*RJ,(ka) Y, (kp) cos(nd)*

Spurious Yu(kp)=0 e’ in(a, ) =Jn(ka) cos(n)t
un(a, ) = 1’ RJ,(ka) Y, (kp) cos(nep)*

LM method True Ju(kp)=0 e’ iin(a, @) = Ju(ka) cos(ng)t
un(a, @) = 1’ RJ,(ka) Yu(kp) cos(ng)*

Spurious Y1 (kp)=0 ef itn(a, @) = Ju(ka) cos(ng)t

*Non-trivial solution.
TNon-trivial solution after normalization.
Trivial solution without normalization.

Table IV. True and spurious systems for the Neumann problem using the real-part UT and LM BEM:s.

Eigenmode Eigenmode(interior): u,(a, ¢) (unnormalized)
Eigenequation (boundary) Eigenmode(interior): i,(a, ¢) (normalized)

un(a, §) =1’ Ry (ka)Y, (kp) cos(ng)*

UT method True J(kp)=0 e’ itu(a, @) =Ju(ka) cos(ng)t
un(a, §) = 1’ RJ,(ka)Y, (kp) cos(ng)*

Spurious Yu(kp)=0 e’ iin(a, ¢) = Ju(ka) cos(ng)t
un(a, §) = 1*RJ,(ka)Y, (kp) cos(nep)*

LM method True J(kp)=0 e’ itu(a, ¢) = Ju(ka) cos(ng)t
un(a, ) = RJ,(ka)Y, (kp) cos(ngp)*

Spurious Y, (kp)=0 e’ itn(a, ) =Ju(ka) cos(ngp)'

*Non-trivial solution.
TNon-trivial solution after normalization.
Trivial solution without normalization.

Based on the solution in terms of double-layer potential, we have

2T 5o

k

un(a, b) = ) ;Jm(ka)Y,;(kR)cos(m(H — ¢)) cos(n0)R d0
0 m=—o0

= n*RJ,(ka)Y!(kR) cos(np), O<a<p, 0<¢p<2m (57)

Similarly, the true and spurious solutions for the eigenvalues and eigenfunctions can be easily

derived using direct methods. The results are shown in Tables III and IV for the Dirichlet
and Neumann problems, respectively. It is interesting to find that the UT method has the trivial
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Figure 2. (a) The minimum singular values o) versus k using the real-part UT equation only for a circu-

lar cavity subject to Dirichlet boundary conditions; (b) the minimum singular values o) versus & using the

real-part LM equation only for a circular cavity subject to Dirichlet boundary conditions; (c¢) the minimum

singular values ¢; versus k£ using the real-part UT and LM equations for a circular cavity subject to Dirich-

let boundary conditions; (d) the second minimum singular values ¢, versus k using the real-part UT and
LM equations for a circular cavity subject to Dirichlet boundary conditions.
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Figure 2. Continued.
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Figure 3. (a) The minimum singular values o1 versus k using the real-part UT equation only for a circular

cavity subject to Neumann boundary conditions; (b) the minimum singular values o) versus & using the

real-part LM equation only for a circular cavity subject to Neumann boundary conditions; (c¢) the minimum

singular values g versus k using the real-part UT and LM equations for a circular cavity subject to Neumann

boundary conditions; (d) the second minimum singular values ¢, versus k using the real-part UT and LM
equations for a circular cavity subject to Neumann boundary conditions.
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Figure 3. Continued.
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0.20 0.20
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k= 3.83(]?), 2nd true mode
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u(s) 0.00 4/ - u(s) 0.00 —
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0 40 80
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0 40 80
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Figure 4. The first four true boundary eigenmodes for the Dirichlet problem.

eigensolution (since Y,(kp) is embedded in the solution) in the case of spurious eigenvalue where
k satisfies Y,(kp) =0 as shown in Table IIl. The amplitude for the eigensolution is found to be
very small but not zero numerically as shown in Figure 7. The nodal line may mislead us to take
it for granted that it is a true solution.

6. NUMERICAL EXAMPLES

Example 1. A circular cavity with a radius (p = 1m) subject to the Dirichlet boundary condition
(u=0,p=1).
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0.20 020
k = 0.89(Y,), 1st spurious mode k =2.20(Y}). 209 spurious mode
u(s) 0.00 —| u(s) 0-00 —
-0.20 . | ; -0.20 ; | .
0 40 80 0 40 80
Boundary element iD Boundary element ID

Figure 5. The first two spurious boundary eigenmodes for the Dirichlet problem.

In this case, an analytical solution is available as follows:
eigenequation: J,,(ky,) =0, m,n=0,1,2,3..;
eigenmode: u(a, 0)=J,(kpaa)e™’, 0<a<p, 0<0<2m.

Eighty elements are adopted in the boundary element mesh. Since two alternatives, the UT or
LM equation, can be used to collocate on the boundary, two results from the UT and LM methods
can be obtained. Figure 2(a) shows the minimum singular value versus k. The true eigenvalues
contaminated by spurious eigenvalues can be obtained as shown in Figure 2(a) by considering the
near zero minimum singular values if only the UT equation is chosen. The true eigenvalues occur
at the positions of zeros for J,,(k,,p) while the spurious eigenvalues occur at the positions of
zeros for Y, (ku.p). J and Y, in Figure 2(a) denote the roots for k& which satisfy J,,(ku,p)=0
and Y, (ku,p)=0, respectively. In a similar way, the true eigenvalues contaminated by spurious
eigenvalues can be obtained as shown in Figure 2(b) by considering the near zero minimum
singular values if only the LM equation is chosen. The true eigenvalues occur at the positions of
zeros for J,,(ky,p) while the spurious eigenvalues occur at the positions of zeros for Y, (kunp).
Y,Z, in Figire 2(b) denotes the roots for £ which satisfy Y, (k,,p)=0. It is interesting to find
that no spurious eigenvalues occur as shown in Figure 2(c) when the UT and LM equations are
combined. Also, the roots with multiplicity 2 are found in Figure 2(d), where both o; and o,
approach zero at the same time.

Example 2. A circular cavity with a radius (p =1m) subject to the Neumann boundary condition

(t=0,p=1).
In this case, an analytical solution is available as follows:

eigenequation: J,(ky,)=0, m,n=0,1,2,3,...;
eigenmode: u(a, 0)=J,(kpa)e™’, 0<a<p, 0<0<2m.

Eighty elements are adopted in the boundary element mesh. Since two alternatives, the UT or
LM equation, can be used to collocate on the boundary, two results from the UT and LM methods
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_ 1 o
k = 2.41(J,), 1st true interior mode k = 5.14(J1), 3rd true interior mode
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Figure 6. The first four true interior eigenmodes for the Dirichlet problem.

can be obtained. Figure 3(a) shows the minimum singular value versus k. The true eigenvalues
contaminated by spurious eigenvalues can be obtained as shown in Figure 3(a) by considering the
near zero minimum singular values if only the UT equation is chosen. The true eigenvalues occur
at the positions of zeros for J) (k,,p) while the spurious eigenvalues occur at the positions of
zeros for Y,,(kynp). J,Zl and Y” in Figure 3(a) denote the roots for & which satisfy J/ (k.p)=0
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k= 2-20(Y11 ), 2nd spurious interior mode

L L

k= 0-89(Y(; ), 1st spurious interior mode

Figure 7. The first two spurious interior eigenmodes for the Dirichlet problem.

and Y, (ku,p) =0, respectively. In a similar way, the true eigenvalues contaminated by spurious
eigenvalues can be obtained as shown in Figure 3(b) by considering the near zero minimum
singular values if only the LM equation is chosen. The true eigenvalues occur at the positions of
zeros for J) (ku,p) while the spurious eigenvalues occur at the positions of zeros for Y, (kunp).
Yn’;, in Figure 3(b) denotes the roots for & which satisfy Y, (k,,p)=0. It is interesting to find
that no spurious eigenvalues occur as shown in Figure 3(c) when the UT and LM equations are
combined. Also, the roots with multiplicity 2 are found in Figure 3(d), where both ¢; and o,
approach zero at the same time. Good agreement for the two cases can be obtained. Also, the first
four true and two spurious boundary eigenmodes are shown in Figures 4 and 5 for the Dirichlet
problem, respectively. As derived in the analytical formulation, the nodal lines for the true and
spurious interior modes are found to be the same as those shown in Figures 6 and 7, respectively.
However, their eigenvalues are different.

7. CONCLUSIONS

The real-part dual BEM in conjunction with the SVD technique has been applied to determine
the true and spurious eigensolutions of a circular cavity subject to the Dirichelet and Neumann
boundary conditions. The spurious eigenvalues have been successfully predicted analytically and
found numerically. The true eigenvalues obtained by the real-part dual BEM also match very well
with the exact solutions. In addition, their multiplicities have been examined. The true and spurious
eigenvalues, which occur at the positions of the zeros of the associated Bessel function for the
spurious solutions were successfully filtered out using the SVD technique. Numerical experiments
have been performed using the direct methods, and the results are satisfactory.
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