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SUMMARY

For a plane elasticity problem, the boundary integral equation approach has been shown to yield a
non-unique solution when geometry size is equal to a degenerate scale. In this paper, the degenerate
scale problem in the boundary element method (BEM) is analytically studied using the method of
stress function. For the elliptic domain problem, the numerical di�culty of the degenerate scale can
be solved by using the hypersingular formulation instead of using the singular formulation in the dual
BEM. A simple example is shown to demonstrate the failure using the singular integral equations of
dual BEM. It is found that the degenerate scale also depends on the Poisson’s ratio. By employing the
hypersingular formulation in the dual BEM, no degenerate scale occurs since a zero eigenvalue is not
imbedded in the in�uence matrix for any case. Copyright ? 2002 John Wiley & Sons, Ltd.

KEY WORDS: boundary elements; elasticity; degenerate scale; degenerate kernel; Airy stress function

1. INTRODUCTION

The boundary element method (BEM) has been applied to solve the potential problems, e.g.
scalar potential for the Laplace equation and vector potential for the Navier equation in the
recent decades [1]. It is well known that rigid body motion test or the so-called use of a
simple solution can be employed to check the singular matrices of the strongly singular and
hypersingular kernels for the problems without degenerate boundaries. In such a case, singular
matrix occurs physically and mathematically. The non-trivial solution for the singular matrix
can be physically realized to be a rigid body mode for the interior traction problem. However,
for problems with special scale of geometry shape, the in�uence matrix of the weakly singular
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kernel may be singular for the displacement speci�ed problem [2]. The non-unique solution
is not physically realizable but stems from the zero eigenvalue imbedded in the in�uence
matrix of the discrete system using the boundary element formulation. The special boundary
geometry which results in a non-unique solution for plane elasticity problems is also called a
degenerate scale in a manner similar to the scalar potential case in Reference [3]. For several
problems with speci�c boundary conditions, some studies for plane elasticity problems [4–7]
and potential problems [2; 5; 8] have been done. A rigorous study was proposed mathemati-
cally by Kuhn [9] and Constanda [10; 11] for the occurring mechanism of degenerate scale.
Also, a simple treatment to sort out the problem was proposed by superimposing a rigid body
term in the fundamental solution. Nevertheless, this approach results in a new degenerate scale
instead of the original one. The di�culties due to the non-uniqueness of solutions were also
overcome by the necessary and su�cient boundary integral formulation [6] and the boundary
contour method [7]. However, the boundary conditions in their cases are either the Dirichlet
or mixed type and must be constant along the boundary. Fictitious BEM also results in the
degenerate scale problem when selecting a special �ctitious boundary, and has been proven
to yield non-unique solutions for two-dimensional potential problems [12]. Nevertheless, no
general proof has been carried out for the degenerate scale problem.
In this paper, the degenerate scale problem for two-dimensional elasticity with an elliptic

domain in BEM will be studied analytically and numerical experiments will be performed.
Based on the method of stress function, the singularity pattern distributed along a boundary
resulting in a null �eld will introduce the problem of degenerate scale. Also, the role of
hypersingular formulation will be examined for solving the degenerate scale problems.

2. REVIEW OF DUAL BOUNDARY INTEGRAL EQUATIONS FOR ELASTICITY

Let (bi; ui; ti) and (b∗i ; t
∗
i ; u

∗
i ) be two equilibrium states in a linearly elastic body where bi

and b∗i are the body forces; ti and t∗i denote the boundary tractions; and ui and u∗i are the
displacements. Betti’s law gives [13]∫

D
(uib∗i − u∗i bi) dV=−

∫
B
(uit∗i − u∗i ti) dB (1)

where D is a domain with a boundary B. It can be recast into the theory of self-adjoint
operator L simply as

〈Lu|v〉= 〈u|Lv〉 (2)

where u and v are two elasticity systems and

L=

[
Dij 0
0 −Bij

]
(3)

If the material is elastic and isotropic, the operator Dij can be expressed explicitly as

Dij=(�+G)@i@j +G�ij@k@k (4)

while Bij is the traction operator de�ned by

Bij= �ni@j +G(nj@i + �ijnk@k) (5)
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where � and G are Lame’s constants; ni is the direction cosines of unit outward normal to
the boundary; �ij denotes Kronecker delta symbol; and @i is the partial di�erential operator.
Note that the equations of equilibrium for the two states, uj and u∗j , are

Dijuj(x) + bi(x) = 0; x∈D (6)

Diju∗j (x) + b∗i (x) = 0; x∈D (7)

with the Cauchy formula
Bijuj(x) = ti(x); x on B (8)

Biju∗j (x) = t∗i (x); x on B (9)

By choosing
u∗j = vj (10)

we can obtain ∫
D
(viDijuj − uiDijvj) dV=

∫
B
(viBijuj − uiBijvj) dB (11)

Now we choose speci�cally,

u∗i (x) = vi(x)=Uij(x; s)e∗j (s) (12)

t∗i (x) = Bikvk(x)=Bik(x)Ukj(x; s)e∗j (s)=Tij(x; s)e∗j (s) (13)

b∗i (x) =−Dik(x)vk(x)=−Dik(x)Ukj(x; s)e∗j (s)= �ij(x; s)e∗j (s) (14)

where Uij(x; s) and Tij(x; s) are the Kelvin free-space Green’s functions (or fundamental solu-
tions) of the ith direction responses for displacement and traction at the point x, respectively,
due to a concentrated load in the jth direction at the point s; and e∗j (s) is an arbitrary unit-
concentrated load at the point s. Then we have Somigliana’s identity [13; 14]:∫

B
[Uij(x; s)ti(x)− Tij(x; s)ui(x)] dB(x)=

{
uj(s); s∈D

0; s �∈D
(15)

By changing x and s, Equation (15) is changed to∫
B
[Uki(s; x)tk(s)− Tki(s; x)uk(s)] dB(s)=

{
ui(x); x∈D

0; x �∈D
(16)

In deriving Equation (15), we have omitted the unit vector e∗j from both sides of the
equation because of its arbitrariness. In order to have an additional and independent equation
for the problem with a degenerate boundary or degenerate scale, we apply the traction operator
Bpi to Equation (16) and de�ne

Bpi(x){Uki(s; x)}= Lkp(s; x) (17)

Bpi(x){Tki(s; x)}=Mkp(s; x) (18)
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It then follows that

∫
B
[Lkp(s; x)tk(s)−Mkp(s; x)uk(s)] dB(s)=

{
tp(x); x∈D

0; x �∈D
(19)

Equations (16) and (19) are termed the dual boundary integral equations [13] for the point x in
the domain. It is noted that this de�nition is quite di�erent from that de�ned by Buecker [15].
A detailed discussion for the dual boundary integral equations can be found in the review
article of Chen and Hong [14].

3. DERIVATIONS OF DUAL BOUNDARY INTEGRAL EQUATIONS FOR
THE BOUNDARY POINTS

Equations (16) and (19) are derived for a point in the interior domain. By moving the point to
the boundary, we are immediately confronted with the problem of singularities and improper
integrals. Equation (16) reduces to

∫
B
Uki(s; x)tk(s) dB(s) + �ijuj(x)− CPV

∫
B
Tki(s; x)uk(s) dB(s)= �ijuj(x) (20)

where �ij depends on the non-smooth boundary and CPV denotes the Cauchy principal value.
Similarly, Equation (16) becomes

∫
B
Uki(s; x)tk(s) dB(s) + (−�ij + �ij)uj(x)− CPV

∫
B
Tki(s; x)uk(s) dB(s)=0 (21)

where �ij reduces to 1=2�ij when x is on the smooth boundary [16; 17]. Equation (20) re-
duces to

1
2
ui(x)=

∫
B
Uki(s; x)tk(s) dB(s)− CPV

∫
B
Tki(s; x)uk(s) dB(s); x on B (22)

Now applying the traction operator to Equation (22), and noting that

Bpi(x)
{∫

B
Uki(s; x)tk(s) dB(s)

}
= Bpi(x)

∫
B−B�

Uki(s; x)tk(s) dB(s)

=CPV
∫
B
Lkp(s; x)tk(s) dB(s) (23)

where the �rst equality results from the integral over the small detour around x∈B�, and B”

denotes a small spherical or circular detour of vanishing radius � with centre at x. The second
equality stems from the boundary terms due to the traction operator using Leibnitz’ rule
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cancelling themselves out, and de�ning that

Bpi(x)
{
CPV

∫
B
Tki(s; x)uk(s) dB(s)

}
≡HPV

∫
B
Mkp(s; x)uk(s) dB(s) (24)

we have

1
2
tp(x)=CPV

∫
B
Lkp(s; x)tk(s) dB(s)−HPV

∫
B
Mkp(s; x)uk(s) dB(s); x on B (25)

where HPV denotes the Hadamard principal value [18]. Equations (22) and (25) are termed
the dual boundary integral equations for a boundary point.

4. DUAL BOUNDARY ELEMENT FORMULATION FOR ELASTICITY

By discretizing the boundary B into constant elements in Equations (22) and (25), we have

1
2
ui(x) =

N∑
l=1

∫
Bl

Uki(s; x) dB(s)tk(sl)−
N∑
l=1

CPV
∫
Bl

Tki(s; x) dB(s)uk(sl) (26)

1
2
ti(x) =

N∑
l=1

CPV
∫
Bl

Lki(s; x) dB(s)tk(sl)−
N∑
l=1

HPV
∫
Bl

Mki(s; x) dB(s)uk(sl) (27)

where N is the number of boundary elements and Bl is the lth boundary element. For a
two-dimensional problem, Equations (26) and (27) can be written in matrix forms as shown
below:

[C]2N×2N{u}2N×1 = [U ]2N×2N{t}2N×1 − [T ]2N×2N{u}2N×1 (28)

[C]2N×2N{t}2N×1 = [L]2N×2N{t}2N×1 − [M ]2N×2N{u}2N×1 (29)

where {u} and {t} are the column vectors of boundary displacement and traction, and [C] is
a matrix of free terms. Equations (28) and (29) reduce to

[ �T ]{u}= [U ]{t} (30)

[M ]{u}= [ �L]{t} (31)

where [ �T ] and [ �L] di�er from [T ] and [L] by a matrix of free terms. It is now well known
that Equation (30) is not su�cient to provide enough constraint equations for crack problems;
thus, Equation (31) is needed. Combining Equations (30) with (31), the double unknowns
on the degenerate boundary could be determined easily. For displacement speci�ed prob-
lems with certain geometry, the [U ] matrix may be singular due to the degenerate scale. In
this paper, we will examine the role of Equation (31) in dealing with the degenerate scale
problems.
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5. MATHEMATICAL ANALYSIS OF THE DEGENERATE SCALE PROBLEMS
FOR AN ELASTICITY PROBLEM USING POTENTIAL THEORY

We propose a theoretical approach to understand the mechanism of degenerate scale. If we
distribute the single-layer potential �k(s) the boundary B, we have

ui(x)=
∫
B
Uik(s; x)�k(s) dB(s); x∈D (32)

where the single-layer density �k(s) is expressed by

�k(s)=
N∑

j=0
cjk�

(j)
k (s); k=1 or 2; s∈B (33)

Similarly, we have
ui(x)=

∫
B
Tik(s; x)�k(s) dB(s); x∈D (34)

where the double-layer potential �k(s) is represented by

�k(s)=
N∑

j=0
djk�

(j)
k (s); k=1 or 2; s on B (35)

The primary �eld potential across the boundary is continuous in Equation (32) and dis-
continuous in Equation (34). The secondary �eld across the boundary is discontinuous in
Equation (32) and pseudo-continuous in Equation (34). If either one component of the dis-
placement �eld resulted from the U (T ) kernel is equal to zero everywhere in the interior
domain due to a special distribution �k(s) (�k(s)), the geometry scale is degenerate. There-
fore, the strength of this singularity distribution, cjk (djk), cannot be determined. Then we can
�nd the degenerate scale boundary for the problem with corresponding boundary distribution
�k(s) (�k(s)).
Now, we need to �nd a boundary distribution �k with a non-zero norm and have the

potential distribution

ui(x)= constant =
∫
B
Uik(x; s)�k(s) dB(s); x∈B (36)

and
ti(x)=0=

∫
B
Lik(x; s)�k(s) dB(s); x∈B (37)

Based on the maximum principle for elasticity, the maximum value must occur on the bound-
ary. If the size of the special geometry scale causes the constant in Equation (36) to be zero,
the special geometry dimension is a degenerate scale.

6. MATHEMATICAL ANALYSIS OF THE DEGENERATE SCALE PROBLEMS FOR
AN ELLIPTIC-DOMAIN PROBLEM IN ELASTICITY USING STRESS FUNCTION

For a problem of plane elasticity, the governing equation of Equation (6) is the Navier’s
equation

(�+G)∇(∇ · u(x)) +G∇2u(x)=0; x∈D (38)
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Figure 1. Plane elasticity problem with an elliptic region.

where u(x) is the displacement vector of (u1; u2). By introducing the Airy stress function [19],
�, satisfying the biharmonic equation

∇2(∇2�)=0 (39)

the general solution of Equation (39) can be represented by

�=Re[�z (z) + �(z)] (40)

where the bar, ‘�’, is the complex conjugate, Re denotes the real part,  (z) and �(z) can be
any analytic functions of the complex variable z, z= x + yi. When �(z) and �(z) are both
known, we can obtain the displacement in plane stress from

2G(u1 + iu2)=
3− �
1 + �

 (z)− z � ′(�z)− ��′(�z) (41)

where u1 and u2 are the displacements in the x and y directions and � is the Poisson’s ratio.
We consider an in�nite plate as shown in Figure 1 and use the elliptic co-ordinates � and

	 de�ned by

z= kcosh 
; 
= �+ i	 (42)

which gives

x= k cosh � cos 	; y= k sinh � sin 	 (43)

The co-ordinate � is a constant and is equal to �0 on an ellipse of semi-axes k cosh �0 and
k sinh �0. If the two semi-axes are given as � and �, the values k and �0 can be determined by

k cosh �0 = �; k sinh �0 =� (44)

We can choose �(z) and  (z) in the interior and exterior domains as

 (i)(z) = 0 (45)

�(i)(z) = d1k cosh 
 (46)
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and

 (e)(z) = a1
 (47)

�(e)(z) = b1k(
 cosh 
− sinh 
) + b2k sinh(2�0 − 
)− b3k cosh 
 (48)

Substituting Equations (45)–(48) into Equation (41), we have

2G(u(i)1 + iu
(i)
2 ) =− �d1 (49)

2G(u(e)1 + iu(e)2 ) = a1
3− �
1 + �


− �a1
cosh 


sinh �

− �b1 �
+ �b2

cosh(2�0 − �
)

sinh �

+ �b3 (50)

where the subscripts ‘(i)’ and ‘(e)’ denote the interior point and the exterior point, respectively,
and a1, b1, b2, b3 and c1 are the complex constants. For the continuity of displacement across
the boundary, the displacement by approaching from the exterior domain must be equal to that
by approaching from the interior domain to the boundary (
= �0 + i	). The coe�cients can
be chosen as �b1 =− (3− �)=(1 + �)a1 and b2 = a1. The displacement in the exterior domain
becomes

2G(u(e)1 + iu(e)2 )=
3− �
1 + �

(
+ �
)a1 +
cosh(2�0 − �
)− cosh 


sinh �

�a1 + �b3 (51)

When � approaches to in�nity, the displacement approaches to ln r and we have the asymptotic
form

2G(u(e)1 + iu(e)2 )�
2(3− �)
1 + �

(
ln r − ln k

2

)
a1 − e2i� �a1 + e−2�0 + �b3 (52)

where x + iy= rei�, and

�b3 =
2(3− �)
1 + �

ln
k
2
a1 − e−2�0 �a1

=
3− �
1 + �

[ln(�2 + �2)− ln 4]a1 − �− �
�+ �

�a1 (53)

When � approaches �0 on the elliptic boundary, we have

2G(u(e)1 + iu(e)2 ) =
3− �
1 + �

[2�0 + ln(�2 + �2)− ln 4]a1 − �− �
�+ �

�a1

=
2(3− �)
1 + �

ln
�+ �
2

a1 − �− �
�+ �

�a1 (54)

On the boundary, the displacement near the interior domain is equal to the potential near the
exterior domain for continuity requirement. From Equations (49) and (54), we have

− �d1 =
2(3− �)
1 + �

ln
�+ �
2

a1 − �− �
�+ �

�a1 (55)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 54:1669–1681



DEGENERATE SCALE PROBLEMS IN THE BEM 1677

Alternatively, Equation (49) can be written as

2Gu(i)1 =
{
2(3− �)
1 + �

ln
�+ �
2

− �− �
�+ �

}
Re[a1] (56)

2Gu(i)2 =
{
2(3− �)
1 + �

ln
�+ �
2

+
�− �
�+ �

}
Im[a1] (57)

where Im denote the imaginary part. We �nd that either one component of the displacement
�eld in the interior domain is null when either (2(3− �))=(1 + �) ln(�+ �)=2 − (�− �)=(�
+�)=0 or (2(3− �))=(1 + �) ln(�+ �)=2+(�− �)=(�+�)=0. This indicates that degenerate
scale occurs when

2
 ln
�+ �
2

=
�− �
�+ �

(58)

or

2
 ln
�+ �
2

=− �− �
�+ �

(59)

where 
= 3−�
1+� .

If � is speci�ed to be ��, the degenerate scale in Equations (58) and (59) can be rewritten
in the following forms:

�=
2

1 + �
e(1=2
)(1−�)=(1+�) (60)

or

�=
2

1 + �
e(1=2
)(�−1)=(�+1) (61)

For the plane strain case, � should be replaced by �=(1− �). For the circular domain, �=1
and �=�, the degenerate scale reduces to radius of one. Both components of the displacement
vanish for the boundary distribution when the degenerate scale occurs.

7. NUMERICAL EXAMPLES FOR PROBLEMS WITH CIRCULAR
AND ELLIPTIC DOMAINS

In Figure 2, we consider the interior problem of plane elasticity (plane strain) with a cir-
cular domain where the displacement is speci�ed on the boundary. The shear modulus is
G=1:0 N=m2 and Poisson’s ratio is �=0:25. In the BEM mesh, 10 elements are distributed
uniformly on the boundary. We decompose the [U ] and [L] matrices by using the singular
value decomposition (SVD) technique and plot the minimum singular values versus the ra-
dius a as shown in Figures 3 and 4. We �nd that the [U ] matrix is singular when the radius
is equal to one as shown in Figure 3 since the degenerate scale was proved theoretically
at a=1:0. Nevertheless, the [L] matrix is never singular whatever the radius a is. Figure 3
indicates that hypersingular formulation (LM equation) can shift the zero singular value in
the singular formulation (UT equation).
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Figure 2. Plane elasticity problem with a
circular domain.

Figure 3. The minimum singular value �1 of
[U ] matrix versus radius a for a plane elasticity

problem with a circular domain.
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 0.57
(0.57)
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σ

(  ): Analytical solution

1

α

Figure 4. The minimum singular value �1 of
[L] matrix versus radius a for a plane elasticity

problem with a circular domain.

Figure 5. The minimum singular value �1 of [U ]
matrix versus semi-axes � for a plane elasticity
problem with an elliptic domain (�=0:25).

As shown in Figure 1, we consider an elliptic problem (plane strain) with the semi-axes,
� and �, where �=3�. The displacement is speci�ed on the boundary. The shear modulus is
G=1:0 N=m2 and Poisson’s ratio is �=0:25. In the BEM mesh, ten elements are distributed
uniformly on the boundary. We determined the minimum singular value of the matrices [U ]
and [L] by using the SVD technique. The minimum singular values of [U ] and [L] matrices
versus the geometry scale are plotted in Figures 5 and 6, respectively. The degenerate scale
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Figure 6. The minimum singular value �1 of
[L] versus semi-axes � for a plane elasticity
problem with an elliptic domain (�=0:25).

Figure 7. The minimum singular value �1 of [U ]
matrix versus semi-axes � for a plane elasticity
problem with an elliptic domain (�=0:30).
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(0.25)

Figure 8. The minimum singular value �1 of [L]
matrix versus semi-axes � for a plane elasticity
problem with an elliptic domain (�=0:30).

Figure 9. The minimum singular value �1 of [U ]
matrix versus Poisson’s � for the elliptic domain
problem with semi-axes �=1:323 and �=0:441.

occurs at �=0:441 or 0.567. It is found that the conventional BEM ([U ] matrix) has the
degenerate scale at �=0:44 and 0.57 as predicted theoretically in Equations (60) and (61).
Nevertheless, the [L] matrix is never singular for any geometry scale.
In order to know how the Poisson’s ratio in�uences the degenerate scale, we consider the

above problem with a di�erent Poisson’s ratio of 0.3. The �rst singular values of [U ] and [L]
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matrices versus the geometry scale are plotted in Figures 7 and 8. The degenerate scale occurs
at �=0:435 or 0.575. It is found that the conventional BEM results in the degenerate scale at
�=0:44 and 0.58 as theoretically predicted in Equations (60) and (61). The [L] formulation
can remove the zero singular value in the case of degenerate scale of [U ] matrix.
Finally, we consider the elliptic plane elasticity problem (plane strain). The shear modulus

is G=1:0N=m2 and semi-axes are �=1:323 and �=0:414. In the BEM mesh, 36 elements are
distributed uniformly on the boundary. Figure 9 shows the minimum singular value of matrix
[U ] versus Poisson’s ratio �. For this problem, the matrix is singular at �=0:25 analytically.
The results of the dual BEM and mathematical analysis are in good agreement.

8. CONCLUSIONS

In this paper, we have proven how the degenerate scale occurs in the BEM for two-dimensional
elasticity problems in elliptical domains. Based on the stress function formulation, a singularity
distribution along a boundary of degenerate scale is found to have a null �eld in the interior
domain. For the circular domain problem, the radius of one is a degenerate scale if the
singular integral equation is used. To overcome the problem, a hypersingular equation can be
adopted. In case of the elliptic domain problem, Equations (60) and (61) are the criteria where
degenerate scale appears if the singular integral equation is used. The numerical examples
have shown that the degenerate scale depends on the geometry scale and the Poisson’s ratio
in elasticity problems. Numerical results using the dual BEM agree well with mathematical
prediction using stress function.

ACKNOWLEDGEMENT

Financial support from the National Science Council under Grant No. NSC-89-2211-E-019-021 for
National Taiwan Ocean University is gratefully acknowledged.

REFERENCES

1. Banerjee PK. Boundary Element Methods in Engineer Science (2nd edn). McGraw-Hill: London, 1994.
2. Christiansen S. Integral equations without a unique solution can be made useful for solving some plane harmonic
problems. Journal of the Institution of Mathematics Applications 1975; 16:143–159.

3. Chen JT, Kuo SR, Lin JH. Analytical study and numerical experiments for degenerate scale problems in boundary
element method. Engineering Analysis with Boundary Elements 2001; 25(9):819–828.

4. He WJ. A necessary and su�cient boundary integral formulation for plane elasticity problems. Communications
in Numerical Methods in Engineering 1996; 12:413–424.

5. He WJ, Ding HJ, Hu HC. Degenerate scale and boundary element analysis of two-dimensional potential and
elasticity problems. Computers and Structures 1996; 60(1):155–158.

6. He WJ, Ding HJ, Hu HC. Non-equivalence of the conventional boundary integral formulation and its elimination
for plane elasticity problems. Computers and Structures 1996; 59:1059–1062.

7. Zhou SJ, Sun SX, Cao ZY. The boundary contour method based on the equivalent boundary integral equation
for 2-D linear elasticity. Communications in Numerical Methods in Engineering 1999; 15(11):811–821.

8. He WJ, Ding HJ, Hu HC. Non-equivalence of the conventional boundary integral formulation and its elimination
for two-dimensional mixed potential problems. Computers and Structures 1996; 60(6):1029–1035.

9. Kuhn G. BEM in elastostatics and fracture mechanics. In Finite Elements and Boundary Element Techniques
from Mathematical and Engineering Point of View, Stein E, Wendland WL (eds), International Center for
Mechanical Sciences (ICSM). Courses and Lectures No. 301. Springer: Berlin, 1988.

10. Constanda C. On nonunique solutions of weakly singular integral equations in plane elasticity. Quarterly Journal
of Mechanics and Mathematics 1994; 47:261–268.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 54:1669–1681



DEGENERATE SCALE PROBLEMS IN THE BEM 1681

11. Constanda C. Integral equations of the �rst kind in plane elasticity. Quarterly Applied Mathematics 1995;
47:783–793.

12. He WJ, Ding HJ. On the use of �ctitious boundary element method. Proceedings of the Practice and Promotion
of Computational Methods in Engineering Using Small Computers, vol. 1(4), 1995; 999–1004.

13. Hong HK, Chen JT. Derivations of integral equations of elasticity. Journal of Engineering Mechanics, ASCE
1988; 114(6):1028–1044.

14. Chen JT, Hong HK. Review of dual boundary element methods with emphasis on hypersingular integral and
divergent series. Transactions of ASME, Applied Mechanics Reviews 1999; 52:17–33.

15. Buecker HF. Field Singularities and Related Integral Representations. In Mechanics of Fracture, Shih GC (ed.).
Noordho�: Leyden, vol. 1, 1973.

16. Hartmann F. The Somigliana identity on piecewise smooth surfaces. Journal of Elasticity 1981; 11:403–423.
17. Hartmann F. Elastic potentials on piecewise smooth surfaces. Journal of Elasticity 1982; 12:31–50.
18. Hadamard J. Lectures on Cauchy’s problem in linear partial di�erential equations. Dover: New York, 1952.
19. Timoshenko SP, Goodier JN. Theory of Elasticity (3rd edn). McGraw-Hill: New York, 1951.
20. Banerjee PK, Butter�eld R. Boundary Element Method in Engineering Science. McGraw-Hill: New York, 1981.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 54:1669–1681


