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Integral equation methods have been widely used to solve interior eigenproblems and exterior
acoustic problemgradiation and scatteringlt was recently found that the real-part boundary
element methodBEM) for the interior problem results in spurious eigensolutions if the singular
(UT) or the hypersingulatLM) equation is used alone. The real-part BEM results in spurious
solutions for interior problems in a similar way that the singular integral equatidnmethod

results in fictitious solutions for the exterior problem. To solve this problem, a Combined Helmholtz
Exterior integral Equation Formulation methd@HEER is proposed. Based on the CHEEF
method, the spurious solutions can be filtered out if additional constraints from the exterior points
are chosen carefully. Finally, two examples for the eigensolutions of circular and rectangular
cavities are considered. The optimum numbers and proper positions for selecting the points in the
exterior domain are analytically studied. Also, numerical experiments were designed to verify the
analytical results. It is worth pointing out that the nodal line of radiation mode of a circle can be
rotated due to symmetry, while the nodal line of the rectangular is on a fixed positio200®
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I. INTRODUCTION solved in a least-squares sense. Scherickoduced this

method and proved that the resulting solution is unique. But,

ACOUSt'? probl_emg are generally modeled using thehow can we decide where to place the interior points effi-
wave equation, which is transient, or by the Helmholtz equa-

. LS . ) : 2 “ciently and how many numbers of extra equations are
tr:gln’bvgz'::a'rs tg?uza”?o%?;hv:/nh'tlﬁ;hgosrgggogxttzrtir;? ?c:'%;eneeded? When an interior point is placed on the node of the
y P associated interior nodes in CHIEF, it will not add an effec-

L . . ttive constraint to the system of equations, i.e., the extra equa-
the case for the corresponding integral equation formulat|ontion is not linearly independent. For a general geometry
which breaks down at certain frequencies known as irregulatr ' '

frequencies or fictitious frequencies. This problem is com hese nodal lines are not knovenpriori and this has been
q q ) P one of the difficulties of this method. Particularly, the prob-

pletely nonphysical because there are no eigenvalues for tqgm becomes worse for the hi 3
. . gh frequency range.aval.
exterior problems. Schentlproposed a Combined Helm- introduced a method called CHIEF-block, in which the inte-

rrLOeIiﬁoéntv?/Eiocrh i!‘fgsrjl to%r?]l;)?:r?\r;nt?;g]?s!a;‘cf)igicezrﬂlEE{ StiIIrior integral equa}tion is satisfied in gweighted residual sense
has so;ne drawbacks. A review article by Benthien an(gyer a smgll region, called b!ocks, instead of discrete points.
Schenck s referenced. In the case of a fictitious frequency ince the Interior elgen_soluuons cannot have a nodal block,
the resulting coefficien.t matrix for the exterior acoustic prob-,thIS technique 'S effec.tlve. .‘Jljlhhr.]d POUI”.E' proposed the
CHIEF method in conjunction with the singular value de-

lems become_s singular or !Il-condltloneq. This means tha<tiomposition(SVD) technique. This method is easy and effi-
the boundary integral equations are not linearly independen

o .. ) cient and produces a unique solution for the exterior prob-
and the matrix is rank deficient. In order to determine ar] P q P
unique solution, additional constraints for the system o

equations are required. The missing constraints or equatioqgre
can be found by applying the integral equation on a numbe ince exact solutions are not always available, numerical

of points located outside of the domain of interest. Whenmethods are needed. Based on the complex-valued boundary

these equations are added to the system of equations, We ment methodBEM).® the eigenvalues and eigenmodes

have an overdetermined system of equations which can bé . S
Y q can be determined. Nevertheless, complex computation is

time consuming and not simple. To avoid complex compu-

dAuthor to whom correspondence should be addressed; electronic maitation, Nowak and Nevésproposed a multiple reciprocity

Jichen@mail.ntou.edu.tw method (MRM) in real-domain computation only. Tai and

For interior problems, eigensolutions are often encoun-
d not only in vibration problems but also in acoustics.
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Shavf employed only real-part kernels to solve the eigen-
problem. A simplified method using only the real-part or |
imaginary-part kernel was also presented by De Mey- AN /
though De Mey found that the zeros for a real-part determi- D

nant may be different from those for an imaginary-part de-

terminant, the spurious solutions are not discovered if only a —

real-part formulation is employed. For a membrane vibration

problem, Hutchinsol? also employed real-part kernels to \
solve the membrane vibration. He found the spurious modes /

and proposed a filtering-out technique by examining the I

modal shapes. However, this technique may fail in some
cases discussed by Chenal!'~* This method using only
the real-part BEM was later found to be equivalent to the
multiple reciprocity methodMRM) if the zeroth-order fun- . ]
damental solution in the MRM is properly chosEnChen In this study, we employed the CHEEF BEM to filter out
and Wongd* found that the MRM also results in spurious the spurious solutions for tw_o-dlmens_lonal _|nter|or acoustic
eigensolutions for one-dimensional examples. Numerical exProblems. The corresponding relationship between  the
periments using only the real-part kerfélwere performed CHIEF and CHEEF methods will be discussed. The opti-
for a two-dimensional case. The spurious solutions inMum number and position for the interior points will be stud-
MRM6-18 and real-part BENP were filtered out using the ied analytically anq verified numerically. Aftgr assembling
SVD technique. The relations among the conventionaf?® CHEEF equations, an SVD technique is employed to

MRM, complete MRM, real-part BEM, and complex-valued determine the eigenvalues, multiplicity, and boundary
BEM were discussed by Chéhlt is obvious that one ad- modes. The boundary modes can be extracted easily from the

vantage of using only the real-part kernels is that real-valuei9ht unitary matrix in SVD. Two examples for circular and
computation is considered instead of complex-valued comectangular domains with the Dirichlet boundary conditions

putation as used in the complex-valued BEM. Another ben&'® demonstrated to check the validity of the proposed

efit is that the lengthy derivation for the MRM can be Method analytically and numerically.

avoided. However, two drawbacks of the real formulation

have been found to be the occurrence of spurious eigenvall. REVIEW OF THE CHIEF METHOD FOR A TWO-

ues as mentioned in Refs. 14-16 and 19, and the failurBIMENSIONAL EXTERIOR ACOUSTIC PROBLEM

when it is applied to problems with a degenerate boundaryJSING THE SINGULAR INTEGRAL FORMULATION

To deal with those two problems, the framework of a real-  cqngjder an acoustic problem which has the following
part dual BEM was constructed to 1_‘|Iter out t_he Sp“r'ousgoverning equation:

eigenvalues and to avoid the nonunique solution for prob-

lems with a degenerate boundary at the same time. As forthe  V2U(x)+k?u(x)=0, xeD, ()

former problem, the reason why spurious eigenvalues occlfymber defined by the angular frequency divided by the

in the MRM or the real-part BEM is the loss of the con- sound speed. The boundary conditions are shown as follows:
straints in the imaginary part, which was investigated by _

Yieh et al?! The smaller number of constraint equations ~ U(X)=u, xeB, 2
makes the solution space larger. The spurious eigensolutiongereB denotes the boundary enclosibyg

can be filtered out using many alternatives: e.g., the  The aeoustic field can be described using the following
complex-valued formulation, the domain partition integral equatior?®

technique?® and the dual formulation in conjunction with
SvD.1116-18sing the dual MRM or the real-part dual BEM,
spurious eigenvalues can be filtered out by checking the resi-
due between the singular and hypersingular equatibfs.
Both the dual MRM methd and the real-part dual BEM _f U(s,x) Iu(s) dB(s), xeD 3
in conjunction with the SVD technique must calculate 4 T ang ' '

by 2N matrix, where A is the number of elements. In the
series of work by Chen’s grou;!*?*the multiplicity for
true eigenvalues was also determined. By employing the T(s X)zﬁU(S,X)
present CHEEF method, the missing constraints can be " ang
found again by applying the integral equations on a number

of points located in the exterior domain. It is necessary g which n, represents the outnormal direction at perdn

determine a matrix with only dimension K- 1) by 2N or the boundary andU(s,x) is the fundamental solution which

(2N+2) by 2N for CHEEF instead of M 2N in dual for- satisfies
mulation. V2U(x,9) +k?U(x,9)=8(x—s), xeD, (5)

FIG. 1. The definitions of the exterior domain.

wu(x)=fBT(s,x)u(s)dB(s)

whereT(s,X) is defined using

; 4
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where §(x—9) is the Dirac delta function. By moving the
field pointxin Eq. (3) to the smooth boundary, the boundary
integral equation for the boundary point can be obtained as

follows:
TU(X)= C.P.V.f T(s,x)u(s)dB(s)
B

Ju(s)
ang

—R.P.V.f U(s,x) dB(s), xeB, (6
B

where C.P.V. is the Cauchy principal value and R.P.V. is the

Riemann principal value. By moving the poirtfrom the
exterior domain D°®) to the interior domain'), the bound-

FIG. 2. The definitions of interior domain.

ary integral equation for the interior point can be obtained a%ystem is obtained to ensure a unique solution. Similarly, we

follows:

au(s) i
an. xe D'

()

After Eq. (7) is added to Eq(6), we can produce an overde-
termined system of equations.

By discretizing the boundari into the boundary ele-
ments in Eq.(6), we have the algebraic system as follows:

m{u}=[TH{u}-[UKt}, 8

wheret=gu(s)/dng, and the[U] and[T]| matrices are the

O=f T(s,x)u(s)dB(s)—f U(s,x) dB(s),
B B

corresponding influence coefficient matrices resulting from
theU andT kernels, respectively. The detailed derivation can

be found in Refs. 15 and 23. Equatit8) can be rewritten as

[THu}=[U1{t}, 9)

where[ﬂz[T]— w[l]._For simplicity, the Dirichlet radia-
tion problem, i.e.{u}=u is considered in Eq9). Therefore,
we obtain the following equation:

[UT{t}=[T}{u}. (10
We can rewrite the singular equations as follows:
[UB(K) Iansan{tlonsc1= {01} ot (11

where the superscripB denotes the boundary, and,}

=[TJ{u} and 2N is the number of boundary elements. Simi-
larly, discretization of Eq(7) can have

[U'(K) Jaxon{thonxa={02} ax1

where{q2}=[T]{U}, subscripta indicates the number of

(12

can extend the Dirichlet problem to the Neumann problem.

lll. REVIEW OF THE REAL-PART DUAL BEM FOR A
TWO-DIMENSIONAL INTERIOR ACOUSTIC
PROBLEM

According to the findings by Yeilet al?! and Kamiya

et al,® the series forms of the kernels in the MRM are no
more than the real parts of the closed-form kernels in the
complex-valued BEM. The closed-form kernels for the real-
part of BEM are shown below

U(s,x)= TFYOT(kr), (15
_ km Yin;
T(s,X)= 7Y1(kr)7, (16)

whereY,(kr) denotes the second-order kind Bessel function
with order n, n; denote theith components of the normal
vectors ats, andy;=s;—X; .

In order to filter out the spurious eigenvalues, Chen and
Wongt* developed the dual method by taking the normal
derivative of the first equatiofEq. (3)]. The second equation
of the dual boundary integral equation for the domain pwint
can be derived as follows:

Ju(x)

2
T7ony

= f M (s,x)u(s)dB(s)
B

—fBL(S,x)

au(s)
ang

dB(s), (17

xeD,

additional interior points and the number of selected pointdvhereD is the domain of interest as shown in Fig. 2, and

a=1, and superscrigt denotes the interior domain. We can
merge the two matrices in Eg§ll) and (12) together to
obtain an overdetermined system

[C(K)]an+ayxaniUtanx 1= 10} 2N+a)x 1 (13
where{q} is assembled byq,} and{q,}, the[ C(k)] matrix
is composed by theUB] and[U'] matrices as shown below
UB(k)}

U'(k) (14

[C(k)](2N+a)><2N:[

for the Dirichlet problem. Therefore, an over-determined
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B JU(s,X)

L(sx)= an , (18
_ PU(sX)

M(S,X)=W, (19

in which n, represents the outnormal direction at poinEor
the real-part BEM, the closed forms for theandM kernels
are shown below

—kmr yin;
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M(s,X)= —=3 —k——=—Vy;y;n;n; + ——n;n; ;. 2N. To reduce the dimension, the CHEEF method is pro-
r2 J ] r

kw{ Y,(Kr) Y (kn) in the real domain. However, the dimension[4f is 4N by
2 posed in the following section.

(21)

By moving the field poink in Eq. (17) to the smooth bound-
ary, the boundary integral equations for the boundary poinfy. THE CHEEE METHOD FOR AN INTERIOR TWO-

can be obtained as follows: DIMENSIONAL ACOUSTIC PROBLEM IN
CONJUNCTION WITH SVD TECHNIQUE

AU(X)
T on, :H‘P‘V'LM(SX)U(S)OIB(S) Based on the concept of the CHIEF method, we extend
the CHIEF for exterior problems to the CHEEF method for
au(s) interior problems. Since only the real-part formulation
_C'P'V'JBL(S’X) ng dB(s), xeB, (22) (MRM or real-part BEM is of concern, one approach to

) o obtaining enough constraints for the eigenequation instead of
where H.P.V. is the HadamatMangley principal value. By  ,ptaining the imaginary part of the complex-valued formula-
moving the interior pointx to the exterior domain, the o, s to derive additional equations on exterior points. This
bqundary integral equations for the exterior point can be Ob'method is similar to the CHIEF method. For simplicity, we
tained as follows: will deal with the Dirichlet problem. Therefore, we can ob-
au(s) tain the following equation:
dB(s), xeD°®
an [U(k)]{t}={0}. (32)

_ o _ (23). Now, we present a more efficient way to filter out spurious
By discretizing the boundar into boundary elements in eigenvalues which can avoid determining the spurious
Eq. (6) and Eq.(22), we have the dual algebraic system ashoundary mode in advance. We can rewrite the singular

0= fBM(s,x)u(s)dB(s)— JBL(S,X)

follows: equation and additional equations by collocating on the ex-
a{ul=[THul - [U]{t}, (24) terior points, as follows:
W{I}Z[M]{U}_[L]{t}, (25) [UB(k)]ZNXZN{t}ZNXl:{O}' (33)
where the[U], [T], [L], and[M] matrices are the corre- [UE(K) Jaxan{t}anxa={0}, (34)

sponding influence coefficient matrices resulting from thewhere the number of selected poirts 1 andE denote the
U, T, L, andM kernels, respectively. Equatioi24) and  exterior domain, respectively. To filter out spurious eigenval-

Eq. (25) can be rewritten as ues using the SVD technique, we can merge the two matrices
= in Egs. (33) and (34) together to obtain an overdetermined
[T]{U} = [U]{t}' (26) System
[LIt}=[M]}{u}, (27) [G(K) ]2n+ayxantthanx1 =10}, (35

where[ﬂ=[T]—Tr[l] and [f]z[L]Jrq-r[l]_ For the Neu- Wwhere the[ G(k)] matrix with dimension (Rl+a) by 2N
mann problem, the eigenequation obtained from the UT anihstead of Al by 2N in Eq.(30), is derived from th¢ UB] an

LM equations in Eqs(26) and (27) can be rewritten as additional[ UE] matrix as shown below
— B
T(k u ={0}, 28 U=(k)
[T(K) Ionsan{Utons1={0} (28) [G(K) on+ 2y xan = R (36)
[M(K)JonxoniUlanx1 =10} (29 (2N+a)x 2N

for the Dirichlet problem.

Even though th¢ G(k)] matrix has dependent rows re-
sulting from the degenerate boundary, the SVD technique
can still be employed to find all the true eigenvalues since

[ACK) Janxan{U}anx1={0}, (300 enough constraints are imbedded in the overdetermined ma-

o — trix, [G(k)]. As for the true eigenvalues, the rank of the
where the[A(k)] matrix is assembled by theT] and[M] )1 matrix with dimension (B+a) by 2N must be at
matrices as shown below: - . .

most 2N—1 to have a nontrivial solution. As for the spuri-
T(K) ous eigenvalues, the rank must b&l 20 obtain a trivial
M (K) (31) solution. Based on this criterion, the SVD technique can be
employed to detect the true eigenvalues by checking whether
for the Neumann problem. Also, an overdetermined systenor not the first minimum singular values,, is zero. Since
is obtained. Similarly, we can extend the Neumann problentiscretization creates errors, very small values d@r but
to the Dirichlet problem. To distinguish spurious eigenval-not exactly zeros, will be obtained whé&ns near the critical
ues, we can use the SVD technid§e'® Using the real-part wave number. In order to avoid determining the threshold for
dual BEM, spurious eigenvalues can be filtered out. Thehe zero numerically, a value af; closer to zero must be
main advantage of this method is that it can solve problemsbtained using a smaller increment near the critical wave

By employing the real-part dual BEM, we merge the two
matrices in Eqs(28) and (29) together to obtain an overde-
termined system

[A(K) Janxon=
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number k. Such a value is confirmed to be a true eigenvalue. Fictitious boundary s

For the true eigenvalues with multiplicity of 2, we can con- —_ S o
sider the eigenvalues which make=0 ando;=0 at the // R ~N
samek value. / \\

Since Eq.(36) is overdetemined, we will consider a lin- // r \
ear algebra problem with more equations than unknowns / \

[Almxn{Xtnx1={b}mx1, mM>n, (37 [ x \|
where m is the number of equations) is the number of I\ |
unknowns, andA] is the leading matrix, which can be de- \ /
composed into \ /

/

(AT n=[U Ll sl VI, (38 N, Relbounday
where[U] is a left unitary matrix constructed by the left \\ ///
singular vectors; ,u,,us, ... ,Uy), [¥] is a diagonal ma- S———-
trix which has singular values,,o, ..., ando, allocated
in a diagonal line as FIG. 3. The definitions op, 6, R, andr.

- o oo 0 =1
[Alvg=0uq=0, gq=1,23...,Q. (41
[S]= o - o m>n (39) According to Eq.(41), the nontrivial boundary mode is
0 -+ 0 ' ' found to be the column vector of, in the right unitary
matrix.
o - 0 When we take all of the I8+ a equations into account,

. ) ) ) these apparently cause the rank of the leading coefficient
in which 0n=07,_1---=07 and[V]* is the complex conju-  matrix to be equal to B—1 for the true eigenvalue with
gate transpose of a right unitary matrix constructed by thenytiplicity 1. The boundary modes can be obtained from the
right singular vectors\(;,vz,Vs, . . . V). AS We can see in - [v/] matrix in Eq. (38) using SVD. Another advantage for
Eq. (39), there exist at most nonzero singular values. This ysing SVD is that it can determine the multiplicities for the
means that we can find at mastinear independent equa- trye eigenvalues by finding the number of successive zeros in
tions in the system of equations. If we hapeero singular  the singular values.

values (6= p=n), this means that the rank of the system of

equations is equal to— p. However, the singular value may

be very close to zero numerically, resulting in rank defi—V. ANALYTICAL STUDY OF THE FAILURE POINTS IN
ciency. For a general eigenproblem as shown in this papefye cHEEF METHOD

the[ G(k)] matrix with dimension (R +a) by 2N will have

a rank of N—1 for the true eigenvalue with multiplicity 1~ In Refs. 27-29, the real-pad kernel can be expanded
and o, =0, theoretically. For the true eigenvalues with mul- INt0

tiplicity Q, the rank off G(k) ] will be reduced to A—Q in o

which 0,0, ..., andog are zeros, theoretically. In other U(sx)= EYO(kr):
words, the matrix has a nullity d. In the case of spurious

eigenvalues, the rank for tH& (k)] matrix is 2N, and the ~wherex=(p,¢) ands=(R,#6), p, r, R, and# are shown in
minimum singular value is not zero. Determining the eigen-Fig. 3. Sincex ands are on the boundaries of radipsandR,
values of the system of equations has now been transformgéspectively,U(s,x) can be expanded into degenerate form
into finding the values ok which make the rank of the lead- as follows:
ing coefficient matrix smaller than N2 This means that

™

5 Yo(kyR?+p2—2Rpcosh), (42

n=o
whenm=2N+a,n=2N andb(zm.a)Xl:O., the eigenvalues u,0= >, %TYn(kR)Jn(kp)cos{ng), R>p,
will make p=1, such that the minimum singular values must _ n=-—o
be zero or very close to zero. Since we have employed the U(s:x)= n=e
SVD technique to filter out the spurious eigenvalues, we can U(6,0)= E EYn(kp)Jn(kR)cos(ne), R<p,
n=—o

obtain the boundary mode by extracting the right unitary
vector in SVD. (43

According to the definition of SVD, we have where the source poistand field pointx(¢=0) in the two-

point function is separated add(kp) is thenth order Bessel

[Alvp=0plp, p=123....n, (400 fynction of the first kind. Equatio43) can also be obtained
whereu andv are the left and right unitary vectors, respec-through the addition theorem for the Hankel function. By
tively. By choosing thegth zero singular valueg,, and  superimposing R constant source distributidrt} along the
substituting thegth right eigenvectory,, into Eq.(40), we fictitious boundary with radiusk and collocating the R
have points on the boundary with radiys we have
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Ao a; @ v An-2 an-1]
arN-1 ) a; - Ayn-3 Apn-2
[UNt}=]| @xn-2 -1 @ “* an-4 @azn-3
ICE ar az ° aN-1 Qo
r—
to
ty
x{ 2 ) ={0}
ton-1
\ J

for the Dirichlet problem, whergj is the fictitious density of

(44)

( 1 \
an
ap
{ead={ &3 |- (50
aﬁNfl
\ J
Substituting Eq(49) into Eq.(48), we have
2N—-1 2N—-1

N = Z a_malnn: E amei(qu/ZN)mI
m=0 m=0

|=0,=1,+2,--,+(N—=1),N. (51

According to the definition fom,, in Eq. (45), we have

single layer potential distributed on the boundary with radius ap=axy-m, mM=0,1,2... N-1. (52

R, and[U] is the influence matrix with the elements shown

below

(Mm+1/2)A0
am= f U(6,0)R dg~U(6,,00RA ¥,
(m—1/2)A0

m=0,1,2 ... N-1,

whereA §= 27/2N and 6,,=mA 6.

The matrix[U] in Eqg. (44) is found to be a circulant

(49)

Substituting Eq(52) into Eq.(51), we have
N—1

N=aot(—D'ayt X (of"+ et May,
m=1

2N—-1

= > cogmlAda,,. (53)

Substituting Eq(45) into Eqg. (53), we have
2N-1

since rotation the symmetry for the influence coefficients is  \ ~ > cogmlag)U(mA9,00RA G

considered. By introducing the following bases for the circu- m=0
lants1,C3y,Can. - - . .Can 1, we can expanlU] into o
L 5 N1 =f cogI9)U(H,0R do, (54
[Ul=agl +a;CoytaCoyt - +an-1Coy -, (46) 0
wherel is a unit matrix and asN approaches infinity. Equatiof®4) reduces to
2 * s
"0 1 0 --- 0 07 xlzf cogl6) >, o Ym(kR)Jn(kp)cosmeR dé
0 m= —c
0 01 - 00 ,
=m°RY,(kR)J,(kp). 55
Con= TP B 47) 1(kR)J,(kp) (55)
00 - 0 1 Since the wave numbéris imbedded in each element of the
[U] matrix, the eigenvalues fdiJ] are also functions ok.
L1 00 0 0J Finding the eigenvalues for the Helmholtz equation or find-

Based on the theory of circulantthe spectral properties

ing the zeros for the determinant pf] is equal to finding
the zeros for the multiplication of all of the eigenvalues of

for the influence matrice4), can be easily found as follows: [U]. Based on the following equation:

1

)\|=a0+ a1a|+a2a|2+ e +a2N710[|2N7

=0,21,+2,...,2(N—1),N,

(48)

where A, and «, are the eigenvalues fdU] and [Cyy],

respectively. It is easily found that the eigenvalues for the

circulants[ C,y] are the roots for?N=1 as shown below

a,n:ei(Zﬂ-n/ZN)’

n=0,+1,+2---,#(N—1),N
or n=0,1,2...,2N-1,

and the eigenvectors are

987 J. Acoust. Soc. Am., Vol. 109, No. 3, March 2001
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FIG. 4. One sample point.
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TABLE I. Zeros of Bessel function fod,(k) andY,(k)

1 2 3 4 5
Jo(k)=0 2.404 8 5.5201 8.6537 11.7915 14.9309
J,i(k)=0 3.83171 7.01559 10.173 46 13.3237 16.4706
J,(k)=0 5.1356 8.4172 11.6198 14.796 0 17.959 8
J3(k)=0 6.380 16 9.760 12 13.0152 16.223 46 19.409 41
Ju(k)=0 7.588 34 11.064 7 14.3725 17.6160 20.826 9
Js(k)=0 8.77148 12.338 6 15.700 2 18.980 1 22.2178
Yo(k)=0 0.893 58 3.957 68 7.086 05 10.222 34 13.361 10
Y.(k)=0 2.197 14 5.429 68 8.596 01 11.749 15 14.897 44
Y,(k)=0 3.384 24 6.793 81 10.023 48 13.209 99 16.378 97
Y3(k)=0 4,527 02 8.097 75 11.396 47 14.623 07 17.818 45
Y4(k)=0 5.645 15 9.361 62 12.7301 15.999 6 19.224 4
Ye(k)=0 6.747 18 10.597 2 14.0338 17.3471 20.602 9
defU]=NoAn(N A2 Anc ) (N aN o N (n—1y),s Kiml1=Knp (M<p), (62

(56)
the possible eigenvalugue or spuriousoccur at
Y, (kR)J,(kp)=0, 1=0,£1,+2,--,=(N—-1),N.
(57)

Thek values satisfying Eq.57) may be spurious eigenvalue

then the spurious eigenvalu&§ ,,, cannot be filtered out.
The possible failure positions far, are shown in Table II.
When the spurious eigenvalues are double roots, rank re-
duces by 2. One point provides at most one constraint. One
point cannot filter out the double spurious roots, so an addi-

or true eigenvalue. Here, we adopted the CHIEF methodional independent equation is required by adding one more

concept to filter out the spurious eigenvalues.
If we adopt one exterior pointr¢,¢,), wherer,>p as
shown in Fig. 4, we have
o=f U(s,x)t(s)dB(s)=[w]]{t}, (58
B
where[w; = (w3,w2,w3, ... wa") is the row vector of the
influence matrix by collocating the exterior poix{. Com-
bining Eq. (44) and Eq.(58), we obtain an overdetermined
system
U(k)

w](k) | tth=10}, (59

where{t}={1g/"A0 gin2A0
The additional constrainfw]]{t}=0 provide the dis-
criminant, A, to be

A=Wt} =7?r,Y,(krp)3n(kp)em¥1=0.

en@N-1)aNT,

(60

For the single spurious eigenvalukd,,, we haveY (kg )
=0, where the superscriptdenotes the spurious eigenvalues
andky, denotes thenth zeros for theY, function[zeros of
the Bessel function fod,,(k) andY,(k) are shown in Table
I]. If the selected exterior point {,¢,), satisfies

(m<p), (61

wherek, , denotes theth zeros for they, function, then the
spurious eigenvaluekam, cannot be filtered out. For the
double spurious eigenvaludxi,m, we haveYn(kf]'m)=0, n
>0. If the selected exterior point {,¢,), satisfies

S —
Koml 1= Kop

|

72 Yo (kr)dn(kp)e"?t  w?r Y, (kry)Jda(kp)e M1
7TzrZYH(l(rZ)‘Jn(I(F))eir1¢2 71'zrzYn(kl’z)Jn(kP)e_in‘ﬁZ

o

B
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point.

If we adopt another exterior point {, ¢,) with a radial
distancer,>p as shown in Fig. 5, and combine with Eg.
(59), we have

U(k)

.

" ity =0}, (63
W (k)

where[wJ]=(w3,w5,w3, ...w3") is the row vector of the

influence matrix by collocating the exterior poixgd. When

the spurious eigenvalues are double roots, we have

wi (k) wi wity wit,] (@
wi(k) [1= [ wh |ttt Bl =wit, ity |) B[
(64)

where {t;}={1,"4¢en240 NCN-DAAT and [t,}
={1e N4V g IN280 o~ INGN-LANT are two indepen-
dent boundary modesg; and 8 are two constants, and

wit]=m2r Yo (kry)Jn(kp)e®s,
wity=m2rYn(kr)Jn(kp)e "¢z,
Wity = 72r,Y(krp) Jn(kp)e'?z,
wity=m2r,Y o (krp)Jn(kp)e "2,

Since the spurious double roots make the rank less than 2,

the additional two points must provide independent con-
straints, as follows:

-0

(65)
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TABLE Il. The failure points with difference radial circular.

Failure
point

3.96/0.89-4.429

7.09/3.96=1.79
10.22/7.08-1.44
5.43/2.2=2.47
8.6/5.43=-1.58
11.75/8.6=1.37

6.79/3.38=2.007

10.02/6.79-1.48
13.21/10.021.32
8.1/4.53=1.79
11.4/8.&1.41
14.62/11.4-1.28
9.36/5.64-1.66
12.73/9.36-1.36
16.0/12.731.26
10.6/6.75=1.57
14.03/10.6-1.32
17.35/14.03-1.24

7.09/0.887.97
10.22/3.962.58
13.36/7.091.88
8.6/2.23.91
11.75/5.432.16
14.9/8.61.73
10.02/3.382.96
13.21/6.791.94
16.38/10.021.63
11.4/4.532.52
14.62/8.£1.80
17.82/11.41.56
12.73/5.642.26
16.0/9.36:1.71
19.22/12.731.51
14.03/6.752.08
17.35/10.61.64
20.6/14.031.47

10.22/0.8911.48
13.36/3.963.37

11.75/2.25.34
14.9/5.432.74

13.21/3.383.91
16.38/6.79:2.41

14.62/4.533.23
17.82/8.%2.2

16/5.64-2.84
19.22/9.362.05

17.35/6.752.57
20.6/10.61.94

13.36/0.8815.01

14.9/2.26.77

16.38/3.384.85

17.82/4.533.93

19.22/5.643.41

20.6/6.753.05

If they are dependent, we have

7211 Yn(kry)Jn(kp)e'"?2

7211 Yn(kry)Jn(kp)e "1

A=del 72,y (krp)Jn(kp)e™P2  w2r,Y (ki) dn(kp)e 42

=111 oY n(Kry) Yo(Kra)dn(kp)In(kp) (€017 92— e7In(01= 02y =i 21,1, Y (Kry) Yo(Kr2) Jn(kp) In(kp)sin(ng) =0,

(66)
|
where ¢= ¢, — ¢, indicates the intersecting angle between © by b, b, bon—2 bon—1]
the two exterior points. The discriminarit indicates by 1 be by bon_ s Don
(1) If the two points with the intersection anglg produce [THul=| ban-2 ban-1 bo bon_a Don_3
sin(h¢)=sin(m)=0, i.e., = =/n, we will fail to filter
out the double spurious roots fat,, n=1.
(2) If the two points produceY,(kr{)=0 or Y,(kry)=0, L by b,  bs bon-1 Do
n=1,2,3..., then we will fail to filter out the double [ Uy )
spurious root ofY,,. —
(3) No more than two points are needed if the points are U1
properly chosen. x{ Uy Y—qo 67)
For the Neumann problem . :
Uan-1
\ J

FIG. 5. Two sample points.
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Wherer is the fictitious density of single layer potential
distributed on the boundary with radiés and the boundary

mode for{u} is
(U} ={1,ein40 gin280 . oin(2N-1)ANT (69)

wheren denotes thenth boundary mode. The matr{X] is
the influence matrix with the elements shown below

(m+1/2)A0
bm=f T(6,00R d6~T(6,,,00RAH,
(m—1/2)A0

m=0,1,2 ... N—-1, (69)

Chen et al.: Method for true and spurious eigensolutions 989



1.00 = 1.00 3
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0.10 = -
3 Y ﬂ Y, H Y, 010 E ”-‘
] ] Y, Y2,1 Y,
] ol 5, T
0.01 = 0.01 3
3 3
5 Jo, Jl,i ] Jo, Ji
1
7 ' : | n --@
i b | g x
[l i i 1
! 1 |
Py
0.00 — 7T 1. T v T 7 0.00 — 1 r T 1 T 1 7T
0.00 1.00 2.ooi g 300 i §4.oo i 5.00 0.00 1.00 200  p 3.00 4.00 5.00
t 1 ] |
i E i t FIG. 7. One sample point;(1.5,0), o4 vs k using the real-part UT equa-
1.00 — T — L tion.
- | | [ |
- ] [} 1 ]
- 1 ! i |
] | P ! 2 2N-1
: E :’ :' i M|=b0+b1a|+b2a|+---+b2N,la| y
] } | 1
T2 1 5 P : 1=0,+1,£2,-,#(N=1),N, (72)
] ]
010 \ i i i where u; and «, are the eigenvalues fdiT] and [Cyy],
T g ’ " respectively.
] We have
7 Y 2N—-1
i - Y2J Y3,l M= E bma|rn
m=0
0.01 — 2N-1
- — E b..gi(2m/2N) ml
- m 1
: J|,1 m=0
. v i |=0,#1,+2--,+#(N—1),N. (73
7 P
P : 1.00 3
000 — T T T T T T 7 3
0.00 1.00 200 p 300 4.00 5.00 .

FIG. 6. The first and second minimum singular valegsand o, vs k of a
circular using the real-part UT equation subject to Dirichlet boundary con-

ditions and boundary mesh.
0.10 3 B, Y,
whereA 6= 27/2N and 6,,=mA 6, T(s,X) can be expanded ]
into . !
T(sX)=T(6,0 ]
A 0.01 J
= >, =Y, (kRJ/(kp)cognh), R>p. (70 . A,
n=—wx
The matrix[T] in Eq. (67) is a circulant since rotation sym- B R D N Py
metry for the influence coefficients are considered. We can ] X,
expand[T] into
000 L I L] I T l L l |}
[T]=bgl +blC%N+ b2C§N+ e +b2N,1C§H71. (71 0.00 1.00 200 p 3.00 4.00 5.00

Based on the theory of circulants, the spectral propertiegi, g. one sample point,(4.429,0), o, vs k using the real-part UT
for the influence matrix; T], can be found as follows: equation.
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-
T

Nt~

AN\ N S , / \ WAL S = Z

2,00 . " 2. e NS S -
AN AN \\ S ) \‘_ AN N 3 g — )

-3.00+ X N . - B . ; -3. RS R 5 " - / / L

4,00 R 4 Ny e =S +

-5.00 T T T T —T -5 T T T T T
500 400 -300 200 -100 J L X | L -5. -4 -3 -2, -1 | A K A . 5.00

FIG. 9. The spurious eigenvalue radiation mode of a circular cavity for therIG. 11. The spurious eigenvalue radiation mode of a circular cavity for the

Dirichlet problem withk;=0.894. Dirichlet problem withks=3.384.
According to the definition fob,, in Eg. (69), we have 2N-1
~ cogmIAG)T(mAH,0)RAA
by=boy_m, M=0,12... 2N-1. (74) H mE:O (mIAG)T( )
i i i 2w
Substituting Eq(74) into Eq.(73), we have :f cos16)T(6.0R do, 76
0

N—-1

— _ 1! m 2N—m
m=bot(=1) bN+m§:‘1 (@ +ai™ )b asN approaches infinity. Equatiof76) reduces to

2N-1 -
2w T
= > cogmlAd)b,,. (75) M|=f cogl6) >, o Yi(kR)Jjy(kp)cosméR de
m=0 0 m=—o
Substituting Eq(69) into Eq. (75), we have =7?RY,(kR)J/ (kp). (77
0.16 1.00 3
i o ]
(o ]
0.127] ’—\
- 01073 K Y, Y.,
Y, 3
0.087] 4
I i
® X e 0.0173
0.047 J ; ] 0.1 Jii
-® 0,1 1,1 :
] X ]l - -®
X3 X
0.00 ' | T | k ! I ’ I ' 0.00 T | T | T | T I T
0.00 1.00 2.00 3.00 4.00 5.00 0.00 1.00 200 K 300 4.00 5.00

FIG. 10. Two sample points,;(1.5,0) andx,(1.5,7/2), o, vs k using the FIG. 12. Two sample pointg,(1.5,0) andx,(1.5:), o, vs k using the
real-part UT equation. real-part UT equation.
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1.00 3 1.00 3
o | ]
, o,
- _ [7 ﬂ \/~
0.10 1 0.10 3
] Y, ]
i _ Y,
® X J
0.01 3 JO,I 11 0.01 3 JO,l Jl 1
- ] . /. x2
1xe - X, . ‘
- . -® X,
0.00 — 71T 1" 1 17 0.00 T | T T T T T T T
0.00 1.00 2.00 k 3.00 4.00 5.00 0.00 1.00 2.00 k 3.00 4.00 5.00

FIG. 13. Three sample poinig(1.5,0),X,(1.5/7/2), andx3(1.5:7), oy VS FIG. 15. Two sample points, (2.00747/4) andx(1.4,0), 0, vskusing the
k using the real-part UT equation. real-part UT equation.

Since the wave numbéris imbedded in each element of the The values satisfying Eq79) may be spurious eigenvalues
[T] matrix, the eigenvalues fdiT] are also a function ok. or true eigenvalues. Similarly, we adopted the same method
Finding the eigenvalues for the Helmholtz equation or find-to filter out the spurious eigenvalues.

ing the zeros for the determinant[df] is equal to finding the If we adopt one exterior pointr¢,¢,), wherer,>p as
zeros for multiplication of all the eigenvalues[of]. Based shown in Fig. 4, for exterior point

on the following equation:

defT]=poun( it n-D) (12 p—(n-1)), (78) 0= JBT(S’X)t(S)dB(S):[UI]{U}- (80)

the possible eigenvalu€tue or spuriousoccur at )
where[v]]=(v],v5,03, ... v3") is the row vector of the

Y (kR)J/(kp)=0, 1=0,£1,=2,--,#(N—1),N. (79 influence matrix by collocating the exterior poixt. Com-

1.00 3 1.00
o, ]
0.10 —o \
0.10 73 ]
3 b, o,
7 0.01 3
® X, "
0.01 73 Jos Jia ] Joi Ji
3 N x
1% -8 X 0.00 ¢
‘ . 5 ->
- ® N X,
X, .
. ¥ L I L] I 1) I L]
0 00 I k 0.00 1 I L | I ) | i | )
0.00 1.00 200 3.00 4.00 5.00 0.00 1.00 200 k 300 4.00 5.00

FIG. 14. Four sample pointx;(1.5,0), X,(1.5:/2), X3(1.54), and FIG. 16. Two sample points;(1.5,0) andx,(1.5:/4), o; vs k using the
X4(1.5,37/2), vsk using the real-part UT equation. real-part.
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5.00 1.00 —
4.00-] == ] b=1m
o= — N
= =0 . a=2m
W Ny o
& N\ 10 =
0.01
]
0.00 : i ' I '
0.00 2.00 k 4.00 i 6.00
!
FIG. 17. The true eigenvalue radiation mode of a circular cavity for the 1.00 3 H
Dirichlet problem withk;= 2.405. . E
- 1
1
bining Eq.(67) and Eq.(80), we obtain an overdeterminate 4
system o, v "\
T(k)
_ 0.10 H |
vI(k) |fur={0}, (81) E i
Where{u}:{leinAH einZAH . ein(2Nfl)AH}Tl :
The additional constrairftv;]{u}=0 provides the dis- ]
criminant, A, to be h
A=[viH{u}=7?r1Yn(kry) Iy (kp)e"?1=0. (82 oo
; !
]
= ]
- |
]
- ]
)
|
- |
|
]
]
]
0.00 T I T l |I
0.00 2.00 k 4.00 6.00

FIG. 19. The first and second minimum singular valugsando, vs k of a
rectangle using the real-part UT equation subject to Dirichlet boundary con-
ditions with size 2 nx1 m.

It is similar to Eq.(60), it can filter out a single root only.

If we adopt another exterior point {, ¢,) with a radial
distancer,>p as shown in Fig. 5, and combine with Eq.
(81), we have

T(k)

vi(k) |y =0y, ©3)
v3(K)

5.00 . - : —
500 400 -3.00 -200 -1.00 0.0

where[v3]=(v3,v3,03, ... v3") is the row vector of the

influence matrix by collocating the exterior poixy. When

FIG. 18. The true eigenvalue radiation mode of a circular cavity for the . .
the spurious eigenvalues are double roots, we have

Dirichlet problem withk;=3.832.
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0.01
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0.00 -T T T I T

0.00 2.00 4.00 6.00

FIG. 20. One sample point;(1.0,—0.25), o, vs k using the real-part UT
equation.

v1(k) vl vil; ViU | [ @

va(k) [UH=] T [{aut Buat=| Ty T, || B[
(84)

where U }={1,M¢ gin22¢  onCN-DAAT ang 1

:{1e—inA0 e—inZAe .
dent boundary modeg; and 8 are constants, and

viu =7, Yn(kry)Jh(kp)en s,

e—in(z'N— DANT

viuz=m2ryYo(kr)Jdi(kp)e "%,

vauT=m2r,Yo(krp)Ji(kp)e?z,

4,000
4.00

200 300

1.00

300 200 000 100

are two indepen-

5.0}~

T

4.00
3.00

2.00

0.00

.2.001 N,

3004 3
SN
-4.00 e . -
400 300 -2.00 ) 6.00

FIG. 22. The spurious eigenvalue radiation mode of a rectangle for the
Dirichlet problem withks=4.02.

vy =m2r,Y o (krp) i (kp)e "¢,

Since the spurious double roots make the rank less than 2,
the additional two points must provide independent con-
straints, as follows

7T2r1Yn(krl)Jr’1(kp)eind)1 WzrlYn(kl’l)Jé(kp)e_in‘f’l

215X o (Kro)Ih(kp)e"?2  ar?r,Y (Krp)dl(kp)e ez

o
X B =0. (89
If they are dependent, we have
1.00 —
o, ]
. 'n
0.10 -
S I
0.01
OOO T T I
I T
0.00 2.00 k 4.00 6.00

FIG. 21. The spurious eigenvalue radiation mode of a rectangle for the=1G. 23. One sample point (0.25-0.25), o, vs k using the real-part UT

Dirichlet problem withks=2.23.
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equation.
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w2r Yo(kr)dh(kp)e"®r  aw2r Yo (kry)Jd(kp)e "4
A=de WzrzYn(krg)\]r’](kp)em(bz ﬂ-erYn(krz)Jr,](kp)eiin‘/’Z

=111 5Yn(Kry) Yo(kra)dn(kp) Iy (kp) (€01 92) — e 7101 @2y =1 1o, (kry) Yo(kr2) 5(kp) In(kp) 2i sin(ne) =0,
(86)

where ¢= ¢, — ¢, indicates the intersecting angle betweengbtained, whemr; ando, are both zeros at the sarkealue.
the two exterior points. Similarly, the discriminaft can Figure 7 showsr, vs k by additionally considering Eq58)
justify whether the selected point is effective or not. It canggy, collocating one exterior poink, , with radiusr,;=1.5 m,
filter out a double root. It was found that the spurious eigen-qsl:o. This treatment can filter out the spurious root¥ gf
values of an interior problem are dependent on the chosegnqy, , as expected in the analytical derivation. If the col-
method, i.e., singular integral equation results in the Spuriouﬁ)cating exterior point is located at the circular boundary
eigenvalues af',(kp) =0, and independent of boundary con- wth radiusr; =kg »/ko; = 3.590/0.894-4.429 as described

dition (Dirichlet or Neumanh in Eq. (61), which is on the nodal line of the radiation mode
of Yp,1, then the spurious eigenvalue ¥§ ; cannot be fil-
VI. NUMERICAL EXAMPLES tered out as shown in Fig. 8. The spurious radiation mode of

Yo,1 is shown in Fig. 9.

For the numerical experiment, we considered a circular  If the additional two pointsx,(r,=1.5¢,=0) and
cavity with radits 1 m subjected to the Dirichlet boundary x,(r,=1.5¢,= 7/2) with intersecting angle o= /2 are
condition to check the validity of the CHEEF method. Fur- selected, then the spurious rootof ; cannot be filtered out
thermore, in order to extend to the general geometry probleras shown in Fig. 10, since sig20. The spurious radiation
using the CHEEF method, we used a rectangular cavity submode ofY, ; is shown in Fig. 11. Similarly, in both positions
jected to the Dirichlet boundary condition to demonstrate thex; andx, with intersecting angler, only the spurious eigen-
generality. value Yy, andYg, can be filtered out as shown in Fig. 12.

Sixty elements were adopted in the boundary elemenFigure 13 and Fig. 14 are the results by adopting three
mesh for a circular domain. Figure 6 shows the first mini-[ (X;(r;=1.5¢1=0), Xo(ro=1.56¢,=7/2), X3(r3=1.5¢5
mum singular valueg, vs k where the true and spurious =m)] and four [(X;(r;=1.5¢,=0), Xx(r,=1.54,
eigenvalues are obtained if only real-part UT is used. In the= w/2), X3(r3=1.5¢3=m), X4(r4=1.5¢,=3m/2)] exte-
range of 0<k<5, we have two true eigenvalupd, ;(2.405)  rior points with different intersecting angles, respectively. It
andJ; 1(3.832)] and five spurious eigenvalueé, ,(0.894), is very obvious that the results of Figs. 13 and 14 are the
Y11(2.197), Y,1(3.384), Y 3.958), andY;,(4.527)]*  same as those of Fig. 10. This represents that the additional
Figure 6 also indicates the second minimum singular valuegxterior points with intersecting angte provide dependent
o,, Vs k where the true and spurious double roots can beequations. At the same time, if the additional exterior points,

1.00 1.00 o
o, o, |
0.10 - { 0.10
N . e X,
. ? X, =
. L ]
o x
0.01 —: é x] 0.01 _E 1
0.00 \ ‘ T 0.00 T I Y T Y
0.00 2.00 k 4.00 6.00 0.00 2.00 k 4.00 6.00

FIG. 24. Two sample points;(1.0,—0.25) andx,(1.0,1.25),0; vsk using FIG. 25. Two sample pointg,(0.3,—0.3) andx,(2.1,1.3), 0, vs k using
the real-part UT equation. the real-part UT equation.
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5.00

ing the points in the region ofdr<1.24, since the density

VoW 77 1 IS | _
”)\/’J sz ! of nodal lines in that area is low.

7. o Vs -0

VO T2 17 rea i _
“°°{,//% /4///)/,//:\20. ,0 A rectangular cavity with lengtm=2 m and widthb
30041/4%7’?,//?/ N | =1 m subjected to the Dirichlet boundary condition is dem-
£V o/;f/u// ;}’/}"‘/Q (\\\ N ’ onstrated to see the validity for a problem with general ge-

S0 A2
oty 2 /Jﬁﬁﬁ%ég

t ! I(\va/@
1.00 'l S /&/&

ometry. Sixty elements in the BEM mesh were adopted. Fig-
ure 19 indicates the first and second minimum singular
values,o, and o, vs k, where the true and spurious, single
and double eigenvalues can be obtained. In the range of 0
<k<6, we have three true eigenvalu@ss1, 4.44, and 5.66
and six spurious eigenvalu¢4.05, 2.23, 3.37, 3.57, 4.02,
and 4.98 (double roof]. If the additional exterior point
X1(x;=1.0y;=—0.25) is chosen, then the spurious roots
can be filtered out except for the double spurious eigenvalue
(4.989 and some single spurious eigenvalu@s23, 4.02,
where the selected points are on the nodal line as illustrated
in Fig. 20. The spurious radiation modeslof 2.23 andk
=4.02 are shown in Fig. 21 and Fig. 22. Figure 23 shows
that if one additional exterior pointx;(x;=0.25y,
=—0.25) is chosen, then the spurious eigenvalues can be
filtered out except for the double spurious eigenvakue
=4.98. Figure 24 shows that if the additional two exterior
pointsx;(x;=1.0y;=—0.25) andx,(x,=1.0y,=1.25) are
both chosen, then some spurious eigenval@ex3, 4.02, and
4.98 cannot be filtered out, since the additional exterior
points are on the nodal line of the spurious radiation modes.
If the additional two exterior pointg;(x;=0.3y;=—0.3),
Xo(X,=0.21y,=1.3) are chosen, then all the spurious eigen-
values can be filtered out as illustrated in Fig. 25. At the
same time, we know that the spurious eigenvaluekof
=4.98 is a spurious eigenvalue with multiplicity 2, because
one additional exterior point cannot work well. The two ra-
diation modes of the spurious eigenvalue 4.98 are shown in
Figs. 26a) and (b). From these radiation mode figures, it is
shown that if the additional exterior points are close to the
boundary and are not located on a special position, such as
on the nodal lines ok=a/n or y=b/n (neN), then the
spurious eigenvalues can be filtered out efficiently. It is wor-
thy to point out that the nodal lines of radiation mode for a
FIG. 26. (8) The spurious double root of the first radiation mode of a C,IrCIe can be rotated, since a circle has the prqurty of rota-
rectangle for the Dirichlet problem witk,=4.98. (b) The spurious double ~ tION symmetry. However, the nodal lines of radiation modes

root of the second radiation mode of a rectangle for the Dirichlet problemfor a rectangle cannot be rotated.
with ky=4.98.

~ -0 .
- ~»;_>‘~—,—‘ ////

000 100 200 300 400 500 600

one pointx; with ry=Kk;,/k, 1=6.794/3.384-2.007 as de-
scribed in Eq.(62) and ¢,= /4 and another point, with
r,=1.4 and¢,=0, are both chosen, then the spurious roots = The CHEEF method in conjunction with the SVD tech-
can be filtered out, except, ; as illustrated in Fig. 15. Fig- nique was applied to determine the true and spurious eigen-
ure 16 indicates that if the additional two exterior pointsvalues of circular and rectangle cavities subjected to the Di-
X1(r1=21.5¢,=0) and x,(r,=1.5¢,=m/4) are carefully richlet boundary conditions. The relationship between the
chosen, then all the spurious eigenvalues can be filtered ouLHIEF and CHEEF methods was summarized in Table III.
It is interesting to find that the potential distribution is not The failure cases in selecting the exterior points for circular
trivial for the spurious eigenvalues; however, the potentialand rectangle cavities were studied analytically and demon-
distribution in the exterior domain for a true case is trivial, asstrated numerically. If the additional points are properly cho-
shown in Fig. 17[Jg4(2.405)] and Fig. 18[J, 1(3.832)]. sen, there are no more than two points required. The true
The dotted lines in the radiation modes represent the nodaigenvalues obtained by the CHEEF method match very well
lines. The radius of these nodal lines match the data in Tablwith the exact solutions. It is very worthy to point out that
[I. Table Il also shows that most of spurious eigenvalueshe nodal line of radiation mode for a circle can be rotated
with low frequencies can be filtered out efficiently by select-due to its symmetry, whereas the nodal line of radiation
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TABLE Ill. Comparison between the CHIEF and CHEEF methods.

Method
CHIEF CHEEF
Combined Helmholtz Interior integral | Combined Helmholtz Exterior integral
Description Equation Formulation Equation Formulation
3 AN /7
g Vi+£H)u=0
Problem u=1 V2 +£Hu=0
statement /7 I \ u=0 or =0
Radiation or scattering problem eigenproblem
Method of complex-valued BEM BEM
solution (UT or LM) (real-part or imaginary-part)
ur
Re
Numerical
trouble .
RS S T
fictitious wave number spurious eigenvalue
I *
Additional N\ /
constrain —_— — * *
/ | \ 4
Risk nodal lines for interior modes nodal lines for radiation modes
Treatment dual formulation complex-valued formulation
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