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Integral equation methods have been widely used to solve interior eigenproblems and exterior
acoustic problems~radiation and scattering!. It was recently found that the real-part boundary
element method~BEM! for the interior problem results in spurious eigensolutions if the singular
~UT! or the hypersingular~LM ! equation is used alone. The real-part BEM results in spurious
solutions for interior problems in a similar way that the singular integral equation~UT method!
results in fictitious solutions for the exterior problem. To solve this problem, a Combined Helmholtz
Exterior integral Equation Formulation method~CHEEF! is proposed. Based on the CHEEF
method, the spurious solutions can be filtered out if additional constraints from the exterior points
are chosen carefully. Finally, two examples for the eigensolutions of circular and rectangular
cavities are considered. The optimum numbers and proper positions for selecting the points in the
exterior domain are analytically studied. Also, numerical experiments were designed to verify the
analytical results. It is worth pointing out that the nodal line of radiation mode of a circle can be
rotated due to symmetry, while the nodal line of the rectangular is on a fixed position. ©2001
Acoustical Society of America.@DOI: 10.1121/1.1349187#

PACS numbers: 43.40.At@PJR#
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I. INTRODUCTION

Acoustic problems are generally modeled using
wave equation, which is transient, or by the Helmholtz eq
tion, which is time harmonic. While the solution to the orig
nal boundary value problem in the domain exterior to
boundary is perfectly unique for all wave numbers, this is
the case for the corresponding integral equation formulat
which breaks down at certain frequencies known as irreg
frequencies or fictitious frequencies. This problem is co
pletely nonphysical because there are no eigenvalues fo
exterior problems. Schenck1 proposed a Combined Helm
holtz Interior integral Equation Formulation~CHIEF!
method, which is easy to implement and is efficient but s
has some drawbacks. A review article by Benthien a
Schenck2 is referenced. In the case of a fictitious frequen
the resulting coefficient matrix for the exterior acoustic pro
lems becomes singular or ill-conditioned. This means t
the boundary integral equations are not linearly independ
and the matrix is rank deficient. In order to determine
unique solution, additional constraints for the system
equations are required. The missing constraints or equat
can be found by applying the integral equation on a num
of points located outside of the domain of interest. Wh
these equations are added to the system of equations
have an overdetermined system of equations which can

a!Author to whom correspondence should be addressed; electronic
jtchen@mail.ntou.edu.tw
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solved in a least-squares sense. Schenck1 introduced this
method and proved that the resulting solution is unique. B
how can we decide where to place the interior points e
ciently and how many numbers of extra equations
needed? When an interior point is placed on the node of
associated interior nodes in CHIEF, it will not add an effe
tive constraint to the system of equations, i.e., the extra eq
tion is not linearly independent. For a general geome
these nodal lines are not knowna priori and this has been
one of the difficulties of this method. Particularly, the pro
lem becomes worse for the high frequency range. Wuet al.3

introduced a method called CHIEF-block, in which the int
rior integral equation is satisfied in a weighted residual se
over a small region, called blocks, instead of discrete poi
Since the interior eigensolutions cannot have a nodal blo
this technique is effective. Juhl4 and Poulin5 proposed the
CHIEF method in conjunction with the singular value d
composition~SVD! technique. This method is easy and ef
cient and produces a unique solution for the exterior pr
lem.

For interior problems, eigensolutions are often enco
tered not only in vibration problems but also in acousti
Since exact solutions are not always available, numer
methods are needed. Based on the complex-valued boun
element method~BEM!,6 the eigenvalues and eigenmod
can be determined. Nevertheless, complex computatio
time consuming and not simple. To avoid complex comp
tation, Nowak and Neves7 proposed a multiple reciprocity
method ~MRM! in real-domain computation only. Tai an
il:
9829(3)/982/17/$18.00 © 2001 Acoustical Society of America
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Shaw8 employed only real-part kernels to solve the eige
problem. A simplified method using only the real-part
imaginary-part kernel was also presented by De Mey.9 Al-
though De Mey found that the zeros for a real-part deter
nant may be different from those for an imaginary-part d
terminant, the spurious solutions are not discovered if on
real-part formulation is employed. For a membrane vibrat
problem, Hutchinson10 also employed real-part kernels
solve the membrane vibration. He found the spurious mo
and proposed a filtering-out technique by examining
modal shapes. However, this technique may fail in so
cases discussed by Chenet al.11–13 This method using only
the real-part BEM was later found to be equivalent to
multiple reciprocity method~MRM! if the zeroth-order fun-
damental solution in the MRM is properly chosen.13 Chen
and Wong14 found that the MRM also results in spuriou
eigensolutions for one-dimensional examples. Numerical
periments using only the real-part kernels15 were performed
for a two-dimensional case. The spurious solutions
MRM16–18 and real-part BEM19 were filtered out using the
SVD technique. The relations among the conventio
MRM, complete MRM, real-part BEM, and complex-value
BEM were discussed by Chen.13 It is obvious that one ad
vantage of using only the real-part kernels is that real-val
computation is considered instead of complex-valued co
putation as used in the complex-valued BEM. Another b
efit is that the lengthy derivation for the MRM can b
avoided. However, two drawbacks of the real formulati
have been found to be the occurrence of spurious eigen
ues as mentioned in Refs. 14–16 and 19, and the fai
when it is applied to problems with a degenerate bound
To deal with those two problems, the framework of a re
part dual BEM was constructed to filter out the spurio
eigenvalues and to avoid the nonunique solution for pr
lems with a degenerate boundary at the same time. As fo
latter problem, the dual formulation20 is a key step method to
solve the problems with a degenerate boundary. As for
former problem, the reason why spurious eigenvalues oc
in the MRM or the real-part BEM is the loss of the co
straints in the imaginary part, which was investigated
Yieh et al.21 The smaller number of constraint equatio
makes the solution space larger. The spurious eigensolu
can be filtered out using many alternatives: e.g.,
complex-valued formulation, the domain partitio
technique,22 and the dual formulation in conjunction wit
SVD.11,16–18Using the dual MRM or the real-part dual BEM
spurious eigenvalues can be filtered out by checking the r
due between the singular and hypersingular equations14,23

Both the dual MRM method16 and the real-part dual BEM19

in conjunction with the SVD technique must calculate a 4N
by 2N matrix, where 2N is the number of elements. In th
series of work by Chen’s group,16,19,24 the multiplicity for
true eigenvalues was also determined. By employing
present CHEEF method, the missing constraints can
found again by applying the integral equations on a num
of points located in the exterior domain. It is necessary
determine a matrix with only dimension (2N11) by 2N or
(2N12) by 2N for CHEEF instead of 4N32N in dual for-
mulation.
983 J. Acoust. Soc. Am., Vol. 109, No. 3, March 2001
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In this study, we employed the CHEEF BEM to filter o
the spurious solutions for two-dimensional interior acous
problems. The corresponding relationship between
CHIEF and CHEEF methods will be discussed. The op
mum number and position for the interior points will be stu
ied analytically and verified numerically. After assemblin
the CHEEF equations, an SVD technique is employed
determine the eigenvalues, multiplicity, and bounda
modes. The boundary modes can be extracted easily from
right unitary matrix in SVD. Two examples for circular an
rectangular domains with the Dirichlet boundary conditio
are demonstrated to check the validity of the propos
method analytically and numerically.

II. REVIEW OF THE CHIEF METHOD FOR A TWO-
DIMENSIONAL EXTERIOR ACOUSTIC PROBLEM
USING THE SINGULAR INTEGRAL FORMULATION

Consider an acoustic problem which has the followi
governing equation:

¹2u~x!1k2u~x!50, xPD, ~1!

whereD is the domain of interest, as shown in Fig. 1,x is the
domain point,u is the acoustic pressure, andk is the wave
number defined by the angular frequency divided by
sound speed. The boundary conditions are shown as follo

u~x!5ū, xPB, ~2!

whereB denotes the boundary enclosingD.
The acoustic field can be described using the follow

integral equation:25

2pu~x!5E
B
T~s,x!u~s!dB~s!

2E
B
U~s,x!

]u~s!

]ns
dB~s!, xPD, ~3!

whereT(s,x) is defined using

T~s,x![
]U~s,x!

]ns
, ~4!

in which ns represents the outnormal direction at points on
the boundary andU(s,x) is the fundamental solution which
satisfies

¹2U~x,s!1k2U~x,s!5d~x2s!, xPD, ~5!

FIG. 1. The definitions of the exterior domain.
983Chen et al.: Method for true and spurious eigensolutions
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where d(x2s) is the Dirac delta function. By moving th
field pointx in Eq. ~3! to the smooth boundary, the bounda
integral equation for the boundary point can be obtained
follows:

pu~x!5C.P.V.E
B
T~s,x!u~s!dB~s!

2R.P.V.E
B
U~s,x!

]u~s!

]ns
dB~s!, xPB, ~6!

where C.P.V. is the Cauchy principal value and R.P.V. is
Riemann principal value. By moving the pointx from the
exterior domain (De) to the interior domain (Di), the bound-
ary integral equation for the interior point can be obtained
follows:

05E
B
T~s,x!u~s!dB~s!2E

B
U~s,x!

]u~s!

]ns
dB~s!, xPDi .

~7!

After Eq. ~7! is added to Eq.~6!, we can produce an overde
termined system of equations.

By discretizing the boundaryB into the boundary ele-
ments in Eq.~6!, we have the algebraic system as follows

p$u%5@T#$u%2@U#$t%, ~8!

where t5]u(s)/]ns, and the@U# and @T# matrices are the
corresponding influence coefficient matrices resulting fr
theU andT kernels, respectively. The detailed derivation c
be found in Refs. 15 and 23. Equation~8! can be rewritten as

@ T̄#$u%5@U#$t%, ~9!

where @ T̄#5@T#2p@ I #. For simplicity, the Dirichlet radia-
tion problem, i.e.,$u%5ū is considered in Eq.~9!. Therefore,
we obtain the following equation:

@U#$t%5@ T̄#$ū%. ~10!

We can rewrite the singular equations as follows:

@UB~k!#2N32N$t%2N315$q1%2N31 , ~11!

where the superscriptB denotes the boundary, and$q1%
5@ T̄#$ū% and 2N is the number of boundary elements. Sim
larly, discretization of Eq.~7! can have

@UI~k!#a32N$t%2N315$q2%a31 , ~12!

where $q2%5@T#$ū%, subscripta indicates the number o
additional interior points and the number of selected po
a>1, and superscriptI denotes the interior domain. We ca
merge the two matrices in Eqs.~11! and ~12! together to
obtain an overdetermined system

@C~k!# (2N1a)32N$u%2N315$q%(2N1a)31 , ~13!

where$q% is assembled by$q1% and$q2%, the@C(k)# matrix
is composed by the@UB# and@UI # matrices as shown below

@C~k!# (2N1a)32N5FUB~k!

UI~k!
G ~14!

for the Dirichlet problem. Therefore, an over-determin
984 J. Acoust. Soc. Am., Vol. 109, No. 3, March 2001
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system is obtained to ensure a unique solution. Similarly,
can extend the Dirichlet problem to the Neumann proble

III. REVIEW OF THE REAL-PART DUAL BEM FOR A
TWO-DIMENSIONAL INTERIOR ACOUSTIC
PROBLEM

According to the findings by Yeihet al.21 and Kamiya
et al.,26 the series forms of the kernels in the MRM are
more than the real parts of the closed-form kernels in
complex-valued BEM. The closed-form kernels for the re
part of BEM are shown below

U~s,x!5
pY0~kr !

2
, ~15!

T~s,x!5
kp

2
Y1~kr !

yini

r
, ~16!

whereYn(kr) denotes the second-order kind Bessel funct
with order n, ni denote theith components of the norma
vectors ats, andyi5si2xi .

In order to filter out the spurious eigenvalues, Chen a
Wong14 developed the dual method by taking the norm
derivative of the first equation@Eq. ~3!#. The second equation
of the dual boundary integral equation for the domain poinx
can be derived as follows:

2p
]u~x!

]nx
5E

B
M ~s,x!u~s!dB~s!

2E
B
L~s,x!

]u~s!

]ns
dB~s!, xPD, ~17!

whereD is the domain of interest as shown in Fig. 2, and

L~s,x![
]U~s,x!

]nx
, ~18!

M ~s,x![
]2U~s,x!

]nx]ns
, ~19!

in which nx represents the outnormal direction at pointx. For
the real-part BEM, the closed forms for theL andM kernels
are shown below

L~s,x!5
2kp

2
Y1~kr !

yi n̄i

r
, ~20!

FIG. 2. The definitions of interior domain.
984Chen et al.: Method for true and spurious eigensolutions
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M ~s,x!5
kp

2 H 2k
Y2~kr !

r 2
yiyjni n̄j1

Y1~kr !

r
ni n̄iJ .

~21!

By moving the field pointx in Eq. ~17! to the smooth bound
ary, the boundary integral equations for the boundary po
can be obtained as follows:

p
]u~x!

]nx
5H.P.V.E

B
M ~s,x!u~s!dB~s!

2C.P.V.E
B
L~s,x!

]u~s!

]ns
dB~s!, xPB, ~22!

where H.P.V. is the Hadamard~Mangler! principal value. By
moving the interior pointx to the exterior domain, the
boundary integral equations for the exterior point can be
tained as follows:

05E
B
M ~s,x!u~s!dB~s!2E

B
L~s,x!

]u~s!

]ns
dB~s!, xPDe.

~23!

By discretizing the boundaryB into boundary elements in
Eq. ~6! and Eq.~22!, we have the dual algebraic system
follows:

p$u%5@T#$u%2@U#$t%, ~24!

p$t%5@M #$u%2@L#$t%, ~25!

where the@U#, @T#, @L#, and @M# matrices are the corre
sponding influence coefficient matrices resulting from
U, T, L, and M kernels, respectively. Equation~24! and
Eq. ~25! can be rewritten as

@ T̄#$u%5@U#$t%, ~26!

@ L̄#$t%5@M #$u%, ~27!

where@ T̄#5@T#2p@ I # and @ L̄#5@L#1p@ I #. For the Neu-
mann problem, the eigenequation obtained from the UT
LM equations in Eqs.~26! and ~27! can be rewritten as

@ T̄~k!#2N32N$u%2N315$0%, ~28!

@M ~k!#2N32N$u%2N315$0%. ~29!

By employing the real-part dual BEM, we merge the tw
matrices in Eqs.~28! and ~29! together to obtain an overde
termined system

@A~k!#4N32N$u%2N315$0%, ~30!

where the@A(k)# matrix is assembled by the@ T̄# and @M#
matrices as shown below:

@A~k!#4N32N5F T̄~k!

M ~k!
G ~31!

for the Neumann problem. Also, an overdetermined sys
is obtained. Similarly, we can extend the Neumann prob
to the Dirichlet problem. To distinguish spurious eigenv
ues, we can use the SVD technique.16–19 Using the real-part
dual BEM, spurious eigenvalues can be filtered out. T
main advantage of this method is that it can solve proble
985 J. Acoust. Soc. Am., Vol. 109, No. 3, March 2001
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in the real domain. However, the dimension of@A# is 4N by
2N. To reduce the dimension, the CHEEF method is p
posed in the following section.

IV. THE CHEEF METHOD FOR AN INTERIOR TWO-
DIMENSIONAL ACOUSTIC PROBLEM IN
CONJUNCTION WITH SVD TECHNIQUE

Based on the concept of the CHIEF method, we exte
the CHIEF for exterior problems to the CHEEF method f
interior problems. Since only the real-part formulatio
~MRM or real-part BEM! is of concern, one approach t
obtaining enough constraints for the eigenequation instea
obtaining the imaginary part of the complex-valued formu
tion is to derive additional equations on exterior points. T
method is similar to the CHIEF method. For simplicity, w
will deal with the Dirichlet problem. Therefore, we can o
tain the following equation:

@U~k!#$t%5$0%. ~32!

Now, we present a more efficient way to filter out spurio
eigenvalues which can avoid determining the spurio
boundary mode in advance. We can rewrite the singu
equation and additional equations by collocating on the
terior points, as follows:

@UB~k!#2N32N$t%2N315$0%, ~33!

@UE~k!#a32N$t%2N315$0%, ~34!

where the number of selected pointsa>1 andE denote the
exterior domain, respectively. To filter out spurious eigenv
ues using the SVD technique, we can merge the two matr
in Eqs. ~33! and ~34! together to obtain an overdetermine
system

@G~k!# (2N1a)32N$t%2N315$0%, ~35!

where the@G(k)# matrix with dimension (2N1a) by 2N
instead of 4N by 2N in Eq. ~30!, is derived from the@UB# an
additional@UE# matrix as shown below

@G~k!# (2N1a)32N5FUB~k!

UE~k!
G

(2N1a)32N

~36!

for the Dirichlet problem.
Even though the@G(k)# matrix has dependent rows re

sulting from the degenerate boundary, the SVD techniq
can still be employed to find all the true eigenvalues sin
enough constraints are imbedded in the overdetermined
trix, @G(k)#. As for the true eigenvalues, the rank of th
@G(k)# matrix with dimension (2N1a) by 2N must be at
most 2N21 to have a nontrivial solution. As for the spur
ous eigenvalues, the rank must be 2N to obtain a trivial
solution. Based on this criterion, the SVD technique can
employed to detect the true eigenvalues by checking whe
or not the first minimum singular value,s1 , is zero. Since
discretization creates errors, very small values fors1 , but
not exactly zeros, will be obtained whenk is near the critical
wave number. In order to avoid determining the threshold
the zero numerically, a value ofs1 closer to zero must be
obtained using a smaller increment near the critical wa
985Chen et al.: Method for true and spurious eigensolutions
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number,k. Such a value is confirmed to be a true eigenval
For the true eigenvalues with multiplicity of 2, we can co
sider the eigenvalues which makes250 ands150 at the
samek value.

Since Eq.~36! is overdetemined, we will consider a lin
ear algebra problem with more equations than unknowns

@A#m3n$x%n315$b%m31 , m.n, ~37!

where m is the number of equations,n is the number of
unknowns, and@A# is the leading matrix, which can be de
composed into

@A#m3n5@U#m3m@S#m3n@V#n3n* , ~38!

where @U# is a left unitary matrix constructed by the le
singular vectors (u1 ,u2 ,u3 , . . . ,um), @S# is a diagonal ma-
trix which has singular valuess1 ,s2 , . . . , andsn allocated
in a diagonal line as

@S#5F sn ••• 0

A � A

0 ••• s1

0 ••• 0

0 ••• 0

G , m.n, ~39!

in which sn>sn21•••>s1 and@V#* is the complex conju-
gate transpose of a right unitary matrix constructed by
right singular vectors (v1 ,v2 ,v3 , . . . ,vm). As we can see in
Eq. ~39!, there exist at mostn nonzero singular values. Thi
means that we can find at mostn linear independent equa
tions in the system of equations. If we havep zero singular
values (0<p<n), this means that the rank of the system
equations is equal ton2p. However, the singular value ma
be very close to zero numerically, resulting in rank de
ciency. For a general eigenproblem as shown in this pa
the@G(k)# matrix with dimension (2N1a) by 2N will have
a rank of 2N21 for the true eigenvalue with multiplicity 1
ands150, theoretically. For the true eigenvalues with mu
tiplicity Q, the rank of@G(k)# will be reduced to 2N2Q in
which s1 ,s2 , . . . , andsQ are zeros, theoretically. In othe
words, the matrix has a nullity ofQ. In the case of spurious
eigenvalues, the rank for the@G(k)# matrix is 2N, and the
minimum singular value is not zero. Determining the eige
values of the system of equations has now been transfor
into finding the values ofk which make the rank of the lead
ing coefficient matrix smaller than 2N. This means that
whenm52N1a,n52N andb(2N1a)3150, the eigenvalues
will make p>1, such that the minimum singular values mu
be zero or very close to zero. Since we have employed
SVD technique to filter out the spurious eigenvalues, we
obtain the boundary mode by extracting the right unita
vector in SVD.

According to the definition of SVD, we have

@A#vp5spup , p51,2,3, . . . ,n, ~40!

whereu andv are the left and right unitary vectors, respe
tively. By choosing theqth zero singular value,sq , and
substituting theqth right eigenvector,vq , into Eq. ~40!, we
have
986 J. Acoust. Soc. Am., Vol. 109, No. 3, March 2001
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@A#vq50uq50, q51,2,3. . . ,Q. ~41!

According to Eq. ~41!, the nontrivial boundary mode is
found to be the column vector ofvq in the right unitary
matrix.

When we take all of the 2N1a equations into account
these apparently cause the rank of the leading coeffic
matrix to be equal to 2N21 for the true eigenvalue with
multiplicity 1. The boundary modes can be obtained from
@V# matrix in Eq. ~38! using SVD. Another advantage fo
using SVD is that it can determine the multiplicities for th
true eigenvalues by finding the number of successive zero
the singular values.

V. ANALYTICAL STUDY OF THE FAILURE POINTS IN
THE CHEEF METHOD

In Refs. 27–29, the real-partU kernel can be expande
into

U~s,x!5
p

2
Y0~kr !5

p

2
Y0~kAR21r222Rr cosu!, ~42!

wherex5(r,f) ands5(R,u), r, r, R, andu are shown in
Fig. 3. Sincex ands are on the boundaries of radiusr andR,
respectively,U(s,x) can be expanded into degenerate fo
as follows:

U~s,x!55 U~u,0!5 (
n52`

n5`
p

2
Yn~kR!Jn~kr!cos~nu!, R.r,

U~u,0!5 (
n52`

n5`
p

2
Yn~kr!Jn~kR!cos~nu!, R,r,

~43!

where the source points and field pointx(f50) in the two-
point function is separated andJn(kr) is thenth order Bessel
function of the first kind. Equation~43! can also be obtained
through the addition theorem for the Hankel function. B
superimposing 2N constant source distribution$ t̄ % along the
fictitious boundary with radiusR and collocating the 2N
points on the boundary with radiusr, we have

FIG. 3. The definitions ofr, u, R, andr.
986Chen et al.: Method for true and spurious eigensolutions
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@U#$ t̄ %5F a0 a1 a2 ••• a2N22 a2N21

a2N21 a0 a1 ••• a2N23 a2N22

a2N22 a2N21 a0 ••• a2N24 a2N23

A A A � A A

a1 a2 a3 ••• a2N21 a0

G
35

t̄ 0

t̄ 1

t̄ 2

A

t̄ 2N21

6 5$0% ~44!

for the Dirichlet problem, wheret̄ j is the fictitious density of
single layer potential distributed on the boundary with rad
R, and @U# is the influence matrix with the elements show
below

am5E
~m21/2!Du

~m11/2!Du
U~u,0!R du'U~um,0!RDu,

m50,1,2, . . . ,2N21, ~45!

whereDu5 2p/2N andum5mDu.
The matrix @U# in Eq. ~44! is found to be a circulan

since rotation the symmetry for the influence coefficients
considered. By introducing the following bases for the circ
lants I ,C2N

1 ,C2N
2 , . . . ,C2N

2N21 , we can expand@U# into

@U#5a0I 1a1C2N
1 1a2C2N

2 1•••1a2N21C2N
2N21, ~46!

whereI is a unit matrix and

C2N5F 0 1 0 ••• 0 0

0 0 1 ••• 0 0

A A A � A A

0 0 0 ••• 0 1

1 0 0 ••• 0 0

G
2N32N

. ~47!

Based on the theory of circulants,30 the spectral propertie
for the influence matrices,U, can be easily found as follows

l l5a01a1a l1a2a l
21•••1a2N21a l

2N21 ,

l 50,61,62, . . . ,6~N21!,N , ~48!

where l l and a l are the eigenvalues for@U# and @C2N#,
respectively. It is easily found that the eigenvalues for
circulants@C2N# are the roots forz2N51 as shown below

an5ei ~2pn/2N!,

n50,61,62,•••,6~N21!,N

or n50,1,2, . . . ,2N21, ~49!

and the eigenvectors are
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s
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e

$fn%55
1

an

an
2

an
3

A

an
2N21

6 . ~50!

Substituting Eq.~49! into Eq. ~48!, we have

l l5 (
m50

2N21

ama l
m5 (

m50

2N21

amei ~2p/2N! ml

l 50,61,62,•••,6~N21!,N. ~51!

According to the definition foram in Eq. ~45!, we have

am5a2N2m , m50,1,2, . . . ,2N21. ~52!

Substituting Eq.~52! into Eq. ~51!, we have

l l5a01~21! laN1 (
m51

N21

~a l
m1a l

2N2m!am

5 (
m50

2N21

cos~mlDu!am . ~53!

Substituting Eq.~45! into Eq. ~53!, we have

l l' (
m50

2N21

cos~mlDu!U~mDu,0!RDu

5E
0

2p

cos~ lu!U~u,0!R du, ~54!

asN approaches infinity. Equation~54! reduces to

l l5E
0

2p

cos~ lu! (
m52`

`
p

2
Ym~kR!Jm~kr!cosmuR du

5p2RYl~kR!Jl~kr!. ~55!

Since the wave numberk is imbedded in each element of th
@U# matrix, the eigenvalues for@U# are also functions ofk.
Finding the eigenvalues for the Helmholtz equation or fin
ing the zeros for the determinant of@U# is equal to finding
the zeros for the multiplication of all of the eigenvalues
@U#. Based on the following equation:

FIG. 4. One sample point.
987Chen et al.: Method for true and spurious eigensolutions
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TABLE I. Zeros of Bessel function forJn(k) andYn(k).

1 2 3 4 5

J0(k)50 2.404 8 5.520 1 8.653 7 11.791 5 14.930 9
J1(k)50 3.831 71 7.015 59 10.173 46 13.323 7 16.4706
J2(k)50 5.135 6 8.417 2 11.619 8 14.796 0 17.959
J3(k)50 6.380 16 9.760 12 13.015 2 16.223 46 19.409
J4(k)50 7.588 34 11.064 7 14.372 5 17.616 0 20.826
J5(k)50 8.771 48 12.338 6 15.700 2 18.980 1 22.217

Y0(k)50 0.893 58 3.957 68 7.086 05 10.222 34 13.361
Y1(k)50 2.197 14 5.429 68 8.596 01 11.749 15 14.897
Y2(k)50 3.384 24 6.793 81 10.023 48 13.209 99 16.378
Y3(k)50 4.527 02 8.097 75 11.396 47 14.623 07 17.818
Y4(k)50 5.645 15 9.361 62 12.730 1 15.999 6 19.224
Y5(k)50 6.747 18 10.597 2 14.033 8 17.347 1 20.602
e
ho

d

es

e

.

re-
ne
di-
ore

.

n 2,
n-
det@U#5l0lN~l1l2•••lN21!~l21l22•••l2(N21)!,
~56!

the possible eigenvalues~true or spurious! occur at

Yl~kR!Jl~kr!50, l 50,61,62,•••,6~N21!,N.
~57!

Thek values satisfying Eq.~57! may be spurious eigenvalu
or true eigenvalue. Here, we adopted the CHIEF met
concept to filter out the spurious eigenvalues.

If we adopt one exterior point (r 1 ,f1), wherer 1.r as
shown in Fig. 4, we have

05E
B
U~s,x!t~s!dB~s!5@w1

T#$t%, ~58!

where@w1
T#5(w1

1 ,w1
2 ,w1

3 , . . . ,w1
2N) is the row vector of the

influence matrix by collocating the exterior pointx1 . Com-
bining Eq. ~44! and Eq.~58!, we obtain an overdetermine
system

F U~k!

w1
T~k!G $t%5$0%, ~59!

where$t%5$1,einDu,ein2Du, . . . ,ein(2N21)Du%T.
The additional constraint@w1

T#$t%50 provide the dis-
criminant,n, to be

n5@w1
T#$t%5p2r 1Yn~kr1!Jn~kr!einf150. ~60!

For the single spurious eigenvaluesk0,m
s , we haveY0(k0,m

s )
50, where the superscripts denotes the spurious eigenvalu
andk0,m denotes themth zeros for theY0 function @zeros of
the Bessel function forJn(k) andYn(k) are shown in Table
I#. If the selected exterior point (r 1 ,f1), satisfies

k0,m
s r 15k0,p ~m,p!, ~61!

wherek0,p denotes thepth zeros for theY0 function, then the
spurious eigenvaluesk0,m

s , cannot be filtered out. For th
double spurious eigenvalueskn,m

s , we haveYn(kn,m
s )50, n

.0. If the selected exterior point (r 1 ,f1), satisfies
oc. Am., Vol. 109, No. 3, March 2001
d

kn,m
s r 15kn,p ~m,p!, ~62!

then the spurious eigenvalueskn,m
s , cannot be filtered out

The possible failure positions forr 1 are shown in Table II.
When the spurious eigenvalues are double roots, rank
duces by 2. One point provides at most one constraint. O
point cannot filter out the double spurious roots, so an ad
tional independent equation is required by adding one m
point.

If we adopt another exterior point (r 2 ,f2) with a radial
distancer 2.r as shown in Fig. 5, and combine with Eq
~59!, we have

F U~k!

w1
T~k!

w2
T~k!

G $t%5$0% , ~63!

where@w2
T#5(w2

1 ,w2
2 ,w2

3 , . . .w2
2N) is the row vector of the

influence matrix by collocating the exterior pointx2 . When
the spurious eigenvalues are double roots, we have

Fw1
T~k!

w2
T~k!G $t%5Fw1

T

w2
TG $at11bt2%5Fw1

Tt1 w1
Tt2

w2
Tt1 w2

Tt2G H a

bJ ,

~64!

where $t1%5$1,einDu,ein2Du, . . . ,ein(2N21)Du%T and $t2%
5$1,e2 inDu,e2 in2Du, . . . ,e2 in(2N21)Du%T are two indepen-
dent boundary modes,a andb are two constants, and

w1
Tt1

T5p2r 1Yn~kr1!Jn~kr!einf1,

w1
Tt2

T5p2r 1Yn~kr1!Jn~kr!e2 inf1,

w2
Tt1

T5p2r 2Yn~kr2!Jn~kr!einf2,

w2
Tt2

T5p2r 2Yn~kr2!Jn~kr!e2 inf2.

Since the spurious double roots make the rank less tha
the additional two points must provide independent co
straints, as follows:
Fp2r 1Yn~kr1!Jn~kr!einf1 p2r 1Yn~kr1!Jn~kr!e2 inf1

p2r 2Yn~kr2!Jn~kr!einf2 p2r 2Yn~kr2!Jn~kr!e2 inf2GFa

bG50. ~65!
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If they are dependent, we have

n5detUp2r 1Yn~kr1!Jn~kr!einf1 p2r 1Yn~kr1!Jn~kr!e2 inf1

p2r 2Yn~kr2!Jn~kr!einf2 p2r 2Yn~kr2!Jn~kr!e2 inf2U
5r 1r 2Yn~kr1!Yn~kr2!Jn~kr!Jn~kr!~ein(f12f2)2e2 in(f12f2)!5 i2r 1r 2Yn~kr1!Yn~kr2!Jn~kr!Jn~kr!sin~nf!50,

~66!

TABLE II. The failure points with difference radial circular.

Failure
point

Y0,1 3.96/0.8954.429 7.09/0.8957.97 10.22/0.89511.48 13.36/0.89515.01
Y0,2 7.09/3.9651.79 10.22/3.9652.58 13.36/3.9653.37
Y0,3 10.22/7.0951.44 13.36/7.0951.88
Y1,1 5.43/2.252.47 8.6/2.253.91 11.75/2.255.34 14.9/2.256.77
Y1,2 8.6/5.4351.58 11.75/5.4352.16 14.9/5.4352.74
Y1,3 11.75/8.651.37 14.9/8.651.73
Y2,1 6.79/3.3852.007 10.02/3.3852.96 13.21/3.3853.91 16.38/3.3854.85
Y2,2 10.02/6.7951.48 13.21/6.7951.94 16.38/6.7952.41
Y2,3 13.21/10.0251.32 16.38/10.0251.63
Y3,1 8.1/4.5351.79 11.4/4.5352.52 14.62/4.5353.23 17.82/4.5353.93
Y3,2 11.4/8.151.41 14.62/8.151.80 17.82/8.152.2
Y3,3 14.62/11.451.28 17.82/11.451.56
Y4,1 9.36/5.6451.66 12.73/5.6452.26 16/5.6452.84 19.22/5.6453.41
Y4,2 12.73/9.3651.36 16.0/9.3651.71 19.22/9.3652.05
Y4,3 16.0/12.7351.26 19.22/12.7351.51
Y5,1 10.6/6.7551.57 14.03/6.7552.08 17.35/6.7552.57 20.6/6.7553.05
Y5,2 14.03/10.651.32 17.35/10.651.64 20.6/10.651.94
Y5,3 17.35/14.0351.24 20.6/14.0351.47
en

ar

l

wheref5f12f2 indicates the intersecting angle betwe
the two exterior points. The discriminantn indicates

~1! If the two points with the intersection anglef produce
sin(nf)5sin(p)50, i.e., f5 p/n, we will fail to filter
out the double spurious roots forYn , n>1.

~2! If the two points produceYn(kr1)50 or Yn(kr2)50,
n51,2,3, . . . , then we will fail to filter out the double
spurious root ofYn .

~3! No more than two points are needed if the points
properly chosen.

For the Neumann problem

FIG. 5. Two sample points.
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e

@T#$ū%5F b0 b1 b2 ••• b2N22 b2N21

b2N21 b0 b1 ••• b2N23 b2N22

b2N22 b2N21 b0 ••• b2N24 b2N23

A A A � A A

b1 b2 b3 ••• b2N21 b0

G
35

ū0

ū1

ū2

A

ū2N21

6 50, ~67!

where ū j is the fictitious density of single layer potentia
distributed on the boundary with radiusR, and the boundary
mode for$ū% is

$ū%5$1,einDu,ein2Du,•••,ein~2N21!Du%T ~68!

wheren denotes thenth boundary mode. The matrix@T# is
the influence matrix with the elements shown below

bm5E
~m21/2!Du

~m11/2!Du
T~u,0!R du'T~um ,0!RDu,

m50,1,2, . . . ,2N21, ~69!
989Chen et al.: Method for true and spurious eigensolutions



-
ca

tie

on

-

whereDu5 2p/2N andum5mDu, T(s,x) can be expanded
into

T~s,x!5T~u,0!

5 (
n52`

`
p

2
Yn~kR!Jn8~kr!cos~nu!, R.r. ~70!

The matrix@T# in Eq. ~67! is a circulant since rotation sym
metry for the influence coefficients are considered. We
expand@T# into

@T#5b0I 1b1C2N
1 1b2C2N

2 1•••1b2N21C2N
2N21. ~71!

Based on the theory of circulants, the spectral proper
for the influence matrix,@T#, can be found as follows:

FIG. 6. The first and second minimum singular valuess1 ands2 vs k of a
circular using the real-part UT equation subject to Dirichlet boundary c
ditions and boundary mesh.
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n

s

m l5b01b1a l1b2a l
21•••1b2N21a l

2N21 ,

l 50,61,62,•••,6~N21!,N , ~72!

where m l and a l are the eigenvalues for@T# and @C2N#,
respectively.

We have

m l5 (
m50

2N21

bma l
m

5 (
m50

2N21

bmei ~2p/2N! ml,

l 50,61,62,•••,6~N21!,N. ~73!

-

FIG. 7. One sample pointx1(1.5,0), s1 vs k using the real-part UT equa
tion.

FIG. 8. One sample pointx1(4.429,0), s1 vs k using the real-part UT
equation.
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th the
According to the definition forbm in Eq. ~69!, we have

bm5b2N2m , m50,1,2, . . . ,2N21. ~74!

Substituting Eq.~74! into Eq. ~73!, we have

m l5b01~21! lbN1 (
m51

N21

~a l
m1a l

2N2m!bm

5 (
m50

2N21

cos~mlDu!bm . ~75!

Substituting Eq.~69! into Eq. ~75!, we have

FIG. 9. The spurious eigenvalue radiation mode of a circular cavity for
Dirichlet problem withks50.894.

FIG. 10. Two sample pointsx1(1.5,0) andx2(1.5,p/2), s1 vs k using the
real-part UT equation.
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m l' (
m50

2N21

cos~mlDu!T~mDu,0!RDu

5E
0

2p

cos~ lu!T~u,0!R du, ~76!

asN approaches infinity. Equation~76! reduces to

m l5E
0

2p

cos~ lu! (
m52`

`
p

2
Ym~kR!Jm8 ~kr!cosmuR du

5p2RYl~kR!Jl8~kr!. ~77!

eFIG. 11. The spurious eigenvalue radiation mode of a circular cavity for
Dirichlet problem withks53.384.

FIG. 12. Two sample pointsx1(1.5,0) andx2(1.5,p), s1 vs k using the
real-part UT equation.
991Chen et al.: Method for true and spurious eigensolutions
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Since the wave numberk is imbedded in each element of th
@T# matrix, the eigenvalues for@T# are also a function ofk.
Finding the eigenvalues for the Helmholtz equation or fin
ing the zeros for the determinant of@T# is equal to finding the
zeros for multiplication of all the eigenvalues of@T#. Based
on the following equation:

det@T#5m0mN~m1m2•••mN21!~m21m22•••m2(N21)!, ~78!

the possible eigenvalues~true or spurious! occur at

Yl~kR!Jl8~kr!50, l 50,61,62,•••,6~N21!,N. ~79!

FIG. 13. Three sample pointsx1(1.5,0),x2(1.5,p/2), andx3(1.5,p), s1 vs
k using the real-part UT equation.

FIG. 14. Four sample pointsx1(1.5,0), x2(1.5,p/2), x3(1.5,p), and
x4(1.5,3p/2), vsk using the real-part UT equation.
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-

The values satisfying Eq.~79! may be spurious eigenvalue
or true eigenvalues. Similarly, we adopted the same met
to filter out the spurious eigenvalues.

If we adopt one exterior point (r 1 ,f1), wherer 1.r as
shown in Fig. 4, for exterior point

05E
B
T~s,x!t~s!dB~s!5@v1

T#$u%, ~80!

where@v1
T#5(v1

1 ,v1
2 ,v1

3 , . . . ,v1
2N) is the row vector of the

influence matrix by collocating the exterior pointx1 . Com-

FIG. 15. Two sample pointsx1(2.007,p/4) andx2(1.4,0),s1 vs k using the
real-part UT equation.

FIG. 16. Two sample pointsx1(1.5,0) andx2(1.5,p/4), s1 vs k using the
real-part.
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bining Eq. ~67! and Eq.~80!, we obtain an overdeterminat
system

F T~k!

v1
T~k!G $u%5$0%, ~81!

where$u%5$1,einDu,ein2Du, . . . ,ein(2N21)Du%T.
The additional constraint@v1

T#$u%50 provides the dis-
criminant,n, to be

n5@v1
T#$u%5p2r 1Yn~kr1!Jn8~kr!einf150. ~82!

FIG. 17. The true eigenvalue radiation mode of a circular cavity for
Dirichlet problem withkT52.405.

FIG. 18. The true eigenvalue radiation mode of a circular cavity for
Dirichlet problem withkT53.832.
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It is similar to Eq.~60!, it can filter out a single root only.
If we adopt another exterior point (r 2 ,f2) with a radial

distancer 2.r as shown in Fig. 5, and combine with Eq
~81!, we have

F T~k!

v1
T~k!

v2
T~k!

G $u%5$0%, ~83!

where@v2
T#5(v2

1 ,v2
2 ,v2

3 , . . . ,v2
2N) is the row vector of the

influence matrix by collocating the exterior pointx2 . When
the spurious eigenvalues are double roots, we have

e

e

FIG. 19. The first and second minimum singular valuess1 ands2 vs k of a
rectangle using the real-part UT equation subject to Dirichlet boundary c
ditions with size 2 m31 m.
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the
F v1
T~k!

v2
T~k!G $u%5F v1

T

v2
TG $au11bu2%5F v1

Tu1 v1
Tu2

v2
Tu1 v2

Tu2G H a

bJ ,

~84!

where $u1%5$1,einDu,ein2Du, . . . ,ein(2N21)Du%T and $u2%
5$1,e2 inDu,e2 in2Du, . . . ,e2 in(2N21)Du%T are two indepen-
dent boundary modes,a andb are constants, and

v1
Tu1

T5p2r 1Yn~kr1!Jn8~kr!einf1,

v1
Tu2

T5p2r 1Yn~kr1!Jn8~kr!e2 inf1,

v2
Tu1

T5p2r 2Yn~kr2!Jn8~kr!einf2,

FIG. 20. One sample pointx1(1.0,20.25), s1 vs k using the real-part UT
equation.

FIG. 21. The spurious eigenvalue radiation mode of a rectangle for
Dirichlet problem withks52.23.
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v2
Tu2

T5p2r 2Yn~kr2!Jn8~kr!e2 inf2.

Since the spurious double roots make the rank less tha
the additional two points must provide independent co
straints, as follows

F p2r 1Yn~kr1!Jn8~kr!einf1 p2r 1Yn~kr1!Jn8~kr!e2 inf1

p2r 2Yn~kr2!Jn8~kr!einf2 p2r 2Yn~kr2!Jn8~kr!e2 inf2G
3Fa

bG50. ~85!

If they are dependent, we have

e

FIG. 22. The spurious eigenvalue radiation mode of a rectangle for
Dirichlet problem withks54.02.

FIG. 23. One sample pointx1(0.25,20.25), s1 vs k using the real-part UT
equation.
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n5detUp2r 1Yn~kr1!Jn8~kr!einf1 p2r 1Yn~kr1!Jn8~kr!e2 inf1

p2r 2Yn~kr2!Jn8~kr!einf2 p2r 2Yn~kr2!Jn8~kr!e2 inf2U
5r 1r 2Yn~kr1!Yn~kr2!Jn8~kr!Jn8~kr!~ein(f12f2)2e2 in(f12f2)!5r 1r 2Yn~kr1!Yn~kr2!Jn8~kr!Jn8~kr!2i sin~nf!50,

~86!
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wheref5f12f2 indicates the intersecting angle betwe
the two exterior points. Similarly, the discriminantn can
justify whether the selected point is effective or not. It c
filter out a double root. It was found that the spurious eig
values of an interior problem are dependent on the cho
method, i.e., singular integral equation results in the spuri
eigenvalues atYn(kr)50, and independent of boundary co
dition ~Dirichlet or Neumann!.

VI. NUMERICAL EXAMPLES

For the numerical experiment, we considered a circu
cavity with radius 1 m subjected to the Dirichlet bounda
condition to check the validity of the CHEEF method. Fu
thermore, in order to extend to the general geometry prob
using the CHEEF method, we used a rectangular cavity s
jected to the Dirichlet boundary condition to demonstrate
generality.

Sixty elements were adopted in the boundary elem
mesh for a circular domain. Figure 6 shows the first mi
mum singular value,s1 , vs k where the true and spuriou
eigenvalues are obtained if only real-part UT is used. In
range of 0,k,5, we have two true eigenvalues@J0,1(2.405)
andJ1,1(3.832)] and five spurious eigenvalues@Y0,1(0.894),
Y1,1(2.197), Y2,1(3.384), Y0,2(3.958), andY3,1(4.527)].11

Figure 6 also indicates the second minimum singular va
s2 , vs k where the true and spurious double roots can

FIG. 24. Two sample pointsx1(1.0,20.25) andx2(1.0,1.25),s1 vs k using
the real-part UT equation.
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obtained, whens1 ands2 are both zeros at the samek value.
Figure 7 showss1 vs k by additionally considering Eq.~58!
for collocating one exterior point,x1 , with radiusr 151.5 m,
f150. This treatment can filter out the spurious roots ofY0,1

andY0,2 as expected in the analytical derivation. If the co
locating exterior point is located at the circular bounda
with radius r 15k0,2/k0,153.590/0.89454.429 as described
in Eq. ~61!, which is on the nodal line of the radiation mod
of Y0,1, then the spurious eigenvalue ofY0,1 cannot be fil-
tered out as shown in Fig. 8. The spurious radiation mode
Y0,1 is shown in Fig. 9.

If the additional two pointsx1(r 151.5,f150) and
x2(r 251.5,f25p/2) with intersecting angle off5 p/2 are
selected, then the spurious root ofY2,1 cannot be filtered out
as shown in Fig. 10, since sin 2f50. The spurious radiation
mode ofY2,1 is shown in Fig. 11. Similarly, in both position
x1 andx2 with intersecting anglep, only the spurious eigen
value Y0,1 and Y0,2 can be filtered out as shown in Fig. 1
Figure 13 and Fig. 14 are the results by adopting th
@(x1(r 151.5,f150), x2(r 251.5,f25p/2), x3(r 351.5,f3

5p)] and four @(x1(r 151.5,f150), x2(r 251.5,f2

5p/2), x3(r 351.5,f35p), x4(r 451.5,f453p/2)] exte-
rior points with different intersecting angles, respectively.
is very obvious that the results of Figs. 13 and 14 are
same as those of Fig. 10. This represents that the additi
exterior points with intersecting anglep provide dependen
equations. At the same time, if the additional exterior poin

FIG. 25. Two sample pointsx1(0.3,20.3) andx2(2.1,1.3),s1 vs k using
the real-part UT equation.
995Chen et al.: Method for true and spurious eigensolutions



ot

ts

o
ot
tia
a

od
b
e

ct

m-
ge-
ig-
lar
le
of 0

,

ts
lue

ted

ws

be

ior

ior
es.

n-
he
f
se
a-
n in
is
the
h as

or-
a
ta-
es

h-
en-
Di-
the
III.
lar
on-
o-

true
ell

at
ted
ion

a

lem
one pointx1 with r 15k2,2/k2,156.794/3.38452.007 as de-
scribed in Eq.~62! and f15p/4 and another pointx2 with
r 251.4 andf250, are both chosen, then the spurious ro
can be filtered out, exceptY2,1 as illustrated in Fig. 15. Fig-
ure 16 indicates that if the additional two exterior poin
x1(r 151.5,f150) and x2(r 251.5,f25p/4) are carefully
chosen, then all the spurious eigenvalues can be filtered
It is interesting to find that the potential distribution is n
trivial for the spurious eigenvalues; however, the poten
distribution in the exterior domain for a true case is trivial,
shown in Fig. 17@J0,1(2.405)# and Fig. 18@J1,1(3.832)#.
The dotted lines in the radiation modes represent the n
lines. The radius of these nodal lines match the data in Ta
II. Table II also shows that most of spurious eigenvalu
with low frequencies can be filtered out efficiently by sele

FIG. 26. ~a! The spurious double root of the first radiation mode of
rectangle for the Dirichlet problem withks54.98. ~b! The spurious double
root of the second radiation mode of a rectangle for the Dirichlet prob
with ks54.98.
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ing the points in the region of 1,r ,1.24, since the density
of nodal lines in that area is low.

A rectangular cavity with lengtha52 m and widthb
51 m subjected to the Dirichlet boundary condition is de
onstrated to see the validity for a problem with general
ometry. Sixty elements in the BEM mesh were adopted. F
ure 19 indicates the first and second minimum singu
values,s1 ands2 vs k, where the true and spurious, sing
and double eigenvalues can be obtained. In the range
,k,6, we have three true eigenvalues~3.51, 4.44, and 5.66!
and six spurious eigenvalues@1.05, 2.23, 3.37, 3.57, 4.02
and 4.98 ~double root!#. If the additional exterior point
x1(x151.0,y1520.25) is chosen, then the spurious roo
can be filtered out except for the double spurious eigenva
~4.98! and some single spurious eigenvalues~2.23, 4.02!,
where the selected points are on the nodal line as illustra
in Fig. 20. The spurious radiation modes ofk52.23 andk
54.02 are shown in Fig. 21 and Fig. 22. Figure 23 sho
that if one additional exterior pointx1(x150.25,y1

520.25) is chosen, then the spurious eigenvalues can
filtered out except for the double spurious eigenvaluek
54.98. Figure 24 shows that if the additional two exter
pointsx1(x151.0,y1520.25) andx2(x251.0,y251.25) are
both chosen, then some spurious eigenvalues~2.23, 4.02, and
4.98! cannot be filtered out, since the additional exter
points are on the nodal line of the spurious radiation mod
If the additional two exterior pointsx1(x150.3,y1520.3),
x2(x250.21,y251.3) are chosen, then all the spurious eige
values can be filtered out as illustrated in Fig. 25. At t
same time, we know that the spurious eigenvalue ok
54.98 is a spurious eigenvalue with multiplicity 2, becau
one additional exterior point cannot work well. The two r
diation modes of the spurious eigenvalue 4.98 are show
Figs. 26~a! and ~b!. From these radiation mode figures, it
shown that if the additional exterior points are close to
boundary and are not located on a special position, suc
on the nodal lines ofx5a/n or y5b/n (nPN), then the
spurious eigenvalues can be filtered out efficiently. It is w
thy to point out that the nodal lines of radiation mode for
circle can be rotated, since a circle has the property of ro
tion symmetry. However, the nodal lines of radiation mod
for a rectangle cannot be rotated.

VII. CONCLUSIONS

The CHEEF method in conjunction with the SVD tec
nique was applied to determine the true and spurious eig
values of circular and rectangle cavities subjected to the
richlet boundary conditions. The relationship between
CHIEF and CHEEF methods was summarized in Table
The failure cases in selecting the exterior points for circu
and rectangle cavities were studied analytically and dem
strated numerically. If the additional points are properly ch
sen, there are no more than two points required. The
eigenvalues obtained by the CHEEF method match very w
with the exact solutions. It is very worthy to point out th
the nodal line of radiation mode for a circle can be rota
due to its symmetry, whereas the nodal line of radiat
996Chen et al.: Method for true and spurious eigensolutions
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TABLE III. Comparison between the CHIEF and CHEEF methods.
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mode of rectangle is on a fixed position. The multiplicity w
also examined. The CHEEF method can reduce mem
storage and computation time in comparison with the re
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