
Journal of the Chinese Institute of Engineers, Vol. 29, No. 3, pp. 445-457 (2006) 445
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CONJUNCTION WITH THE DEGENERATE KERNEL IN

CYLINDRICAL ACOUSTIC PROBLEMS
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ABSTRACT

This paper proposes applications of the method of fundamental solutions (MFS)
to exterior acoustic radiation and scattering problems.  By using the two-point func-
tion of fundamental solutions, the coefficients of influence matrices are easily determined.
It is found that this method also pordoces irregular frequencies as well as the bound-
ary element method does.  The position of the irregular frequency depends on the
source point location.  To avoid this numerical instability, the mixed-layer potential
method is employed to deal with the problem.  Based on the circulant properties and
degenerate kernels, an analytical scheme in the discrete system of a cylinder is achieved
to demonstrate the existence of irregular frequencies.  Three numerical examples of
uniform radiation, nonuniform radiation and scattering problems of a circular cylin-
der are examined and are compared with the results by using direct BEM.
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I. INTRODUCTION

In numerical methods, mesh generation for com-
plicated geometry is always time consuming in the
stage of model creation for engineers dealing with
engineering problems by employing the finite differ-
ence method (FDM), finite element method (FEM)
or boundary element method (BEM).

Over the past decade, researchers have paid at-
tention to the meshless method without employing the
concept of elements.  The initial idea of the meshless
method dates back to the smooth particle hydrody-
namics (SPH) method for modeling astrophysical
phenomena (Gingold and Maraghan, 1977).  Several
meshless methods have also been reported in the
literature, for example, the domain-based methods
including the element-free Galerkin method (Belystcho
et al., 1994), the reproducing kernel method (Liu et
al., 1995), and boundary-based methods including the

boundary node method (Mukherjee and Mukherjee,
1997), the meshless local Petrov-Galerkin approach
(Atluri and Zhu, 1998), the local boundary integral
equation method (Sladek et al., 2000), the RBF ap-
proach (Chen et al., 1998; Golberg et al., 2000; Zhang
et al., 2000) and the method of fundamental solutions
(MFS) (Kondapalli et al., 1992; Poullikkas et al., 2002).
The MFS is a technique for the numerical solution of
certain elliptic boundary value problems, and it may
be viewed as an indirect boundary element method
with a concentrated source instead of a distributed
one (Chen et al., 2000).  Like the boundary element
method, it is applicable when a fundamental solution
of the differential equation in question is known.  The
basic idea is to approximate the solution by forming
a linear combination of fundamental solutions with
sources located outside the problem domain.  The
coefficients of the linear combination are determined
so that the approximate solution satisfies the prob-
lem boundary conditions. Poullikkas et al. (2002)
employed MFS to solve three-dimensional electrostatics,
and only a few sources were adopted.  Cisilino and
Sensale (2002) developed a simulated annealing
algorithm for the Laplace equation, to decide the
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optimal position of source points by using the MFS.
However, the drawback of the method is that it is
complicated to compute and so the benefit of the MFS
is lost.  Ramachandran (2002) adopted the singular
value decomposition (SVD) technique, by truncating
the nearly zero singular value, to resolve the ill-posed
problem in the MFS.  Kondapalli et al. (1992)  ap-
plied the MFS to acoustic scattering in fluids and solids.
Further details are found in the review paper by
Fairweather and Karageorghis (1998) on the MFS
approach.

One of the problems frequently addressed in BEM
is the problem of irregular (fictitious) frequencies for
exterior acoustics.  Kondapalli (1992) pointed out that
the difficulty of fictitious frequencies appearing in
the BEM is not present in the MFS.  The reason is
that a discrete set of source points does not define an
internal surface uniquely, as quoted from Fairweather
et al., 2003.  In this paper, we will examine this point
for the fictitious frequency phenomenon in the MFS.

 The fictitious frequencies do not represent any
kind of physical resonance but are due to the numeri-
cal method, which does not have a unique solution at
some eigenfrequencies for corresponding interior
problems (Dokumaci, 1990; Lee et al., 1996; Lee and
Sclavounos, 1989; Malenica and Chen, 1998;
Ohmatsu, 1983; Ursell, 1981).  It was found that BEM
results in fictitious eigenvalues, which are associated
with the interior frequency of the Dirichlet problem.
The general derivation has been provided by a con-
tinuous system (Chen, 1998), and a discrete system
using a circulant (Kuo et al., 2000; Chen and Kuo,
2000).  Following the retracted BEM formulation
(Hwang and Chang, 1991), it was found that the po-
sition of the irregular frequency depends on the source
location.  Wilton et al., 1993, proved the equivalence
between the superposition method and the layer po-
tential method.  Since the non-uniqueness problem
exists in the layer potential method, fictitious frequen-
cies also appear in the superposition method.  In the
numerical examples, they demonstrated the appear-
ance of fictitious frequencies in three-dimensional
cases in the superposition method.  The MFS and the
retracted BEM can be seen as similar indirect meth-
ods instead of the difference between a lump source
and a distributed source.

 The fictitious frequency in exterior acoustic
problems is similar to the spurious eigenvalues which
occur in the annular eigenproblem when the MFS is
used.  The positions of spurious eigenvalues for the
annular problem depend on the location of the inner
fictitious boundary when the sources are distributed
(Chen et al., 2005 ).  The spurious eigenvalues ap-
pearing in the single and double-layer MFS were
found to be the interior eigenvalues corresponding to
the Dirichlet and Neumann problems, respectively.

A similar mechanism in exterior acoustics will be ex-
amined in this paper.

In order to obtain a unique solution that is known
to exist analytically, several approaches for BEM that
provide additional constraints to the original system
of equations have been proposed.  Burton and Miller
(1971)  proposed an integral equation that was valid
for all wave numbers by forming a linear combina-
tion of the singular integral equation and its normal
derivative.  Numerical examples for nonuniform ra-
diation problems using the dual BEM were provided
and irregular frequencies were easily found (Chen et
al., 2003).  Although the fictitious frequencies can
be predicted theoretically (Chen, 1998; Chen and Kuo,
2000), we may not find the positions of numerical
instability from the real computations for some cases,
and how to explain the reason for this is not trivial.

This paper will study the mechanism of ficti-
tious-frequencies in exterior acoustics by using the
MFS.  An analytical study of the fictitious frequency
in a discrete system for a circular cylinder is con-
ducted by using the degenerate kernel and circulants.
Three numerical examples of uniform radiation, non-
uniform radiation and scattering problems of a circu-
lar cylinder are also examined and are compared with
the analytical solution and the results from using the
direct BEM.

II. THE MFS FORMULATION FOR
HELMHOLTZ EQUATION

The boundary value problem to be solved can
be stated as follows: The acoustic pressure u(x) must
satisfy the Helmholtz equation,

∇ 2u(x) + k2u(x) = 0, x ∈  D (1)

where k = ω/c is the wave number and ω is the angu-
lar frequency and D is the domain of interest.  By
using the MFS, the acoustic field and flux can be de-
scribed by linear combinations of fundamental
solutions:

1. Single-Layer Potential Approach (UL Method)

u(x) = U(s j, x)Γ (s j)Σ
j = 1

2N
(2)

t(x) = L(s j, x)Γ (s j)Σ
j = 1

2N
(3)

2. Double-Layer Potential Approach (TM Method)

u(x) = T(s j, x)Ω(s j)Σ
j = 1

2N
(4)

t(x) = M(s j, x)Ω(s j)Σ
j = 1

2N
(5)
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where x and s are the collocation and source points,

respectively, as shown in Fig. 1, L(s, x) ≡ ∂U(s, x)
∂nx

;

T(s, x) ≡ 
∂U(s, x)

∂ns
; M(s, x) ≡ ∂

2U(s, x)
∂nx∂ns

; t(x) ≡ 
∂u(s)
∂nx

, n

is the normal vector; Γ(sj) and Ω(sj) are the general-
ized unknowns for the densities of single and double-
layer potential, respectively, at sj; 2N is the number
of collocation points; and U(s, x) is the fundamental
solution, which satisfies

∇ 2U(s, x) + k2U(s, x) = 2πδ(s – x) (6)

in which δ is the Dirac delta function.  The four ker-
nels are,

U(s, x) = – iπ
2 H0

(1)(kr) (7)

T(s, x) = ∂U(s, x)
∂ns

= iπk
2

H1
(1)(kr)yini

r (8)

L(s, x) = ∂U(s, x)
∂nx

= – iπk
2

H1
(1)(kr)yj n j

r (9)

M(s, x) = ∂2U(s, x)
∂ns∂nx

= – iπk
2

– kH2
(1)(kr)yiyjni n j

r2 +
H1

(1)(kr)ni n i
r )

 (10)

where r ≡ |s – x| is the distance between the source
and collocation points; –ni is the ith component of the
outnormal vector at x; ni is the ith component of the
outnormal vector at s; H(1)

n denotes the first kind of
the nth order Hankel functions; and yi ≡ si – xi, i = 1,
2, are the differences of the ith components of s and
x.

We consider an infinite circular cylinder with
the Dirichlet boundary condition

u(x) = –u, x ∈  B (11)

where B is the boundary.
By matching the boundary conditions for x on

the 2N boundary points into Eqs. (2) and (3) we have

{–u} = [U]{ΓΓ } (12)

{t} = [L]{ΓΓ } (13)

where {Γ} is the vectors of undetermined coefficients.
If k is not the fictitious frequency, Eq. (12) can be
rearranged to

{Γ} = {U}–1{–u} (14)

We obtain the unknown boundary density {t} as follows:

{t} = [L][U]–1{–u} = [SD]{–u} (15)

where [SD] = [L][U]–1 denotes the matrix by using
the Single-layer potential approach for the Dirichlet
problem.  By substituting Eq. (14) into Eq.(2), we
obtain the field pressure

u(x) = <w(x)> [U]–1{–u} (16)

where <w> is the influence row vector of the field
point obtained by using the U(s, x) kernel.

Now, we consider another case  with the
Neumann boundary conditions

t(x) = 
–
t, x ∈  B (17)

By matching the boundary conditions for x on the 2N
boundary points into Eq. (3), we have

{
–
t } = [L]{ΓΓ } (18)

and Eq. (18) can be rearranged to

{Γ} = [L]–1{
–t }. (19)

We obtain the unknown boundary density {u} as follows:

{u} = [U][L]–1{
–t } = [SN]{

–t } (20)

where [SN] = [U][L]–1 denotes the matrix by using
the Single-layer potential approach for the Neumann
problem.  By substituting Eq. (19) into Eq. (2), we
obtain the field pressure for the Neumann boundary
condition

u(x) = <w(x)> [L]–1{
–t } (21)

Fig. 1 The located position of source and collocation point and
definitions of ρ, θ, R and r
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Similarly, by matching the boundary conditions
for x on the 2N boundary points into Eq. (4), we have

{–u} = [T]{ΩΩ } (22)

where {Ω} represents the vectors of undetermined
coefficients.  Eq. (22) can be rearranged to

{Ω} = [T]–1{–u} (23)

We can obtain the unknown boundary density {t} as
follows:

{t} = [M][T]–1{–u} = [DD]{–u} (24)

where [DD] = [M][T]–1 denotes the matrix, by using
the Double-layer potential approach for the Dirichlet
problem.  By substituting Eq. (23) into Eq.(4), we
obtain the field pressure

u(x) = <υ(x)> [T]–1{–u}, (25)

where <υ> is the influence row vector of the field
point obtained by using the T(s, x) kernel.  Similarly,
considering the Neumann boundary condition, t(x) =
–t , we have

{–t } = [M]{ΩΩ } (26)

Eq. (26) can be rearranged to

{ΩΩ } = [M]–1{–t } (27)

We can obtain the unknown boundary density {u} as
follows:

{u} = [T][M]–1{–t } = [DN]{–t } (28)

where [DN] = [T][M]–1 denotes the matrix by using
the Double-layer potential approach for the Neumann
problem.  By substituting Eq. (27) into Eq.(4), we
obtain the field pressure for the Neumann boundary
condition

u(x) = <υ(x)> [M]–1{–u} (29)

III. ANALYTICAL STUDY OF THE
IRREGULAR FREQUENCY FOR THE

CIRCULAR RADIATOR USING CIRCULANTS
IN THE DISCRETE SYSTEM

For the circular case, we can express x = (ρ, φ)
and s = (R, θ) in terms of polar coordinates.  The four
kernels can be expressed in terms of degenerate ker-
nels as shown below:

U(s, x) =
Ui(R, θ; ρ, φ) = π

2 [ – iJn(kR) + Yn(kR)]Σ
n = – ∞

n = ∞
Jn(kρ)cos(n(θ – φ)) , R > ρ

Ue(R, θ; ρ, φ) = π
2 [ – iJn(kρ) + Yn(kρ)]Σ

n = – ∞

n = ∞
Jn(kR)cos(n(θ – φ)) , R < ρ

(30)

T(s, x) =
T i(R, θ; ρ, φ) = kπ

2 [ – iJn
′ (kR) + Yn

′(kR)]Σ
n = – ∞

n = ∞
Jn(kρ)cos(n(θ – φ)) , R > ρ

T e(R, θ; ρ, φ) = kπ
2 [ – iJn(kρ) + Yn(kρ)]Σ

n = – ∞

n = ∞
Jn

′ (kR)cos(n(θ – φ)) , R < ρ
(31)

L(s, x) =
Li(R, θ; ρ, φ) = kπ

2 [ – iJn(kR) + Yn(kR)]Σ
n = – ∞

n = ∞
Jn

′ (kρ)cos(n(θ – φ)) , R > ρ

Le(R, θ; ρ, φ) = kπ
2 [ – iJn

′ (kρ) + Yn
′(kρ)]Σ

n = – ∞

n = ∞
Jn(kR)cos(n(θ – φ)) , R < ρ

(32)

M(s, x) =
M i(R, θ; ρ, φ) = k2π

2 [ – iJn
′ (kR) + Yn

′(kR)]Σ
n = – ∞

n = ∞
Jn

′ (kρ)cos(n(θ – φ)) , R > ρ

M e(R, θ; ρ, φ) = k2π
2 [ – iJn

′ (kρ) + Yn
′(kρ)]Σ

n = – ∞

n = ∞
Jn

′ (kR)cos(n(θ – φ)) , R < ρ
(33)

where Jn and Yn are the first and second Bessel func-
tions with order n, and the superscripts “i” and “e”
denote the interior (R > ρ) and exterior domains (R <
ρ), respectively.

Since the rotation symmetry is preserved for a
circular boundary, the four influence matrices in Eqs.
(2)-(5) are denoted by [U], [L], [T] and [M] of the
circulants with the elements
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Kij = K(R, θj; ρ, φi) (34)

where the kernel K can be U, T, L or M, φi and θj are
the angles of  observation and source points ,
respectively.  By superimposing 2N lumped strength
along the boundary, we have the influence matrices,

[K] =

a0 a1 a2 a2N – 2 a2N – 1

a2N – 1 a0 a1 a2N – 3 a2N – 2

a2N – 2 a2N – 1 a0 a2N – 4 a2N – 3

a1 a2 a3 a2N – 1 a0

(35)

where the elements of the first row can be obtained by

aj – i = K(sj, xi) (36)

The matrix [K] in Eq. (35) is found to be a circulant
since the rotational symmetry for the influence coef-
ficients is considered.  By introducing the following
bases for the circulants, I, (C2N)1, (C2N)2, ..., and
(C2N)2N – 1, we can expand [K] into

[K] = a0I + a1(C2N)1 + a2(C2N)2 + ...

+ a2N – 1(C2N)2N – 1 (37)

where I is a unit matrix and

C2N =

0 1 0 0 0
0 0 1 0 0

0 0 0 0 1
1 0 0 0 0

2N × 2N

(38)

Based on the circulant theory, the eigenvalues for the
influence matrix, [K], are found as follows:

λ = a0 + a1α + a2α 2 + + a2N – 1α 2N – 1 ,

= 0, ±1, ±2, ..., ±(N – 1), N (39)

where λ  and α  are the eigenvalues for [K] and [C2N],
respectively.  It is easily found that the eigenvalues
for the circulant [C2N] are the roots for α 2N = 1 as
shown below:

α = ei2π
2N , = 0, ±1, ±2, , ± (N – 1) , N or

= 0, 1, 2, , 2N – 1 (40)

Substituting Eq. (40) into Eq. (39), we have

λ = amαmΣ
m = 0

2N – 1
= amei 2π

2N
mΣ

m = 0

2N – 1
,

= 0, ±1, ±2, , ± (N – 1) , N (41)

According to the definition for am in Eq. (36), we have

am = a2N – m,  m = 0, 1, 2, ..., 2N – 1 (42)

Substituting Eq. (42) into Eq. (41) yields

λ = a0 + (– 1) aN + (αm + α 2N – m)amΣ
m = 1

N – 1

= cos(m ∆θ)amΣ
m = 0

2N – 1
(43)

Putting Eq. (36) into Eq. (43) for the case U of K for
φ = 0 without loss of generality, the Reimann sum of
infinite terms reduces to the following integral

λ = lim
N → ∞

cos(m ∆θ)U(m∆θ, 0)Σ
m = 0

2N – 1

≈ 1
ρ∆θ cos( θ)U(θ, 0)ρdθ

0

2π
(44)

where ∆θ = 2π
2N .  By using the degenerate kernel for

U(s, x) in Eq. (30) and the orthogonal conditions, Eq.
(40) reduces to

λ = – iπ2ρH (1)(kρ)J (kR) ,

= 0, ±1, ±2, , ± (N – 1) , N (45)

Similarly, we have

µ = – ikπ2ρH ′(1)(kρ)J (kR)

= 0, ±1, ±2, , ± (N – 1) , N (46)

ν = – ikπ2ρH (1)(kρ)J ′(kR)

= 0, ±1, ±2, , ± (N – 1) , N (47)

κ = – ik2π2ρH ′(1)(kρ)J ′(kR)

= 0, ±1, ±2, , ± (N – 1) , N (48)

where µ, ν and κ  are the eigenvalues of [L], [T] and
[M] matrices, respectively.  The determinants for the
four matrices are obtained by multiplying all the
eigenvalues as shown below:

det[U] = λ0(λ1λ2 ... λN – 1)2λN (49)

det[L] = µ0(µ1µ2 ... µN – 1)2µN (50)

det[T] = ν0(ν1ν2 ... νN – 1)2νN (51)
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det[M] = κ0(κ1κ2 ... κN – 1)2κN (52)

Since the four matrices [U], [L], [T] and [M] are all
symmetric circulants, they can be expressed by

[U]

= ΦΦ

λ 0 0 0 0 0 0
0 λ 1 0 0 0 0
0 0 λ – 1 0 0 0

0 0 0 λ (N – 1) 0 0
0 0 0 0 λ – (N – 1) 0
0 0 0 0 0 λ N

2N × 2N

ΦΦ – 1

(53)

[L]

= ΦΦ

µ0 0 0 0 0 0
0 µ1 0 0 0 0
0 0 µ– 1 0 0 0

0 0 0 µ(N – 1) 0 0
0 0 0 0 µ– (N – 1) 0
0 0 0 0 0 µN

2N × 2N

ΦΦ – 1

(54)

[T]

= ΦΦ

µ0 0 0 0 0 0
0 ν 1 0 0 0 0
0 0 ν – 1 0 0 0

0 0 0 ν (N – 1) 0 0
0 0 0 0 ν – (N – 1) 0
0 0 0 0 0 ν N

2N × 2N

ΦΦ – 1

(55)

[M]

= ΦΦ

κ 0 0 0 0 0 0
0 κ 1 0 0 0 0
0 0 κ – 1 0 0 0

0 0 0 κ (N – 1) 0 0
0 0 0 0 κ – (N – 1) 0
0 0 0 0 0 κ N

2N × 2N

ΦΦ – 1

(56)

where ΦΦ  is the unitary matrix.

1. Derivation of Fictitious Frequency by Using the
Single-Layer Potential Approach

For the Dirichlet problem, by employing Eqs.
(53) and (54) for Eq.(15), we have

[SD]

= ΦΦ

σ0
(SD) 0 0 0 0 0

0 σ1
(SD) 0 0 0 0

0 0 σ– 1
(SD) 0 0 0

0 0 0 σ (N – 1)
(SD) 0 0

0 0 0 0 σ– (N – 1)
(SD) 0

0 0 0 0 0 σ N
(SD)

ΦΦ – 1

(57)

where the superscript “SD” denotes using the single-
layer potential approach for the Dirichlet problem and

σ (SD) =
H ′(1)(ka)J (kR)
H (1)(ka)J (kR)

,

= 0, ±1, ±2, , ± (N – 1) , N (58)

where a is the radius of the circular cylinder.  Ac-
cording to Eqs. (57) and (58), we have

det[SD]

= det[ΦΦ]σ0
(SD)(σ1

(SD)σ2
(SD) σ N – 1

(SD) )2σ N
(SD)det ΦΦ – 1

= σ0
(SD)(σ1

(SD)σ2
(SD) σ N – 1

(SD) )2σ N
(SD) (59)

since det|ΦΦ| = det|ΦΦ –1| = 1.  Based on Eq. (58), the
numerical instability of zero divided by zero occurs
at the denominator where k satisfies

H (1)(ka)J (kR) = 0 , = 0, ±1, ±2, , ± (N – 1) , N

(60)

Since the term of H (1)(ka) is never zero for any value
of k, the k value satisfying Eq. (60), implies

J (kR) = 0 (61)

For the Neumann problem, by employing Eqs.
(53) and (54) for Eq. (20), we have
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[SN]

= ΦΦ

σ0
(SN) 0 0 0 0 0

0 σ1
(SN) 0 0 0 0

0 0 σ– 1
(SN) 0 0 0

0 0 0 σ (N – 1)
(SN) 0 0

0 0 0 0 σ– (N – 1)
(SN) 0

0 0 0 0 0 σ N
(SN)

ΦΦ – 1

(62)

where the superscript “SN” denotes the Neumann
problem using the single-layer potential approach and

σ (SN) =
H (1)(ka)J (kR)

H ′(1)(ka)J (kR)
,

= 0, ±1, ±2, , ± (N – 1) , N (63)

According to Eqs. (62) and (63), we have

det[SN]

= det[ΦΦ]σ0
(SN)(σ1

(SN)σ2
(SN) σ N – 1

(SN) )2σ N
(SN)det ΦΦ – 1

= σ0
(SN)(σ1

(SN)σ2
(SN) σ N – 1

(SN) )2σ N
(SN) (64)

Based on Eq. (63), the numerical instability of zero
divided by zero occurs at the denominator where k
satisfies

H ′(1)(ka)J (kR) = 0, = 0, ±1, ±2, , ± (N – 1) , N

(65)

Since the term H ′(1)(ka) is never zero for any value of
k, the k value satisfying Eq. (65), implies

J (kR) = 0 (66)

2. Derivation of Fictitious Frequency by Using the
Double-Layer Potential Approach

Similarly, for the Dirichlet problem, by employ-
ing Eqs. (55) and (56) for Eq. (24), we have

σ (DD) =
H ′(1)(ka)J ′(kR)

H (1)(ka)J ′(kR)
,

= 0, ±1, ±2, , ± (N – 1) , N (67)

where the superscript “DD” denotes the Dirichlet
problem using the double-layer potential approach.

Based on Eq. (67), the numerical instability of zero
divided by zero occurs at the denominator where k
satisfies

H (1)(ka)J ′(kR) = 0 , = 0, ±1, ±2, , ± (N – 1) , N

(68)

For any value of k, the k value satisfying Eq. (68),
implies

J ′(kR) = 0 (69)

For the Neumann problem, by employing Eqs.
(55) and (56) for Eq. (28), we have

σ (DN) =
H (1)(ka)J ′(kR)

H ′(1)(ka)J ′(kR)
,

= 0, ±1, ±2, , ± (N – 1) , N (70)

where the superscript “DN” denotes the Neumann
problem using the double-layer potential approach.
Based on Eq. (70), the numerical instability of zero
divided by zero occurs at the denominator where k
satisfies

H ′(1)(ka)J ′(kR) = 0 , = 0, ±1, ±2, , ± (N – 1) , N

(71)

For any value of k, the k value satisfying Eq. (71),
implies

J ′(kR) = 0 (72)

After obtaining all the fictitious values which
occur in each method, it is found that once the method
of integral formulation (either, UL or TM method) is
adopted, the positions of fictitious values are inde-
pendent of the types of boundary condition.

The irregular frequency appears at the eigen-
value of the interior problem with the fictitious bound-
ary of radius,“R”, instead of the real boundary “a” in
the direct BEM.  The fictitious frequency “kf

M
 ” in the

MFS can be obtained analytically for an infinite cyl-
inder as follows

k f
M =

k fa
R

(73)

where kfa = k0, k0 is the root of the J (k 0) = 0 for the
single-layer potential approach, or the root of the
J ′(k 0) = 0  for the double-layer potential approach.
The occurring mechanism of the fictitious frequency
can extend to the three-dimensional case easily.

The fictitious frequency was not found in
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Kondapalli et al., 1992.  The reason cited was that
the fictitious frequencies in the MFS are different
from those of derived BEM by a ratio of 2, since the
radius of the sphere connected by the source points
is half of the real boundary.  The first fictitious fre-
quency for the three-dimensional case occurs at the
position of k = 2π, instead of k = π in the BEM.  That
is the reason why they could not find the fictitious
frequencies in the range of 0 < k < 5.

IV. MIXED-LAYER POTENTIAL METHOD

In the exterior acoustics of the Helmholtz equa-
tion using dual BEM, the mixed-layer potential
method (Hwang and Chang, 1991) utilized the prod-
uct of double-layer equations with an imaginary con-
stant to the single-layer equation to deal with the fic-
titious frequency which is the non-unique solution
problem.  We will extend this concept to MFS.

u(xi) = (U(s j, xi)Σ
j

+ i
kT(s j, xi))ϕ(s j) (74)

t(xi) = (L(s j, xi)Σ
j

+ i
k M(s j, xi))ϕ(s j) (75)

where ϕ is the mixed potential.

V. NUMERICAL EXAMPLES

Case 1: Uniform radiation from an infinite circular
cylinder (Dirichlet boundary condition)

For the first example, a radiation problem is
considered.  The  boundary condition is shown in Fig.
2.  The normalized analytical solution to this cylin-
der problem with a radius a = 1.0 m is

u(ρ, φ) =
H4

(1)(kρ)
H4

(1)(ka)
cos(4φ) , ρ ≥ a, 0 ≤ ϕ < 2π

(76)

subjected to boundary condition u(a, φ) = cos(4φ),

where H4
(1)(kρ) denotes the first-kind Hankel function

of the fourth order.  Sixty source points and sixty col-
location points are adopted.  The source points are
located at R = 0.9 m.  Fig. 3 shows the contour plot
for the real-part solutions with ka = 1.0.  The posi-
tions where the irregular values occur can be found,
are showing in Fig. 4 for the solution t versus k at the
position a = 1, φ = 0 by using the MFS method and
direct BEM.  It is found that no irregular values can
be found between zero and eight.  At the position of
k ≈ 8.43, the numerical instability appears, since the
value is the first zero of J4(kR) for the MFS method.
The irregular value occurs at  k ≈ 7.58 when using
the direct  BEM.  The fictitous frequency of the MFS
differs from the value of direct BEM by a ratio of
7.58
8.43

 ≈ 0.9, as predicted analytically.  The performance
of the MFS in comparison with the analytical solution,
and the mixed-layer potential approach is quite good,
as shown in Fig. 5.

Case 2: Nonuniform radiation from an infinite circu-
lar cylinder (Neumann boundary condition)

Fig. 2  The radiation problem (Dirichlet type) for a cylinder

Fig. 3  The contour plot for the real-part solutions
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-12

BEM
MFS

t

0 2 4 6
k

8 10

J4 (ka)

(7.58)

J4 (kR)

(8.43)

Fig. 4  The t(a, 0) versus k for by using the MFS and BEM
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This problem was chosen because the exact so-
lution is known (Harari et al., 1998).  The boundary
condition is shown in Fig. 6.  In this example we com-
puted the nonuniform radiation from an infinite cir-
cular cylinder, and the Neumann boundary condition
is applied to the cylinder surface.  The portion (–α  <
θ < α) is assigned a unit value, while the remaining
portion is assigned a homogeneous value.  The ana-
lytical solution to this cylinder problem with a radius
a = 1.0 m is given by

u(ρ, φ) = 2
π

– 1
k

sin(nα)
n

Hn
(1)(kρ)

Hn
(1)′(ka)

cos(nφ) ,Σ
n = 0

∞

ρ > a, 0 < φ < 2π (77)

where the symbol ‘denotes that the first term (n = 0)
is halved.  We select α = 5π

16 , and ka = 1.  Fig. 7 shows
the contour plots for the real part of the numerical
solutions.  Sixty-four nodes are adoped in the MFS
and α  = 5π

16  for this case.  The source points are lo-
cated at R = 0.9 m.  The positions where the irregular

values occur can be found in Fig. 8 for the solution u
(a, 0; k) versus k.  It is found that by using the UL
formulation the irregular values occur at the positions
of Jn, m, which is the mth zero of Jn(kR).  The fictitious
frequencies which occurred at the position are described
in Eq. (61).  By using the TM formulation the irregu-
lar values occur at the positions of J′n, m, which is the
mth zero of J′n(kR).  The results of the MFS, the mixed-
layer potential approach and analytical solution are
shown in Fig. 8.  Figs. 9(a)-(c) show the surface po-
tential for k = 1.0 by using the UL, TM and mixed-
layer potential, respectively. The results of Fig. 9c,
are worse than those of Figs. 9a and 9b. Although the
three results are different, they all can be acceptable
from a numerical viewpoint.  Figs. 10(a)-(c) show the
surface potential for k = 2.67 by using the UL, TM and
mixed-layer potential, respectively, which corresponds
to the first interior Dirichlet eigenproblem.  In Fig. 10
(a) the result using the UL formulation shows some

16
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-8

-12

-16

UL method
TM method
Burton & Miller
Analytical solution

t

0 2 4 6
k

8 10

J4 (kR)

J4 (kR)

′

Fig. 5  The t(a, 0) versus k for the uniform radiation problem

Fig. 6 The nonuniform radiation problem (Neumann type) for a
cylinder

Fig. 7 The numerical solution for the nonuniform radiation prob-
lem (ka = 1, α  = π
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Fig. 8 The u(a, 0; k) versus k using the MFS for the nonuniform
radiation by a circular cylinder
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error compared to the analytical solution, as described
in Eq. (66).  Figs. 11(a)-(c) show the surface potential
for k = 2.09 by using the UL, TM and mixed-layer po-
tential method, respectively, which corresponds to the
first interior Neumann eigenproblem.  In Fig. 11(b)
the result using the TM formulation shows a large er-
ror compared to the analytical solution, as described
in Eq. (72).

Case 3: Plane wave scattering for a rigid infinite cir-
cular cylinder (Neumann boundary condition)

In order to check the validity of the program for
the scattering problem, example 3 is considered
(Harari et al., 1997).  The incident wave is a plane

wave and the scatter is a rigid cylinder, as shown in
Fig. 12.  Sixty nodes are adoped for this case.  The
analytical solution for the scattering field is

u(ρ, θ) = –
J0′ (ka)

H0
(1)′(ka)

H0
(1)(kρ)

– 2 in Jn
′ (ka)

Hn
(1)′(ka)

Hn
(1)(kρ)cos(nθ)Σ

n = 1

∞
(78)

Figs. 13 and 14 show the contour plot for the real-part
solution of MFS and analytical at ka = 4π, respectively.
The results of the MFS in comparison with the analyti-
cal solution are quite good.  The positions where the
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(a) UL formulation ,   exact solution

Fig. 9 Surface potential produced by the finite cylinder at ka =
1.0, (a) UL formulation, (b) TM formulation, (c) Burton
& Miller method

Fig. 10 Surface potential produced by the finite cylinder at inte-
rior Dirichlet eigenvalue, ka = 2.67 (2.4048/0.9), (a) UL
formulation, (b) TM formulation, (c) Burton & Miller
method
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irregular values occur can be found in Fig. 15 for the
solution u(a, 0; k) versus k.  Sixty-four nodes are adoped
in the MFS.  The source points are located at R = 0.9
m.  It is found that by using the UL formulation the
irregular values also occur at the zeros of Jn, m.  By
using the TM formulation the irregular values also oc-
cur at the zeros of  J ′n, m.  The results for the MFS, ana-
lytical solution and the mixed-layer potential solution
agree well, as shown in Fig. 15.

VI. CONCLUSIONS

This paper examines why fictitious frequencies
occur in the MFS by considering the radiation and
scattering problems of a cylinder.  Based on the

circulant properties and degenerate kernels, an ana-
lytical scheme for a discrete system of a cylinder was
achieved.  The occurrence of a fictitious frequency
depends only on the formulation, not on the speci-
fied boundary condition.  The numerical results from
this study indicate that the irregular frequency also
appears at the eigenvalue of the interior problem
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(a) UL formulation ,   exact solution
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Fig. 11 Surface potential produced by the finite cylinder at inte-
rior Neumann eigenvalue, ka = 2.09 (1.84/0.9), (a) UL
formulation, (b) TM formulation, (c) Burton & Miller
method

Fig. 12 The problem of a plane wave scattered by a rigid infinite
circular cylinder

Fig. 13 The contour plot for the real-part numerical solution for
a plane wave scattered by an infinite circular cylinder (ka
= 4π)

Fig. 14 The contour plot for the analytical solution for a plane
wave scattered by an infinite circular cylinder (ka = 4π)
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where the boundary is connected by the source loca-
tions instead of the real boundary used in the direct
BEM.  In a circular cylinder case, the position of ir-
regular frequency depends on the source location R.
The mixed-layer potential method was demonstrated
successfully to filter out the fictitious frequency ana-
lytically and numerically.

NOMENCLATURE

B tbe boundary of the domain
c sound speed
D domain of interest
Hn

(1) the first kind Hankel function with
order n

i i 2 = –1, imaginary unit
Jn the first kind Bessel function with

order n
k wave number
L(s, x) kernel function of the second dual in-

tegral eguation
M(s, x) kernel function of the second dual in-

tegral eguation
ni the ith component of the outnormal

vector at the source point s
nx the outnormal direction at the field

point x
ns the outnormal direction at the source

point s
–ni the ith component of the outnormal

vector at field point x
r distance between the source and field

points, r = |x – s|
SVD singular value decomposition
T(s, x) kernel function of the first dual inte-

gral eguation

t(x) normal flux on the field point x
U(s, x) kernel function of the first dual inte-

gral eguation
u(x) potential on the field point x
Yn the second kind Bessel function with

order n
yi xi – si

κ , λ , µ, ν, α eigenvalues
σi singular value
ϕ the mixed potential
∇ 2 Laplacian operator
Γ the vectors of undetermined coeffi-

cients
Ω the vectors of undetermined coeffi-

cients
ΦΦ unitary matrix of SVD
ω angular frequency
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