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ABSTRACT

The fatigue behavior of a crack in a missile structure is studied
using the dual boundary integral equations developed by Hong and Chen
(1988).  This method, which incorporates two independent boundary
integral equations, uses the displacement equation to model one of the
crack boundaries and the traction equation to the other.  A single
domain approach can be performed efficiently.  The stress intensity
factors are calculated and the paths of crack growth are predicted. In
order to evaluate the results of dual BEM, four examples with FEM
results are provided.  Two practical examples, cracks in a V-band and
a solid propellant motor are studied and are compared with experimen-
tal data. Good agreement is found.

*Correspondence addressee

I. INTRODUCTION

In mechanical design, a V-band is one of the best
joints  to connect two components, but it usually faces
crack problems in some critical areas.  Also, a crack
in the solid rocket motor sometimes results in a cata-
strophic failure (Chen and Leu, 1998).  In studying
crack problems using numerical  techniques ,
t h e  a n a l y s t  m a y  e n c o u n t e r  p r o b l e m s  w i t h
singularities.  Singular behavior is often ignored
with the expectation that the error will be limited to
the vicinity of the singularity.  However, it is very
important to show how strong the singular behavior
is,  e.g . ,  the stress intensity factor of fracture
mechanics.  In particular, this factor is very impor-
tant to predict the crack growth in the damage toler-
ance design.  In finite elements, special  singular or
hybrid elements are sometimes used instead of the

quarter-point rule; e.g., MSC/NASTRAN Version 68
(Chen et al., 1996) provides the capabilities of sin-
gular CRAC2D and CRAC3D elements for crack
problems of two and three-dimensional problems,
respectively.

For problems with a degenerate boundary, e.g.,
crack problems (Chen, 1988; Portela et al., 1992,
1993; Mi and Aliabadi, 1992; Fedelinski and Aliabadi,
1994; Leitao et al., 1995; Salgado and Aliabadi,
1998), flow around sheet piles (Chen and Hong, 1993;
Chen et al., 1994), an incomplete partition in a
room (Chen and Chen, 1998; Chen and Wong, 1998)
and a thin airfoil in aerodynamics (Wang et al.,
1990; Chen and Hong, 1992), singularity exists, and
the dual integral formulation has been applied suc-
cessfully for the BEM approach.  Using the dual in-
tegral formulation, all the well-posed boundary value
problems can be solved even though a degenerate
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boundary is present.  It is well known that the DBEM
(dual boundary element method) is particularly suit-
able for the problem of extreme localization and con-
centration with singularity.  The DBEM solution is
based on the complete formulation of the dual inte-
gral equations.  The long standing abstruseness of the
nonuniqueness problem in BEM has been solved, and
the general purpose programs have been implemented
by Chen and his coworkers (Chen and Hong, 1992,
1999).  For the problems of crack growth, remesh near
the tip using FEM is unavoidable, while additional
boundary elements are only needed in the dual BEM
as shown in Fig. 1.  Therefore, the dual BEM approach
has been widely used, e.g., cracks in welded struc-
tures (Lie and Lan, 1998) and rock samples (Kayupov
et al., 1999).

In this paper, the dual BEM is extended to solve
crack problems in missile structures.  Two cases are
studied: one is a V-band component, and the other is
propellant in a solid rocket motor.  The concept of
damage tolerance is considered (Bannantine, 1990).
In order to verify the validity of the dual BEM, two
test examples are worked out and the results are com-
pared with analytical and FEM solutions.  The stress
intensity factors are determined and the paths of crack
growth for the components in the missile system are
predicted.  Also, numerical results are compared with
experimental data for the crack path in solid propel-
lant grain.

II. REVIEW OF DUAL BOUNDARY
INTEGRAL EQUATIONS FOR DOMAIN
POINTS OF CRACK PROBLEMS

In this section, we review the dual boundary in-
tegral equations of the domain points for crack
problems.

Betti’s Law

Let (bi, ui, ti) and   (b i
*, t i

*, u i*) be two equilibrium
states in a linearly elastic body where bi and  b i

*  are
the body forces; t i and t i

* denote the boundary
tractions; and ui and  u i* are the displacements.  Betti’s
law gives

  (u ib i
* – u i*b i)dV

D
= – (u it i

* – u i*t i)dB
B

(1)

where D is a domain with boundary B.  It can be re-
cast into the theory of self-adjoint operator L simply
as

   L u v = u Lv (2)

where

  
L =

D 0
0 – B

. (3)

If the material is elastic and isotropic, the operator D
can be expressed explicitly as

Dij=(λ+G)∂i∂j+Gδij∂k∂k (4)

while B is the traction operator defined by

Bij=λni∂j+G(nj∂i+δijnk∂k) (5)

where λ and G are Lame’s constants; ni is the direc-
tion cosine of the unit outward normal to the
boundary; δij denotes Kronecker delta symbol; and ∂i

is the partial differential operator.  Note that the equa-
tions of equilibrium for the two states, uj and  u j*, are

Dijuj(x)+bi(x)=0, x in D, (6)

Dij  u j*(x)+  b i
*(x)=0, x in D, (7)

with the Cauchy formula

Bijuj(x)=ti(x), x on B, (8)

Bij  u j*(x)=t i
*(x), x on B, (9)

By choosing

 u j*=vj, (10)

we can obtain

  (v iD iju j – u iD ijv j)dV
D

= (v iB iju j – u iB ijV j)dB
B

.

(11)

Now we choose specifically:

Fig. 1  FEM and BEM meshes for crack growth
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t i
*(x)=Bikvk(x)=Bik(x)Ukj(x,s)  e j*(s)=Tij(x,s)  e j*(s),  (12)

 b i
*(x)=−Dik(x)vk(x)=−Dik(x)Ukj(x,s)  e j*(s)

=δij(x,s)  e j*(s), (13)

 u i*(x)=vi(x)=Uij(x,s)  e j*(s), (14)

where Uij(x,s) and Tij(x,s) are the Kelvin free-space
Green’s functions (or fundamental solutions) of the
i-direction responses for displacement and traction at
the point x, respectively, due to a concentrated load
in the j-direction at the point s; and  e j*(s) is an arbi-
trary unit-concentrated load at the point s.  Then we
have Somigliana’s identity (Banerjee and Butterfield,
1981):

   
[U ij(x, s)t i(x)

B
– T ij(x, s)u i(x)]dB(x) =

u j(s) , s ∈ D

0 , s ∉ D

(15)

By changing x and s, Eq. 15 is changed to

   
[U ki(s, x)t k(s)

B
– T ki(s, x)u k(s)]dB(s) =

u i(x) , x ∈ D
0 , x ∉ D

(16)

In deriving Eq. (15), we have omitted the unit
vector  e j*  from both sides of the equation because of
its arbitrariness.  In order to have an additional and
independent equation for the problem with a degen-
erate boundary, we apply the traction operator Bpi  to
Eq. 16 and define

Bpi(x){Uki(s,x)}=Lkp(s,x), (17)

Bpi(x){Tki(s,x)}=Mkp(s,x). (18)

It then follows that

   
[L kp(x, s)t k(s) – Mkp(s, x)u k(s)]dB(s)

B
=

t p(x) , x ∈ D

0 , x ∉ D

(19)

Eqs. (16) and (19) are termed the dual boundary in-
tegral equations for the point x in the domain.  It is
noted that this definition is different from that de-
fined by Buecker (Buecker, 1973).  A detailed dis-
cussion for the dual boundary integral equations can
be found in the review article of Chen and Hong
(1999).

III. DERIVATIONS OF DUAL BOUNDARY
INTEGRAL EQUATIONS FOR THE

BOUNDARY POINTS

Equations (16) and (19) are derived for a point
in the interior domain.  By moving the point to the
boundary, we are immediately confronted with the
problem of singularities and improper integrals.  Eq.
(16) reduces to

   U ki(s, x)t k(s)dB(s)
B

+ β iju j(x)

   – CPV T ki(s, x)u k(s)dB(s)
B

= δ iju j(x) (20)

where βij depends on the solid angle and CPV denotes
the Cauchy principal value.  Similarly, Eq. 16 be-
comes

   U ki(s, x)t k(s)dB(s) + ( – δ ij + β ij)u j(x)
B

  – CPV T ki(s, x)u k(s)dB(s)
B

= 0 (21)

where βij reduces to 1/2 δij when x is on the smooth
boundary (Hartmann, 1981, 1982).  Eq. (20) reduces
to

  1
2

u i(x) = U ki(s, x)t k(s)dB(s)
B

– CPV T ki(s, x)u k(s)dB(s)
B

,

x on B (22)

Now applying the traction operator to Eq. 22, and
noting that

  Bpi(x){ U ki(s, x)t k(s)dB(s)}
B

   = Bpi(x) U ki(s, x)t k(s)dB(s)
B – B ε

  = CPV L kp(s, x)t k(s)dB(s)
B

(23)

where the first equality results from the integral over
the small detour around x∈Bε, and Bε denotes a small
spherical or circular detour of vanishing radius ε and
center at x.  The second equality stems from the
boundary terms due to the traction operator using
Leibnitz’ rule canceling themselves out, and defin-
ing that

  Bpi(x){CPV T ki(s, x)u k(s)dB(s)}
B

   ≡ HPV Mkp(s, x)u k(s)dB(s)
B

, (24)



342 Journal of the Chinese Institute of Engineers, Vol. 23, No. 3 (2000)

we have

  1
2

t p(x) = CPV L kp(s, x)t k(s)dB(s)
B

  – HPV Mkp(s, x)u k(s)dB(s)
B

,  x on B (25)

where HPV denotes the Hadamard principal value
(Hadamard, 1952).  Eqs. (22) and (25) are termed the
dual boundary integral equations for a boundary point.

IV. DUAL BOUNDARY ELEMENT
FORMULATION FOR CRACK PROBLEMS

By discretizing the boundary B into constant
elements in Eqs. (22) and (25), we have

   1
2

u i(x) = t k(s l)Σ
l = 1

N
U ki(s, x)dB(s)

B l

   – u k(s l)CPVΣ
l = 1

N
T ki(s, x)dB(s)

B l

(26)

   1
2

t i(x) = t k(s l)CPVΣ
l = 1

N
L ki(s, x)dB(s)

B l

   – u k(s l)HPVΣ
l = 1

N
Mki(s, x)dB(s)

B l

(27)

where N is the number of boundary elements and Bl

is the lth boundary element.  For a two-dimensional
problem, Eqs. (26) and (27) can be written in matrix
forms as shown below

[C]2N×2N{u}2N×1

=[U]2N×2N{t}2N×1−[T]2N×2N{u}2N×1 (28)

[C]2N×2N{t}2N×1

=[L]2N×2N{t}2N×1−[M]2N×2N{u}2N×1 (29)

where {u} and {t} are the column vectors of bound-
ary displacement and traction, and [C] is a matrix of
free terms.  Eqs. (28) and (29) can be reduced to

  [ T ]{u} = [U]{t} (30)

  [M]{u} = [ L ]{t} (31)

where   [ T ] and   [ L ] differ from [T] and [L] by a ma-
trix of free terms. It is found that Eq. (28) is not suf-
ficient to provide enough constraint equations for
crack problems; thus, Eq. (29) is needed.  Combin-
ing  Eqs. (28) and (29), the double unknowns on the
degenerate boundary can be determined easily.

V. DETERMINATION OF STRESS INTENSITY
FACTOR AND PREDICTION OF FATIGUE
CRACK GROWTH

The V-band joint between two diverse compo-
nents has been found to fail during sevice life.  Also,
cracks in solid propellant grain propagate under ther-
mal loading.  In damage tolerance design, an initial
crack is assumed.  The damage tolerance concept is
based on linear elastic fracture mechanics, for all
cases in which the inherent inelastic deformation
around the crack tip is small.

Two basic crack deformations are considered:
the opening mode (mode I), and the sliding mode
(mode II).  For cases 1 and 2, only mode I is
considered.  For the crack in a V-band structure,
modes I and II are both discussed.

At the tip of a sharp notch, the stress intensity
factors are the coefficients of the stess singularities
and may be defined in a manner similar to that used
by Irwin (Irwin, 1957) for cracks, as follows

   K I = 2π lim
→

r 1 – λ1σ yy(r, θ = 0, α) (32)

and

   K II = 2π lim
→

r 1 – ζ1σ xy(r, θ = 0, α) (33)

that is

   K I = 2π λ1β 1(1 + λ1 – λ1cos2α – cos 2λ1α) (34)

   K II = 2π ζ1δ1(– 1 + ζ1 – ζ1cos2α + cos 2ζ1α) (35)

where σyy and σxy are the stress fields in the
neighbourhood of the tip, α is the angle as shown in
Fig. 2, and λ1, β1 and ζ1, δ1 are the dominant
eigenpairs of the opening and sliding modes,
respectively.

As the crack behavior is completely determined
by the stress intensity factors, Eqs. (32) to (35), for

Fig. 2 Sharp-notch geometry in polar and cartesian coordinate
systems
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the case α=180° the crack-tip stresses are given by

   σ xx =
K I

2πr
cosθ

2
(1 – sinθ

2
sin3θ

2
)

   +
K II

2πr
sinθ

2
(2 + cosθ

2
cos3θ

2
) (36)

   σ yy =
K I

2πr
cosθ

2
(1 + sinθ

2
sin3θ

2
)

   –
K II

2πr
sinθ

2
cosθ

2
cos3θ

2
(37)

and

   σ xy =
K I

2πr
cosθ

2
sinθ

2
cos3θ

2
+

K II

2πr
cosθ

2
(1 – sinθ

2
sin3θ

2
)

(38)

The criterion commonly used for the path of crack
growth is the maximum principal stress criterion
(Erdogan and Sih, 1972) which postulates that frac-
ture will occur in a direction perpendicular to that of
maximum principal stress at the crack tip.  The crack-
tip circumferential stresses, derived from Eqs. (36)
to (38), can be expressed as

   σ θθ = 1
2πr

cosθ
2

[K Icos2θ
2

– 3
2

K IIsinθ] (39)

and

   σ rθ = 1
2 2πr

cosθ
2

[K Isinθ + K II(3cos θ – 1)] (40)

If the stress σrθ is equal to zero, then σθθ will be prin-
cipal stress.  The corresponding principal direction,
θ=θt, can be evaluated from the condition σrθ=0 which
leads to

KIsinθt+KII(3cosθt−1)=0 (41)

By means of simple trigonometric relationships, this
equation can be transformed into a quadratic form
whose roots, given by

   
tan

θ t

2
= 1

4
[
K I

K II
± (

K I

K II
)2 + 8 ] (42)

provide an easy way to evaluate θt.
Based on the fundamental postulate of linear

elastic fracture mechanics, the stress intensity factor
criterion for fracture can be stated as

KIeq
=KIc

(43)

where KIeq
 represents an equivalent mode I stress

intensity factor, defined in a mixed-mode analysis and
KIc

 represents the plane strain fracture toughness
which is a critical value of the stress intensity factor,
taken as a property of the material.

For simplicity, we considered the loading cycle
has a constant amplitude and is described by a static
load level with a stress amplitude ratio R defined as

   
R =

σ min
σ max

=
K I eq min

K I eq max

(44)

where σmin and σmax denote the minimum and maxi-
mum applied stress, and KIeq max

 and KIeq min
 are the cor-

responding stress intensity factors.  Hence, when the
analysis is performed at the maximum stress level,
the stress intensity factor range, ∆KIeq

, is given by

∆KIeq
=KIeq max

−KIeq min
=KIeq max

(1−R) (45)

The crack growth rate,  da
dN

, can be computed by the

Paris law (Paris, 1962), given by

   da
dN

= C(∆K I eq
)m (46)

where C and m are the empirical constants for the
material.

In Fig. 1, the crack length is a0 in stage 1, and
the crack propagates with a length ∆a in stage 2.
Remeshing near the crack tip is needed for FEM.
However, only one additional boundary element
should be constructed using the dual BEM.  In engi-
neering practice, we can save much time in data
preparation.  In the following examples, the dual BEM
will be employed to solve for crack problems.  Also,
the path of crack growth is discussed.

VI. RESULTS AND DISCUSSIONS FOR
NUMERICAL SOLUTIONS USING

THE DUAL BEM

Test examples

In order to verify the accuracy of the present
formulation of the dual BEM, case 1, a single-edge
crack problem, and case 2, a double-edge crack
problem, subjected to uniform tension are considered
as shown in Fig. 3 and Fig. 4.

Case 1:

As shown in Fig. 3, the parameters are consid-
ered as below: elastic modulus E=200000 kgf/mm2,
Poisson’s ratio ν=0.25, loading σ=10 kgf/mm2, the
constants of Paris law C=4.624×10−12, m=3.3, the
stress ratio R=2/3 and crack length a=0.1 mm.
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Case 2:

As shown in Fig. 4, the parameters are consid-
ered as below: elastic modulus E=1000 kgf/mm2,
Poisson’s ratio ν=0.3, loading σ=1000 kgf/mm2, the
constants of Paris law C=4.624×10−12, m=3.3, the
stress ratio R=2/3 and crack length a=1.0 mm.

The stress intensity factor is obtained and the
crack path is predicted by using the dual BEM
program.  In the FEM implementation, the MSC/
NASTRAN program (Chen et al., 1996) was also uti-
lized to obtain the stress intensity factor.  Both the
CRAC2D and CRAC3D elements in NASTRAN were
implemented for the double-edge crack problems.
Figs. 5, 6, 7, 8, 9 and 10, show the element mesh and
the path of crack growth we predicted for the two

cases.  The analytical solutions for the two cases are
shown below (Broek, 1988):

Case 1: Single-edge crack problem

   K I = σ πa [1.12 – 0.213( a
W

) + 10.56( a
W

)2 – 21.74( a
W

)3

  + 30.42( a
W

)4] (47)

Case 2: Double-edges crack problem

   K I = σ πa [1.99 + 0.76( a
W

) – 8.48( a
W

)2 + 2.736( a
W

)3]

(48)

where a is the crack length and W is the width of the

Fig. 3  Case 1: Single-edge crack problem

Fig. 4  Case 2: Double-edges crack problem

Fig. 5  Boundary element mesh in case 1

Fig. 6  Deformed plot for case 1

Fig. 7  Path of the crack growth in case 1
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plate.  Table 1 shows the stress intensity factors cal-
culated by the dual BEM, FEM and the analytical so-
lution for case 1.  As shown in Table 2, we use the
same number of elements in case 2 for FEM (2D or
3D simulation) and the dual BEM, and the results in-
dicate that the accuracy using the dual BEM is better
than those of using FEM.  These two examples are
demonstrated to show the validity of the dual BEM
since the agreement between the FEM and the dual
BEM is good.

Case 3 V-band joint structure

Figure 11 shows the V-band structure which
connects two diverse components in missile structure.
In the V-band component, the parameters are consid-
ered as below: elastic modulus E=19950 kgf/mm2,
Poisson’s ratio ν=0.27, initial crack length a=0.125

mm, loading σ=4.84 kgf/mm2, the constants of Paris
law C=4.624×10−12 and m=3.3, stress ratio R=2/3.

Fig. 8 (a) Boundary element mesh in case 2. (b) Finite element
mesh using CRAC2D elements in NASTRAN. (c) Finite
element mesh using CRAC3D elements in NASTRAN

Fig. 9  Deformed plot for case 2

Table 1  Stress intensity factors for case 1

FEM DBEM exact sol.

KI 6.255 6.817 6.635
Errors (%) 5.727 2.743

Table 2  Stress intensity factors for case 2

FEM-3D FEM-2D DBEM exact
sol.

No. of elements 18 18 18
No. of nodes 137 37 36

KI 2138 2021 2066 2077.5
Errors (%) 2.9 2.7 0.482

Fig. 10  Path of crack growth in case 2

Fig. 11  Definition sketch for a V-band structure



346 Journal of the Chinese Institute of Engineers, Vol. 23, No. 3 (2000)

Figs. 12(a) and (b) show the meshes of BEM
and FEM, respectively.  Fig. 13 is the deformed plot
for the V-band structure subjected to loading.  Also,
we can predict the path of crack growth in the V-band
joint structure which is shown in Fig. 14.  The stress
intensity factor by using the dual BEM and FEM are
shown in Table 3.  Although a little difference is found
between FEM (Chyuan and Liu, 1996) and DBEM, it
is acceptable in general engineering practice.

Case 4 Solid propellant motor with a stress reliever

Figure 15 shows a solid rocket motor with a
stress reliever.  In the previous paper (Chen and Leu,
1998), a stress analysis for the solid rocket motor has
been done.  The possible failure position was also
found at the area of maximum stress.  An initial crack
is assumed there.  In this case, the parameters are con-
sidered as below:  elastic modulus E=30000  kgf/mm2,
Poisson’s ratio ν=0.499, initial crack length a=1.0
mm, the constants of Paris law (Williams, 1984) C=6.
68×10−12 and m=2.75, stress ratio R=2/3.  A thermal
loading is applied. The change in temperature is 75°C

and the coefficient of thermal expansion is 6.645×
10−51/°C.  Fig. 16 shows the predicted path of crack
growth by using the dual BEM and the result matches
well with the NDT observation (Chen and Leu, 1998),
which is shown in Fig. 16.

VII. CONCLUSIONS

The dual boundary element method has been
used to solve crack problems with analytical solutions
and has been applied to crack problems of a V-band
structure and a solid rocket motor with a stress
reliever.  Results show that the DBEM provides high
solution accuracy and greatly simplifies the modeling.
DBEM involves modeling only on the boundary  with-
out introducing the artificial boundary which the
multi-zone method needs.  Only a single-domain ap-
proach can be achieved. Also, the path of the crack
growth was predicted.  The results have been com-
pared with FEM  solutions, analytical solutions, and
experimental data, and were found to be in accept-
able agreement.
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