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ABSTRACT

A nonsingular integral formulation for the Helmholtz eigen-
problem is developed in this paper.  This novel method  contains only
imaginary-part kernels instead of complex-part kernels in the complex-
valued BEM.  Based on the imaginary-part formulation without singu-
lar source, no singular or hypersingular integrals are present.  Although
this formulation avoids the computation of singular and hypersingular
integrals, this approach results in spurious eigensolutions.  After com-
paring the results from the dual formulation, the true and spurious so-
lutions can be separated.  An analytical example for the eigensolutions
of a two-dimensional circular domain is studied.  The continuous sys-
tem can be transformed to a discrete system with circulants.  Based on
the spectral properties of circulants, the true and spurious solutions for
the eigenvalues, boundary modes, interior modes and multiplicities are
all examined.  The possible failure of Hutchinson’s sorting technique
of looking at modal shapes is also discussed.

*Correspondence addressee

I. INTRODUCTION

Eigenvalues and eigenmodes are often encoun-
tered not only in vibration problems, but also in acous-
tic problems.  For the Helmholtz eigenproblems, it is
well known that the complex-valued boundary ele-
ment method (BEM) can determine the eigensolutions
by using direct determinant searching (De Mey,
1976). Nevertheless, complex-valued computation is
time consuming and not simple.  Tai and Shaw (1974)
solved the Helmholtz eigenproblem using real-part
formulation.  Also, a simplified method using only
real-part kernel was presented by De Mey (1977).
Since only the first eigenvalue was studied, the
spurious solutions were not discovered.  Also,

Hut-chinson replaced the complex-valued kernel with
a real-part one to solve plate and membrane vibra-
tion problems (Hutchinson, 1985, 1988, 1991).  He
found the spurious solutions and suggested an easy
and practical method to sort out spurious modes by
looking at the modal shapes.  But whether the tech-
nique may fail or not was not discussed.  Kamiya et
al. (1996) also found that MRM is no more than the
real part of complex-valued BEM.  The method, us-
ing only the real-part BEM, was found to be equiva-
lent to the multiple reciprocity method (MRM) if the
zeroth-order fundamental solution for MRM is cor-
rectly chosen (Yeih et al., 1997, Chen 1999).  Both
the real-part BEM and MRM result in spurious
eigensolutions for one-dimensional rods (Chen and
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Wong, 1997), beams (Yeih et al., 1999) and two di-
mensional cavities (Chen and Wong, 1999).  Numeri-
cal experiments using the real kernels were performed
for  two-dimensional cases with a degenerate bound-
ary  (Liou et al., 1999).  The relations among the con-
ventional MRM, the complete MRM, the real-part
BEM and the complex-valued BEM were discussed
by Chen (1999).  One advantage of using only the
real-part kernels is that real-valued computation is
employed instead of complex-valued computation as
used in the complex-valued BEM.  Another benefit
is that tedious derivation as required for the MRM
can be avoided.  However, three drawbacks of the real
formulation have been found to be the occurrence of
spurious eigenvalues (Chen and Wong, 1997, 1998;
Liou et al . ,  1999), singular and hypersingular
integrals, and failure when it is applied to problems
with a degenerate boundary (Chen and Wong, 1998;
Chen and Hong, 1999).  To deal with the first and
third problems at the same time, the framework of
the real-part “dual” BEM was constructed to filter
out  spurious eigenvalues and to avoid nonunique
solutions for problems with a degenerate boundary.
As for the second problem, to avoid singular and
hypersingular integrals, the indirect formulation
with fictitious boundary is one approach.  To find
another alternative method to avoid the singularity
problem without using fictitious boundary is the
main motivation of this paper.  This results in regu-
lar formulation with no-source auxilliary system.
Solving the eigenproblem in imaginary-part for-
mulation without singularity was the goal of this
study.

In this paper, we employ  the  imaginary-part
dual BEM to solve the acoustic problems of a circu-
lar domain.  This nonsingular formulation  results in
spurious solutions.  After assembling the dual equa-
tions for the circular boundary problem, the true and
spurious eigenvalues and eigenmodes can be exactly
predicted by using the analytical properties of
circulants.  Also, the true and spurious solutions for
boundary modes and multiplicities are both examined.
In addition, Hutchinson’s sorting technique for true
and spurious solutions by looking at  modal shapes is
addressed.

 II. IMAGINARY-PART DUAL INTEGRAL
FORMULATION FOR A TWO-DIMEN-
SIONAL ACOUSTIC CAVITY

The governing equation for an acoustic cavity
is the Helmholtz equation:

(∇2+k2){u(x)}=0, x∈D,

where ∇2 is the Laplacian operator, D is the domain

of the cavity and k is the wave number, which is the
angular frequency over the speed of sound.  The
boundary conditions considered here are either of the
Neumann or Dirichlet type.

Based on the complex-valued dual BEM (Chen
and Chen, 1998, Chen et al., 1999a, 1999c), the dual
boundary integral  equations for smooth boundary
points are

   πu(x) = C.P.V. T c(s,x)u(s)dB(s)
B

  – R.P.V. U c(s,x)t(s)dB(s)
B

,  x∈B, (1)

   πt(x) = H.P.V. Mc(s,x)u(s)dB(s)
B

  – C.P.V. L c(s,x)t(s)dB(s)
B

,  x∈B, (2)

where C.P.V., R.P.V. and H.P.V. denote the Cauchy
principal value, the Riemann principal value and

Hadamard principal value, respectively; t(s)=    ∂u(s)
∂n s

;

B denotes the boundary enclosing D.  The four ker-
nels in the complex-valued formulation for the two-
dimensional Helmholtz problem can be expressed
as

   
U c(s,x) =

– iπH 0
(1)(kr)

2
, (3)

   
T c(s,x) =

– kπi
2

H 1
(1)(kr)

y in i
r , (4)

   L c(s,x) =
kπi
2

H 1
(1)(kr)

y i n i
r , (5)

   
Mc(s,x) =

– kπi
2

{ – k
H 2

(1)(kr)

r 2
y iy jn i n j +

H 1
(1)(kr)
r n i n i} ,

(6)

where   H n
(1)(kr)  denotes the nth order of the first-kind

Hankel function; r is the distance between the source
point, s, and the field point x; ni is the ith component
of the outnormal vector at s;  n i  is the ith component
of the outnormal vector at x; and yi≡si−xi.  Although
the real-part kernel formulation can solve the prob-
lem in the real domain, both singular and hypersin-
gular integrals are encountered (Chen et al., 1999b).
Replacing the complex fundamental solutions with
imaginary-part kernels, we can avoid the problems
of singularity.  Therefore, we have

   
U I(s,x) = Imag{U c(s,x)} =

– πJ 0(kr)
2

, (7)
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T I(s,x) = Imag{T c(s,x)} =

– kπ
2

J 1(kr)
y in i

r , (8)

   
L I(s,x) = Imag{L c(s,x)} =

kπ
2

J 1(kr)
y i n i

r , (9)

   MI(s,x) = Imag{Mc(s,x)} =
kπ
2

{ – k
J 2(kr)

r 2
y iy jn i n j

  –
J 1(kr)

r n i n i} , (10)

where Jn(kr) denotes the nth order Bessel function of
the first kind, and Imag denotes the imaginary part.
Eqs. (1) and (2) are reduced to

  0 = T I(s,x)u(s)dB(s)
B

– U I(s,x)t(s)dB(s)
B

,  x∈B,   (11)

  0 = MI(s,x)u(s)dB(s)
B

– L I(s,x)t(s)dB(s)
B

,  x∈B,   (12)

where the complex kernels have been replaced by
imaginary-part kernels.  No free terms are present in
Eqs. (11) and (12).  Also, all the integrals are
nonsingular since there is no singularity in the imagi-
nary-part auxilliary system.  The properties are
shown in Table 1 which are different from those of
the real-part kernels in Table 2.  By employing the
constant element scheme, Eqs. (11) and (12) can be
discretized into the following linear algebraic
equations:

{TI(k)]{u}=[UI(k)]{u}, (13)

{MI(k)]{u}=[LI(k)]{u}, (14)

where the subscript “I” denotes imaginary part, and
[UI(k)], [TI(k)], [LI(k)] and [MI(k)] are the influence
matrices with the following elements

  U I
ij = U I(s j, x i)dB

B j

(s j) (15)

  T I
ij = T I(s j, x i)dB

B j

(s j) (16)

  L I
ij = U I(s j, x i)dB

B j

(s j) (17)

  MI
ij = MI(s j, x i)dB

B j

(s j) (18)

where xi denotes the ith collocation point, sj is the jth
integration element.  No singular or hypersingular in-
tegrals in Eqs. (15)~(18) can be found.

III. DUAL SERIES REPRESENTATION FOR
THE FOUR KERNELS

The four kernels in the dual formulation can be
represented by degenerate kernels using the dual se-
ries model (Chen, 1998) as follows:

   
U I(s,x) = Imag{

– iπH 0
(1)(kr)

2
}

   

=
U i(s,x) = – π

2
J m(kρ)J m(kR) cos(m(θ – φ))Σ

m = – ∞

∞
, R> ρ

U e(s,x) = – π
2

J m(kR)J m(kρ) cos(m(θ – φ))Σ
m = – ∞

∞
, ρ> R

(19)

   
T I(s,x) = Imag{

– iπ
2

∂H 0
(1)(kr)
∂R

}

   

=
T i(s,x) = – πk

2
J m(kρ)J m

′ (kR) cos(m(θ – φ))Σ
m = – ∞

∞
, R> ρ

T e(s,x) = – πk
2

J m
′ (kR)J m(kρ) cos(m(θ – φ))Σ

m = – ∞

∞
, ρ> R

(20)

Table 1. Properties of the imaginary-part kernels
in the dual formulation.

Kernal
function UI(s,x) TI(s,x) LI(s,x) MI(s,x)
K(s,x)
regularity 2D O(1) O(r) O(r) O(r2)
Density
function −t u −t u
µ(s)

where UI(s,x)=    – πJ 0(kr)
2

 for the Helmholtz equation.

Table 2. Properties of the real-part kernels in the
dual formulation.

Kernal
function UR(s,x) TR(s,x) LR(s,x) MR(s,x)
K(s,x)
Singularity 2D O(ln(r)) O(1/r) O(1/r) O(1/r2)
Density
function −t u −t u
µ(s)

where UR(s,x)=    πY 0(kr)
2

 for the Helmholtz equation.
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L I(s,x) = Imag{

– iπ
2

∂H 0
(1)(kr)
∂ρ }

   

=
L i(s,x) = – πk

2
J m

′ (kρ)J m(kR) cos(m(θ – φ))Σ
m = – ∞

∞
, R> ρ

L e(s,x) = – πk
2

J m(kR)J m
′ (kρ) cos(m(θ – φ))Σ

m = – ∞

∞
, ρ> R

(21)

   
MI(s,x) = Imag{

– iπ
2

∂2H 0
(1)(kr)

∂ρ∂R
}

   

=
Mi(s,x) = – πk 2

2
J m

′ (kρ)J m
′ (kR) cos(m(θ – φ))Σ

m = – ∞

∞
, R> ρ

Me(s,x) = – πk 2

2
J m

′ (kR)J m
′ (kρ) cos(m(θ – φ))Σ

m = – ∞

∞
, ρ> R

(22)

where x=(ρ, φ), s=(R, θ), ρ, R, θ and φ are defined in
Fig. 1.  It is found that the kernels for interior (R<ρ)
and exterior (R>ρ) domains are equal and all the po-
tentials across the boundary are continuous.

IV. ANALYTICAL STUDY OF  TRUE AND
SPURIOUS EIGENVALUES USING THE
IMAGINARY-PART DUAL BEM FOR A
CIRCULAR BOUNDARY

As mentioned earlier, spurious eigenvalues oc-
cur in the real-part or MRM formulations (Chen and
Wong, 1997, 1998, Chen et al., 1999b).  What hap-
pens for the imaginary-part BEM?  Here, we will de-
rive the analytical solution for the true and spurious
eigeneigenvalues of a circular domain by using the
dual series representation model.

If the direct method is employed for a circular
problem, the four imaginary-part  kernels can be sim-
plified into

   U I(s,x) = U(θ,φ) = – π
2

J m(kρ)J m(kρ) cos(m(θ – φ))Σ
m = – ∞

∞

(23)

   T I(s,x) = T(θ,φ) = – πk
2

J m
′ (kρ)J m(kρ) cos(m(θ – φ))Σ

m = – ∞

∞

(24)

   L I(s,x) = L(θ,φ) = – πk
2

J m(kρ)J m
′ (kρ) cos(m(θ – φ))Σ

m = – ∞

∞

(25)

   MI(s,x) = M(θ,φ) = – πk 2

2
J m

′ (kρ)J m
′ (kρ) cos(m(θ – φ))Σ

m = – ∞

∞

(26)

after substituting ρ for R in Eqs. (19)~(22).  By su-
perimposing 2N constant source distribution, u or t,
along the real boundary with radius ρ and collocat-
ing the 2N points on the real boundary with  radius ρ
for the direct method, we have

  [U] = [U i] = [U e]

  

=

a 0 a 1 a 2 a 2N – 2 a 2N – 1

a 2N – 1 a 0 a 1 a 2N – 3 a 2N – 2

a 2N – 2 a 2N – 1 a 0 a 2N – 4 a 2N – 3

a 1 a 2 a 3 a 2N – 1 a 0

(27)

  [T] = [T i] = [T e]

  

=

b 0 b 1 b 2 b 2N – 2 b 2N – 1

b 2N – 1 b 0 b 1 b 2N – 3 b 2N – 2

b 2N – 2 b 2N – 1 b 0 b 2N – 4 b 2N – 3

b 1 b 2 b 3 b 2N – 1 b 0

(28)

Fig. 1. (a) The definitions of ρ, θ, and R.  (b) The definitions of
ρ, θ, φ, a and R.
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  [L] = [L i] = [L e]

  

=

c 0 c 1 c 2 c 2N – 2 c 2N – 1

c 2N – 1 c 0 c 1 c 2N – 3 c 2N – 2

c 2N – 2 c 2N – 1 c 0 c 2N – 4 c 2N – 3

c 1 c 2 c 3 c 2N – 1 c 0

(29)

  [M] = [Mi] = [Me]

  

=

d 0 d 1 d 2 d 2N – 2 d 2N – 1

d 2N – 1 d 0 d 1 d 2N – 3 d 2N – 2

d 2N – 2 d 2N – 1 d 0 d 2N – 4 d 2N – 3

d 1 d 2 d 3 d 2N – 1 d 0

(30)

where the superscripts “i” and “e” denote the interior
and exterior domains, respectively, and [U], [T], [L]
and [M] are the influence matrices with the elements
shown below:

   
a m = U(θ,0)ρdθ

(m – 1
2

)∆θ

(m + 1
2

)∆θ
≈ U(θm,0)ρ∆θ ,

m=0, 1, 2, ..., 2N−1, (31)

   
b m = T(θ,0)ρdθ

(m – 1
2

)∆θ

(m + 1
2

)∆θ
≈ T(θm,0)ρ∆θ ,

m=0, 1, 2, ..., 2N−1, (32)

   
cm = L(θ,0)ρdθ

(m – 1
2

)∆θ

(m + 1
2

)∆θ
≈ L(θm,0)ρ∆θ ,

m=0, 1, 2, ..., 2N−1, (33)

   
d m = M(θ,0)ρdθ

(m – 1
2

)∆θ

(m + 1
2

)∆θ
≈ M(θm,0)ρ∆θ ,

m=0, 1, 2, ..., 2N−1, (34)

where ∆θ=   2π
2N

 and θm=m∆θ.  The matrices, [U], [T],

[L] and [M], are found to be in circulant forms since
rotation symmetry for the influence coefficients
exists.  By introducing the following bases for the
circulants (Golberg, 1991): I,   C 2N

1 ,   C 2N
2 , ...,   C 2N

2N – 1 ,
we can expand the four matrices into

  [U] = a 0I + a 1C 2N
1 + a 2C 2N

2 + + a 2N – 1C 2N
2N – 1 , (35)

  [T] = b 0I + b 1C 2N
1 + b 2C 2N

2 + + b 2N – 1C 2N
2N – 1 , (36)

  [L] = c 0I + c 1C 2N
1 + c 2C 2N

2 + + c 2N – 1C 2N
2N – 1 , (37)

  [M] = d 0I + d 1C 2N
1 + d 2C 2N

2 + + d 2N – 1C 2N
2N – 1 ,     (38)

where [I] is a unit matrix and

   

C 2N =

0 1 0 0 0
0 0 1 0 0

0 0 0 0 1
1 0 0 0 0

2N × 2N

. (39)

Based on the similar  properties of the matrices of
[U], [T], [L], [M] and [C2N], the eigenvalues can be
derived as shown below:

   λ = a 0 + a 1α + a 2α2 + + a 2N – 1α2N – 1 ,

=0, ±1, ±2, ..., ±(N−1), N, (40)

   µ = b 0 + b 1α + b 2α2 + + b 2N – 1α2N – 1 ,

=0, ±1, ±2, ..., ±(N−1), N, (41)

   ν = c 0 + c 1α + c 2α2 + + c 2N – 1α2N – 1 ,

=0, ±1, ±2, ..., ±(N−1), N, (42)

   δ = d 0 + d 1α + d 2α2 + + d 2N – 1α2N – 1 ,

=0, ±1, ±2, ..., ±(N−1), N, (43)

where  λ ,  µ ,  ν  and δ  are eigenvalues for [U], [T],
[L] and [M], respectively, and  α  are the eigenvalues
for the matrix [C2N].  It is easily found that the
eigenvalues, αn, and eigenvectors, {φ}n, for the
circulants [C2N] are the roots for α2N=1 as shown
below:

   αn = e       , n=0, ±1, ±2, ..., ±(N−1), N

or n=0, 1, 2, ..., 2N−1, (44)

   

{φ}n =

1

αn

αn
2

αn
3

αn
2N – 1

,  n=0, ±1, ±2, ..., ±(N−1), N

or n=0, 1, 2, ..., 2N−1, (45)

   i 2πn
2N
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respectively.
Substituting Eq. (44) into Eq. (40), we have

   
λ = a mαmΣ

m = 0

2N – 1

= a me
i 2π
2N

mΣ
m = 0

2N – 1

,

=0, ±1, ±2, ..., ±(N−1), N. (46)

According to the definition for am in Eq. (31), we
have

am=a2N−m, m=0, 1, 2, ..., 2N−1. (47)

Substituting Eq. (47) into Eq. (46), we have

   
λ = a 0 + ( – 1) a N + (αm + α2N– m)a mΣ

m = 1

N – 1

   
= cos(m ∆θ)a m .Σ

m = 0

2N – 1

(48)

Substituting am in Eq. (31) into Eq. (48), we have

   
λ ≈ cos(m ∆θ)U(m ∆θ,0)ρ∆θΣ

m = 0

2N – 1

   
= cos( θ)U(θ,0)ρdθ

0

2π
(49)

as N approaches infinity.  Eq. (49) reduces to

   
λ = cos( θ)

0

2π – π
2

J m(kρ)J m(kρ)cos mθρdθΣ
m = – ∞

∞

   = – π 2ρJ (kρ)J (kρ) . (50)

Similarly, we have

   µ = – π 2kρJ ′(kρ)J (kρ) (51)

   ν = – π 2kρJ (kρ)J ′(kρ) (52)

   δ = – π 2k 2ρJ ′(kρ)J ′(kρ) (53)

where  µ ,  ν , δ  are the eigenvalues of [T], [L] and
[M] matrices, respectively.  Since the wave number k
is imbedded in each element of the circulant matrices,
the corresponding eigenvalues for the four matrices
are also functions of k.  Finding the eigenvalues for
the Helmholtz eigenproblem or finding the zeros for
the determinant of the circulants is equal to finding
the zeros for the multiplication of all their eigen-
values.  The determinant can be obtained as follows:

det[U]=λ0λN(λ1λ2...λN−1)(λ−1λ−2...λ−(N−1)), (54)

det[T]=µ0µN(µ1µ2...µN−1)(µ−1µ−2...µ−(N−1)), (55)

det[L]=ν0νN(ν1ν2...νN−1)(ν−1ν−2...ν−(N−1)), (56)

det[M]=δ0δN(δ1δ2...δN−1)(δ−1δ−2...δ−(N−1)), (57)

Since the alternating properties for the Bessel func-
tion can be obtained, i.e.,

   J – (kρ) = (– 1) J (kρ) , ∈ N , (58)

   J –
′ (kρ) = (– 1) J ′(kρ) , ∈ N , (59)

Eqs. (54)~(57) can be reduced to

det[U]=λ0(λ1λ2...λN−1)2λN. (60)

det[T]=µ0(µ1µ2...µN−1)2µN. (61)

det[L]=ν0(ν1ν2...νN−1)2νN. (62)

det[M]=δ0(δ1δ2...δN−1)2δN. (63)

The square terms in Eqs. (60)~(63) imply that double
roots occur for  λ  when =1, 2, ..., N−1.  In order to
verify that either    J (kρ)=0 or    J ′(kρ)=0 is a true
eigenequation, the dual formulation is needed to dis-
tinguish the true and spurious solutions.

The possible  (true or spurious) eigenvalues oc-
cur at

   J (kρ)J (kρ) = 0 ,  =0, ±1, ±2, ..., ±(N−1), N. (64)

for the Dirichlet problem using the UT method since
the  determinant of [U] matrix is zero.

For the LM  method, the possible (true or
spurious) eigenvalues occur at

   J (kρ)J ′(kρ) = 0 , =0, ±1, ±2, ..., ±(N−1), N. (65)

for the Dirichlet problem since the determinant of [L]
matrix is zero.

After comparing the results from the dual for-
mulation in Eqs. (64) and (65), we can determine the
true and spurious eigenequation for the Dirichlet prob-
lem as follows:

True eigenequation:

   J (kρ) = 0 , =0, ±1, ±2, ..., ±(N−1), N. (66)

Spurious eigenequation:

   J ′(kρ) = 0 , =0, ±1, ±2, ..., ±(N−1), N. (67)

Similarly, we can extend the Dirichlet problem to the
Neumann problem.

After comparing the results obtained by the dual
formulat ion,  we can summarize the spurious
eigenequations for both the Dirichlet and Neumann
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problems:

   J (kρ) = 0  using the UT quation, (68)

   J ′(kρ) = 0  using the LM equation, (69)

The true eigenequations using the UT or LM method
are found to be:

   J (kρ) = 0  for the Dirichlet problem, (70)

   J ′(kρ) = 0  for the Neumann problem. (71)

The above results are summaized in Table 3.  The
true and spurious solutions using real-part kernels are
also included in the table for comparison.  For the
special case of the one-dimensional rod problem, the
true and spurious solutions subjected to different
boundary conditions using the real and imaginary-part

kernels are shown in Table 4.  Table 3 indicates that
spurious solution depends on the chosen method, the
UT or LM formulation, and true solution depends on
the types of the boundary conditions, the Dirichlet or
Neumann problem.  After determining the eigen-
values, the boundary modes are our concern.  It is
interesting to find that both the true and spurious
boundary modes are found to be the same as shown
in Eq. (45) since the matrices are both similar to the
circulant in Eq. (39).  That is to say, looking at the
boundary modes may mislead the judgement for true
and spurious solutions.  For example, Fig. 2 shows
that the true and spurious boundary modes are the
same.  Fig. 3 shows that the nodal lines for the true
and spurious interior modes look similar.  However,
the spurious eigenvalues for the Dirichlet problem
using the UT method are the same as true eigenvalues.
This means that the true multiplicity is changed to
spurious multiplicity of double value.  For the case

Table 3. The true and spurious eigenequations for a two-dimensional circular cavity under Dirichlet and
Neumann boundary conditions using the dual formulations.

Interior Dirichlet problem Interior Neumann problem

Kernels True eigenequation Spurious eigenequation True eigenequation Spurious eigenequation

UC, TC Jn(ka)=0 ×    J n
′ (ka)=0 ×

LC, MC Jn(ka)=0 ×    J n
′ (ka)=0 ×

UR, TR Jn(ka)=0 Yn(ka)=0    J n
′ (ka)=0 Yn(ka)=0

LR, MR Jn(ka)=0    Y n
′ (ka)=0    J n

′ (ka)=0    Y n
′ (ka)=0

UI, TI Jn(ka)=0 Jn(ka)=0    J n
′ (ka)=0 Jn(ka)=0

LI, MI Jn(ka)=0    J n
′ (ka)=0    J n

′ (ka)=0    J n
′ (ka)=0

where n=0, 1, 2, 3, ....

Table 4. The true and spurious eigenequations for a one-dimensional rod under Dirichlet and Neumann
boundary conditions using the dual formulations.

Interior Dirichlet problem (u(0)=0, u(1)=0) Interior Neumann problem (t(0)=0, t(1)=0)

Kernels True eigenequation Spurious eigenequation True eigenequation Spurious eigenequation

UC, TC sin  λ =0 × sin  λ =0 ×
LC, MC sin  λ =0 × sin  λ =0 ×
UR, TR sin  λ =0 sin  λ =0 sin  λ =0 sin  λ =0
LR, MR sin  λ =0 sin  λ =0 sin  λ =0 sin  λ =0
UI, TI sin  λ =0 sin  λ =0 sin  λ =0 sin  λ =0
LI, MI sin  λ =0 sin  λ =0 sin  λ =0 sin  λ =0

Interior mixed problem (u(0)=0, u(1)=0) Interior mixed problem (u(1)=0, t(0)=0)

Kernels True eigenequation Spurious eigenequation True eigenequation Spurious eigenequation

UC, TC cos  λ =0 × cos  λ =0 ×
LC, MC cos  λ =0 × cos  λ =0 ×
UR, TR cos  λ =0 sin  λ =0 cos  λ =0 sin  λ =0
LR, MR cos  λ =0 sin  λ =0 cos  λ =0 sin  λ =0
UI, TI cos  λ =0 sin  λ =0 cos  λ =0 sin  λ =0
LI, MI cos  λ =0 sin  λ =0 cos  λ =0 sin  λ =0

where λ=k2, UR(s,x)=   sin(kr)
2k

 and UI(s,x)=   – cos(kr)
2k

.
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of =0, true multiplicity of one will be changed to
two of spurious multiplicity.  For the case of ≠0,
true multiplicity of two will be changed to four of
spurious multiplicity.  In the same way, we can ex-
tend the results to a Neumann problem when the LM
method is used.

V. ANALYTICAL DERIVATIONS FOR TRUE
AND SPURIOUS INTERIOR MODE

After we obtain the eigenvalues, boundary
modes for the Dirichlet problem, we can derive the
interior mode by using the real-part formulation (Chen
et. al., 1999b) as shown below:

   
u n(a, φ) = – U a( ∆θ – φ, 0) t nρ∆θΣ

= 0

2N – 1

   
= – U a( ∆θ – φ, 0)cos( n∆θ)Σ

= 0

2N – 1

ρ∆θ

   
= – U a(θ – φ, 0)cos(nθ)ρdθ

0

2π

   
= –

0

2π π
2

J m(ka)Y m(kρ)cos(m(θ – φ))cos(nθ)ρdθΣ
m = – ∞

∞

   = – π 2ρJ n(ka)Y n(kρ)cos(nφ) ,  0<a<ρ, 0<φ<2π (72)

where the real part for the th component,   t n  in the
eigenvector {φ}n of Eq. (45) is adopted.  If the sine
part of the eigenvector in Eq. (45) is chosen, the inte-
rior mode  becomes

un(a,φ)=−π2ρJn(ka)Yn(kρ)sin(nφ),

0<a<ρ, 0<φ<2π. (73)

Eq. (72) shows the interior modes when k represents
the true eigenvalues for the Dirichlet problems
which satisfy Jn(kρ)=0 as shown in Eq. (66).  Also,

Fig. 3. The true and spurious interior modes.

Fig. 2. The true and spurious boundary modes.

(a) True  boundary mode t(θ)=cos2θ for the Dirichlet problem.

(b) Spurious  boundary mode t(θ)=cos2θ for the Dirichlet problem.

(a) Spurious  interior mode u2(a,φ)=J1(3.0542a)cos2φ

(b) True  interior mode u2(a,φ)=J2(5.1356a)cos2φ
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Eq. (72) shows the spurious modes when k represents
the spurious eigenvalues which satisfy Jn(kρ)=0 as
shown in Eq. (68).  However, the true mode can be
normalized as

   
u n(a, φ) =

u n(a, φ)

– π 2ρY n(kρ)
= J n(ka)cos(nφ) , (74)

where    u n(a, φ)  is a normalized mode,
If the LM method for the Dirichlet problem is

applied, the interior mode is

un(a,φ)=−π2ρJn(ka)Yn(kρ)cos(nφ),

0<a<ρ, 0<φ<2π. (75)

It is found that the modal shapes are the same using
UT and LM methods after comparing Eqs. (72) and
(75).  However, their spurious eigenequations are not
the same as shown in Eqs. (64) and (65).  The spuri-
ous modes are obtained by substituting the spurious
eigenvalues (    J n

′ (kρ)=0) into Eq. (75), while the true
modes are obtained by substituting the true eigenval-
ues (Jn(kρ)=0) into Eq. (75).  After normalization with
respect to Yn(kρ), the true and spurious modes are
shown in Fig. 3 for n=2.  Fig. 3 indicates that the
nodal lines for the true and spurious modes are the
same.  Nevertheless, the true and spurious modes are
quite different since the values of k are not the same
(one is true and the other is spurious).  This finding
warns us that Hutchinson’s sorting technique by look-
ing at the modal shapes may mislead us to make a
wrong judgement for true and spurious solutions.

For the Neumann problem, we have

   
u n(a,φ) =

0

2π kπ
2

J m(ka)Y m
′ (kρ)cos(m(θ – φ))cos(nθ)ρdθΣ

m = – ∞

∞

   = π 2kρJ n(ka)Y n
′ (kρ)cos(nφ) ,  0<a<ρ, 0<φ<2π, (76)

using the direct UT method.  Eq. (76) shows the inte-
rior modes when k is true eigenvalue for the Neumann
problems which satisfies    J n

′ (kρ)=0. Eq.(76) shows the
spurious modes when k represents spurious eigenval-
ues which satisfy Jn(kρ)=0.  However, the true modes
can be normalized as

   
u n(a, φ) =

u n(a, φ)

π 2kρY n
′ (kρ)

= J n(ka)cos(nφ) , (77)

where    u n(a, φ)  is a normalized mode.  In the same
way, the nodal lines for true and spurious modes are
found to be the same.  Also, their modes (true or
spurious) are not  exactly the same.  Hutchinson’s
sorting technique by examining the modal shapes may
fail to separate the true and spurious solutions.

If the LM method is employed to solve the
Neumann problem, we have

   u n(a, φ) = π 2kρJ n(ka)Y n
′ (kρ)cos(nφ) ,

0<a<ρ, 0<φ<2π. (78)

It is found that the modal shapes are the same
using the UT and LM methods.  Since the true and
spurious eigenequations are the same to    J n

′ (kρ)=0 as
shown in Eqs. (69) and (71), this also results in spu-
rious multiplicity.  However, the normalized modes
are

   
u n(a, φ) =

u n(a, φ)

π 2ρY n
′ (kρ)

= J n(ka)cos(nφ) (79)

where    u n(a, φ)  is a normalized mode.  The eigene-
quation, boundary modes and interior modes for the
Dirichlet and Neumann problems using the direct UT
or LM methods are summarized in Tables 5 and 6,
respectively.  Both the normalized and unnormalized
solutions are included.

Table 5. The true and spurious systems for the Dirichlet problem (u=0) using the imaginary-part UT and
LM BEMs.

Eigenmode Eigenmode (interior): un(a,φ) (unnormalized)
Eigenequation

(boundary) Eigenmode (interior):    u n(a,φ) (normalized)

un(a,φ)=−π2ρJn(ka)Yn(kρ)cos(nφ)*
UT True Jn(kρ)=0 einθ    u n(a,φ) =Jn(ka)cos(nφ)**

un(a,φ)=−π2ρJn(ka)Yn(kρ)cos(nφ)***
method Spurious Jn(kρ)=0 einθ    u n(a,φ) =Jn(ka)cos(nφ)**

un(a,φ)=−π2ρJn(ka)Yn(kρ)cos(nφ)*
LM True Jn(kρ)=0 einθ    u n(a,φ) =Jn(ka)cos(nφ)**

un(a,φ)=−π2ρJn(ka)Yn(kρ)cos(nφ)***
method Spurious  J n

′ (kρ)=0 einθ    u n(a,φ) =Jn(ka)cos(nφ)**

“*” denotes the notrivial solution, “**” denotes the nontrivial solution after normalization and “***” denotes
the trivial solution without normalization
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VI. CONCLUDING REMARKS

In this paper, a nonsingular integral formulation
for the Helmholtz eigenproblem  was proposed using
only imaginary-part kernels instead of complex
kernels.  Since there is no source in the auxilliary
system, only regular integrals are  encountered.  An
analytical example for a circular domain is studied
by using the dual series model.  Based on the analyti-
cal properties of the circulants, the true and spurious
eigensolutions can be distinguished after comparing
the eigenequations obtained from the dual formu-
lation.  Also, the possible failure of Hutchinson’s
sorting technique for spurious solutions is discussed
and the spurious multiplicity is examined.  These re-
sults provide the basis for comparison with further
numerical studies.
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