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ABSTRACT 

Spurious eigensolutions in the boundary integral equa- 
tion (BIE) or boundary element method (BEM) for doubly- 
connected domain problems, the eccentric and annular mem-
branes, are studied analytically and numerically in this paper.  
For the mathematical analysis, we employ the null-field inte-
gral equation, the degenerate kernels and the Fourier series to 
prove the existence of spurious eigensolutions in the continuous 
system.  Examples of eccentric case, annular membrane and 
general shape are solved by using the null-field equation ap-
proach and BEM, respectively.  Based on the numerical ex-
periment, computer-assisted proof for the existence of spuri-
ous eigenvalues in companion with the trivial outer boundary 
data is given.  The spurious eigenvalue is found to be the true 
eigenvalue of a circular membrane with the inner radius.  The 
SVD structure for the four influence matrices is examined.  
Also, the trivial outer boundary densities are found in case of 
spurious eigenvalues and are shown in the bar chart. 

I. INTRODUCTION 

Rank deficiency in BIEM or BEM appears in the spurious 
eigensolution for the Helmholtz problems [3, 6, 8] as well as 
degenerate scales in Laplace problems [5, 9].  Spurious eigen- 
solution and fictitious frequency stem from non-uniqueness 
problems.  They appear in different aspects in computational 
mechanics.  First of all, hourglass modes in the finite element 
method (FEM) using the reduced integration occur due to rank 
deficiency [18].  Also, loss of divergence-free constraint for 

the incompressible elasticity also results in spurious modes.  In 
the other side of numerical solution for the differential equa-
tion using the finite difference method (FDM), the spurious 
eigenvalue also appears due to discretization [12, 14, 21].  In 
the real-part BEM [4, 15] or the multiple reciprocity method 
(MRM) formulation [10, 11, 19, 20], spurious eigensolutions 
occur in solving eigenproblems.  Even though the complex- 
valued kernel is adopted, the spurious eigensolution also oc-
curs for the multiply-connected problem [8] as well as the 
appearance of fictitious frequency for the exterior acoustics 
[2].  In the recent work, Chen et al. [3, 6, 8] investigated the 
spurious eigenvalue for the multiply connected (annular) prob- 
lems by using the degenerate kernels, the Fourier series and 
the null-field integral equation in a continuous system, using 
the degenerate kernels and circulant in a discrete system.  
Kuttler [16] used a conformal mapping by using the power 
method for lower bounds and Rayleigh-Ritz method for upper 
bounds for the eccentric annulus problem.  In this paper, an 
annular region and eccentric case are considered for the ei-
genequation in both continuous and discrete systems.  How-
ever, rigorous proof for the existence of the spurious eigen-
solutions for eccentric membrane was not studied before.  A 
computer assisted proof will be done here. 

In this paper, we focus on the analytical study for the exis-
tence of spurious eigenvalue for eccentric membranes in BIEM.  
The occurring mechanism of spurious eigenvalue is studied 
analytically by using the degenerate kernels and the Fourier 
series in the null-field integral equation and is verified nu-
merically from the bar chart of unitary vector of SVD [7, 13].  
Three treatments, the SVD updating term, the Burton & Miller 
method [1] and the CHIEF concept (Combined Helmholtz 
Interior integral Equation Formulation) [17] have been applied 
to filter out the spurious solution.  This paper will focus on two 
points.  One is the proof of existence for the spurious eigen-
solution of eccentric membranes.  The other is to show the 
trivial outer boundary mode in the bar chart.  Numerical ex-
amples by changing the eccentricity are considered to see how 
spurious eigenvalue change.  The SVD structures for the four 
influence matrices in dual BEM are also examined.  The re-
sults are also compared with those of BEM.  Besides, a general 
shape problem is solved by using BEM. 
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II. DERIVATION OF THE OCCURRING 
MECHANISM OF SPURIOUS EIGENVALUES 

1. Problem Statement 

The governing equation of the membrane problem is the 
Helmholtz equation 

 2 2( ) ( ) 0, ,Ik u x x D∇ + = ∈  (1) 

where ∇2, k and DI are the Laplacian operator, the wave 
number, and the domain of interest, respectively.  The eccen-
tric problem is shown in Fig. 1. 

2. Dual Boundary Integral Formulation – the Conventional 
BEM Version 

The dual boundary integral equations of the domain point 
are shown below: 

 2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( ), ,I

B B
u x T s x u s dB s U s x t s dB s x Dπ = − ∈∫ ∫  

  (2) 

 2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( ), ,I

B B
t x M s x u s dB s L s x t s dB s x Dπ = − ∈∫ ∫   

  (3) 

where s and x are the source and field points, respectively, t(s) 
is the directional derivative of u(s) along the outer normal 
direction at s.  The kernel function U(s,x) is the fundamental 
solution which satisfies 

 2 2( ) ( , ) ( ),k U x s x sδ∇ + = −  (4) 

where δ(x – s) denotes the Dirac-delta function, U(s,x), T(s,x), 
L(s,x) and M(s,x) represent the four kernel functions [3, 6, 8] 
as  
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Fig. 1.  A fixed-fixed membrane with one circular hole of radius 0.5 m. 

 

where (1) ( )nH kr  is the nth order Hankel function of the first 

kind, i 2 = –1, r = |x – s|, yi = si – xi, ni and in  are the i th com-

ponents of the outer normal vectors at s and x, respectively.  
Equations (2) and (3) are referred to singular and hypersin-
gular boundary integral equations (BIEs), respectively.  By 
moving the field point x to the boundary, the dual boundary 
integral equations for the boundary point can be obtained as 
follows: 

( ) . . . ( , ) ( ) ( ) . . . ( , ) ( ) ( ),
B B

u x C PV T s x u s dB s R PV U s x t s dB sπ = −∫ ∫
 ,x B∈  (9) 

( ) . . . ( , ) ( ) ( ) . . . ( , ) ( ) ( ),
B B

t x H PV M s x u s dB s C PV L s x t s dB sπ = −∫ ∫
 ,x B∈  (10) 

where R.P.V. is the Riemann principal value, C.P.V. is the 
Cauchy principal value and H.P.V. is the Hadamard (or call 
Mangler) principal value.  By moving the field point to the 
complementary domain, the dual boundary integral equations 
for the boundary point can be obtained as follows: 

0 ( , ) ( ) ( ) ( , ) ( ) ( ), ,c

B B
T s x u s dB s U s x t s dB s x D= − ∈∫ ∫  (11) 

0 ( , ) ( ) ( ) ( , ) ( ) ( ), ,c

B B
M s x u s dB s L s x t s dB s x D= − ∈∫ ∫  (12) 

where the Dc denotes the complementary domain. 

3. Null-Field Integral Formulation – the Present Version 

By introducing the degenerate kernels, the collocation point 
can be located on the real boundary without facing the prin-
cipal value.  Therefore, the representations of integral equa-
tions including the boundary can be written as 

2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( ), ,I

B B
u x T s x u s dB s U s x t s dB s x D Bπ = − ∈ ∪∫ ∫

  (13) 

2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( ), ,I

B B
t x M s x u s dB s L s x t s dB s x D Bπ = − ∈ ∪∫ ∫

  (14) 
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and 

 0 ( , ) ( ) ( ) ( , ) ( ) ( ), ,C

B B
T s x u s dB s U s x t s dB s x D B= − ∈ ∪∫ ∫  

  (15) 

0 ( , ) ( ) ( ) ( , ) ( ) ( ), ,C

B B
M s x u s dB s L s x t s dB s x D B= − ∈ ∪∫ ∫   

  (16) 

once the kernel is expressed in terms of an appropriate de-
generate form.  It is found that the collocation point is cate-
gorized to the three regions, domain (Eqs. (2)-(3)), boundary 
(Eqs. (9)-(10)) and complementary domain (Eqs. (11)-(12)) in 
the conventional formulation.  After using the degenerate kernel 
for the null-field BIEM, Eqs. (13)-(14) and (15)-(16) can 
contain the boundary point.  The U, T, L and M kernel, can be 
expressed in terms of degenerate kernels as shown below [3, 
6, 8]: 

0

0

( , ) ( ) ( ) ( )
2

cos( ( )), ,
( , )

( , ) ( ) ( ) ( )
2

cos( ( )), ,

I n
n n n

n

E n
n n n

n

U s x iJ kR Y kR J k

n R
U s x

U s x iJ k Y k J kR

n R

ε π ρ

θ φ ρ
ε π ρ ρ

θ φ ρ

∞

=

∞

=


= − +   


 − ≥= 
 = − +  


− <

∑

∑
 (17) 

0

0

( , ) ( ) ( ) ( )
2

cos( ( )), ,
( , )

( , ) ( ) ( ) ( )
2

cos( ( )), ,

I n
n n n

n

E n
n n n

n

k
T s x iJ kR Y kR J k

n R
T s x

k
T s x iJ k Y k J kR

n R

ε π ρ

θ φ ρ
ε π ρ ρ

θ φ ρ

∞

=

∞

=

 ′ ′= − +   

 − >= 
 ′= − +  


− <

∑

∑
(18) 

0

0

( , ) ( ) ( ) ( )
2

cos( ( )), ,
( , )

( , ) ( ) ( ) ( )
2

cos( ( )), ,

I n
n n n

n

E n
n n n

n

k
L s x iJ kR Y kR J k

n R
L s x

k
L s x iJ k Y k J kR

n R

ε π ρ

θ φ ρ
ε π ρ ρ

θ φ ρ

∞

=

∞

=

 ′= − +   

 − >= 
 ′ ′= − +  


− <

∑

∑
(19) 

2

0

2

0

( , ) ( ) ( ) ( )
2

cos( ( )), ,
( , )

( , ) ( ) ( ) ( )
2

cos( ( )), ,

I n
n n n

n

E n
n n n

n

k
M s x iJ kR Y kR J k

n R
M s x

k
M s x iJ k Y k J kR

n R

ε π ρ

θ φ ρ
ε π ρ ρ

θ φ ρ

∞

=

∞

=


′ ′ ′= − +   


 − ≥= 
 ′ ′ ′= − +  


− <

∑

∑
(20) 

where Jn, Yn, nJ ′  and nY ′  are the first-kind and second-kind 

Bessel functions of the nth order and their derivatives, the 
superscripts of I and E denote the interior and exterior cases 
for the expressions of kernel, respectively, and εn is the Neu-
mann factor. 
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 (21) 

It is noted that the degenerate kernels of T and L expres-
sions for ρ = R are not given since it is not continuous across 
the boundary. 

III. PROOF OF EXISTENCE FOR THE 
SPURIOUS EIGENSOLUTION OF THE 

ANNULAR MEMBRANE 

In order to fully utilize the geometry of circular boundary, 
the potential u and its normal derivative t can be approximated 
by employing the Fourier series.  Therefore, we obtain 

 1 1, 1, 1
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0
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=

= + ∈∑  (25) 

where θ is the polar angle, ai,n, bi,n, pi,n and qi,n (i = 1, 2) are the 
Fourier coefficients on Bi  (i = 1, 2).  When the field point is 
located on the inner boundary B1, substitution of (22)-(25) into 
the dual null-field integral equations yields, 
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When the field point is located on the outer boundary B2, 
substitution of (22)-(25) into the dual null-field integral equa-
tion yields, 
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For the Dirichlet problem, an annular case with radii a and 
b is shown in Fig. 1.  Equation (26) is reduced to 
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According to (30), the Fourier coefficients a1,n, b1,n, a2,n and 
b2,n satisfy the relations: 
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and (28) is reduced to 
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Similarly, we obtain the relations among a1,n, b1,n, a2,n and 
b2,n as follows: 
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To seek the nontrivial data for the Fourier coefficient of a1,n, 
b1,n, a2,n and b2,n we obtain the eigenequation: 

 ( )[ ( ) ( ) ( ) ( )] 0.n n n n nJ ka J kb Y ka J ka Y kb− =  (36) 

The first term (Jn(ka) = 0) in (36) is the spurious eigenequa- 
tion, it is also the true eigenequation of a circular membrane 
subject to the fixed boundary condition.  The latter part in the 
bracket is the true eigenequation, 

 ( ) ( ) ( ) ( ) 0.n n n nJ kb Y ka J ka Y kb− =  (37) 

For the Neumann problem, Eq. (26) is reduced to 
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Table 1.  Eigensolutions and boundary modes for the annular membrane subject to different boundary conditions. 

 
 
 
 
 

BC 
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Fixed-fixed 

1 2 0u u= =  
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1 2 0t u= =  
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2 2
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n

aJ ka
a p

bJ kb

′
=  2, 1,

( )

( )
n

n n
n

aJ ka
p a

bJ kb
=

′
 2, 1,

( )

( )
n

n n
n

aJ ka
p p

bJ kb

′
=

′
 

 
According to (38), the Fourier coefficients, a1,n, b1,n, a2,n 

and b2,n satisfy the relations: 
 

2, 1,

( )[ ( ) ( )]
, 0, 1, 2, ,

( )[ ( ) ( )]
n n n

n n
n n n

aJ ka Y ka iJ ka
p p n

bJ ka Y kb iJ kb

′ ′−
= − =

′ ′−
�  (39) 

 

2, 1,

( )[ ( ) ( )]
, 0, 1, 2, ,

( )[ ( ) ( )]
n n n

n n
n n n

aJ ka Y ka iJ ka
q q n

bJ ka Y kb iJ kb

′ ′−
= − =

′ ′−
�  (40) 

Equation (28) is reduced to 

 

1 2

2

0

1, 1,

2

0

2, 2,

2

( , ) ( ) ( ) ( , ) ( ) ( )

( )[ ( ) ( )]
2

( cos ) sin )

( )[ ( ) ( )]
2

( cos ) sin )

0, .

E E

B B

n
n n n

n

n n

n
n n n

n

n n

T s x u s dB s T s x u s dB s

aJ ka Y kb iJ kb

p n q n

bJ kb Y kb iJ kb

p n q n

x B

ε π

θ θ
ε π

θ θ

∞

=

∞

=

+

′= −

+

′+ −

+
= ∈

∫ ∫

∑

∑

 (41) 

Similarly, we obtain the relations among a1,n, b1,n, a2,n and 
b2,n as follows: 

2, 1,

( )[ ( ) ( )]
, 0, 1, 2, ,

( )[ ( ) ( )]
n n n

n n
n n n

aJ ka Y kb iJ kb
p p n

bJ kb Y kb iJ kb

′ −
= − =

′ −
�  (42) 

 

2, 1,

( )[ ( ) ( )]
, 0, 1, 2, .

( )[ ( ) ( )]
n n n

n n
n n n

aJ ka Y kb iJ kb
q q n

bJ kb Y kb iJ kb

′ −
= − =

′ −
�  (43) 

To seek the nontrivial data for the Fourier coefficient of a1,n, 
b1,n, a2,n and b2,n, we obtain the eigenequation: 

 ( )[ ( ) ( ) ( ) ( )] 0.n n n n nJ ka J kb Y ka J ka Y kb′ ′ ′ ′− =  (44) 

The first term (Jn(ka) = 0) is the spurious eigenequation, 
which is also the true eigenequation of circular membrane 
subject to the fixed boundary condition.  The latter part in the 
bracket is the true eigenequation, 

 ( ) ( ) ( ) ( ) 0.n n n nJ kb Y ka J ka Y kb′ ′ ′ ′− =  (45) 

The spurious eigenequation and true eigenequation of the 
annular membrane subject to various boundary conditions are 
listed in Table 1.  It is interesting to find that spurious eigen-
value of UT singular method results in trivial outer boundary 
modes for the fixed-fixed case.  Besides, spurious eigenvalue 
of LM hypersingular method results in the trivial outer bound- 
ary modes for the free-free case. 

1B

 2B
a 

 
b 
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IV. PROOF OF THE EXISTENCE FOR THE 
SPURIOUS EIGENSOLUTION OF THE 

ECCENTRIC MEMBRANE 

1. Dirichlet Problem by Using the Singular (UT )  

 Formulation  

In order to prove that the spurious eigensolution of eccen-
tric membrane subject to the Dirichlet boundary condition 
satisfies the BIE by collocating the inner and outer boundary 
points, we first derive the true eigensolution of a circular 
membrane. 

Now, we consider the circular fixed membrane with a ra-
dius a in the continuous system.  By using the null-field inte-
gral equation and collocating the point on the boundary for the 
UT singular formulation, we obtain the eigenequation, 

 [ ( ) ( )] ( ) 0.n n niJ ka Y ka J ka− + =  (46) 

The true eigenequation is 

 ( ) 0,nJ ka =  (47) 

and the corresponding true eigenmode are 

 ,n

n

a

b

 
 
 

 (48) 

where an and bn are the Fourier coefficients on the circular 

boundary and 2 2 0.n na b+ ≠   By collocating the point in the 

complementary domain (xc ∈ Dc) as shown in Fig. 2, the 
null-field equation yields 

 
1

0 ( , ) ( ) ( ), ,E c c c

B
U s x t s dB s x D= ∈∫  (49) 

where ( )
0

( ) cos( ) sin( )n n
n

t s a n b nθ θ
∞

=

= +∑ .  For any point xc ∈ 

Dc, we obtain the null-field response for xc at the location ac as 
shown below 

 [ ( ) ( )] ( )( cos sin ) 0,c c
n n n n niJ ka Y ka J ka a n b nθ θ− + + =  

 n = 0, 1, 2, 3, …, (50) 

since k satisfies Jn(ka) = 0. 
Secondly, we consider the eccentric case subject to the 

fixed-fixed boundary condition as shown in Fig. 3.  To satisfy 
(26) and (28) of BIE model, we need to seek a nontrivial 
boundary mode for (a1,n, b1,n, a2,n, b2,n).  By selecting a non-
trivial boundary mode for the Jn(ka) = 0, computer-assisted 
experiment inspires us to choose 

xc

a

ac

B1

 
Fig. 2.  A circular fixed membrane of collocating point (ac). 

 

a –

xc

b

a

 
Fig. 3.  An eccentric case of collocating point (a�). 

 

 

1,

1,

2,

2,

.
0

0

n n

n n

n

n

a a

b b

a

b

   
   
   =   
   
     

 (51) 

Equation (26) is satisfied since UI(s,a–) = UE(s,a+) in (17).  
It is found that the nontrivial boundary mode of (51) in case of 
Jn(ka) = 0, also satisfies (28) due to (17).  This indicates that 
Jn(ka) = 0 of (47) and the nontrivial boundary mode of (51) in 
conjunction with the trivial outer boundary data satisfy (26) 
and (28).  In other words, the solution space to satisfy (26) and 
(28) of the singular formulation only seems bigger.  To make 
the BIEM model well-posed without spurious solutions, dual 
formulation is necessary.  Spurious eigenvalue with the trivial 
outer boundary mode happens to be the true eigenvalue of 
domain bounded by the inner boundary. 

2. Neumann Problem by Using the Hypersingular (LM) 
Formulation  

Similarly, we consider the circular free membrane with a 
radius a in the continuous system.  By using the null-field in-
tegral equation and collocating the point on the boundary for the 
hypersingular (LM) formulation, we obtain the eigenequation, 
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 [ ( ) ( )] ( ) 0.n n niJ ka Y ka J ka′ ′ ′− + =  (52) 

The true eigenequation is 

 ( ) 0,nJ ka′ =  (53) 

and the corresponding true eigenmode are 

 ,n

n

p

q

 
 
 

 (54) 

where pn and qn are the Fourier coefficients on the circular 

boundary and 2 2 0.n np q+ ≠   By collocating the point in the 

complementary domain (xc ∈ Dc) as shown in Fig. 2, the 
null-field equation yields 

 
1

0 ( , ) ( ) ( ),E c c c

B
M s x u s dB s x D= ∈∫  (55) 

where 
0

( ) ( cos( ) sin( )).n n
n

u s p n q nθ θ
∞

=

= +∑   For any point xc ∈ 

Dc, we obtain the null-field response for xc as shown below 

 [ ( ) ( )] ( )( cos sin ) 0,c c
n n n n niJ ka Y ka J ka p n q nθ θ′ ′ ′− + + =   

 n = 0, 1, 2, 3, …,  (56) 

since k satisfies ( ) 0.nJ ka′ =  

Secondly, we consider the eccentric case subject to the 
free-free boundary condition as shown in Fig. 3.  To satisfy (27) 
and (29) of the BIE model, we need to seek a nontrivial 
boundary mode for (p1,n, q1,n, p2,n, q2,n).  By selecting a non-
trivial boundary mode for the ( ) 0,nJ ka′ =  computer-assisted 

experiment inspires us to choose 

 

1,

1,

2,

2,

.
0

0

n n

n n

n

n

p p

q q

p

q

   
   
   =   
   
     

 (57) 

Equation (27) is satisfied since MI(s, a−) = ME (s, a+) in (21).  
It is found that nontrivial boundary mode of (57) in case of 

( ) 0,nJ ka′ =  also satisfies (29) due to (20).  This indicates that 

( ) 0nJ ka′ =  of (53) and the nontrivial boundary mode of (57) 

satisfy (27) and (29).  Spurious eigenvalue in companion with 
the trivial outer boundary mode happens to be the true ei-
genvalue of domain bounded by the inner boundary. 

V. SVD TECHNIQUE FOR EXTRACTING OUT 
TRUE AND SPURIOUS EIGENVALUES BY 

USING UPDATING TERMS AND UPDATING 
DOCUMENT 

1. Method to Extract the True Eigensolutions 

The matrix [A] with a dimension M by N by using singular 
value decomposition technique can be decomposed into a 
product of the unitary matrix [Φ] (M by M), the diagonal 
matrix [Σ] (M by N) with positive or zero elements, and the 
unitary matrix [Ψ] (N by N) 

 [ ] [ ] [ ] [ ] ,
H

M N M M M N N N× × × ×
=A Φ Σ Ψ  (58) 

where the superscript “H” is the Hermitian, [Φ] and [Ψ] are 
both unitary that their column vectors which satisfy 

 ,H
ijji

φ φ δ⋅ =
� �

 (59) 

 ,H
ijji

ψ ψ δ⋅ =
� �

 (60) 

in which [ ] [ ] [ ]H

M M×
IΦ Φ =  and [ ] [ ] [ ] .

N N

Η

×
IΨ Ψ =   For the 

eigenproblem, we can obtain a nontrivial solution for the ho- 
mogeneous system from a column vector {ψi} of [Ψ] when the 
singular value (σi) is zero.  For the direct BEM, we have 
Singular formulation (UT method) 

 { } { } { }0 ,E Eu t   = =   T U  (61) 

Hypersingular formulation (LM method) 

 { } { } { }0 ,E Eu t   = =   M L  (62) 

where {u} and {t} are the boundary excitations. 
For the Dirichlet problem, Eqs. (61) and (62) can be com-

bined to have 

 { } { }0 .
E

E
t

 
= 

  

U

L
 (63) 

By using the SVD technique, the two submatrices in (61) 
and (62) can be combined to have 

 ( ) ( ) ( ) HE U U U       =       U Φ Σ Ψ  or 

 { }{ }{ }( ) ( ) ( ) ,
HE U U U

j j j
j

  = ∑ U σ φ ψ  (64) 
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 ( ) ( ) ( ) HE L L L       =       L Φ Σ Ψ  or 

 { }{ }{ }( ) ( ) ( ) ,
HE L L L

j j j
j

  = ∑ L σ φ ψ  (65) 

where the superscripts, (U) and (L), denote the corresponding 
matrices.  For the linear algebraic system, {t} is a column 
vector of {ψi} in the matrix [Ψ] corresponding to the zero 
singular value (σi = 0).  By setting {t} as a vector of {ψi}, in 
the right unitary matrix for the true eigenvalue kt, Eq. (63) 
reduces to 

 { } { }0 ,( )E
T ik  = U ψ  (66) 

 { } { }0 .( )T ik  = L ψ  (67) 

According to (64)-(67), we have  

 { } { }( ) ( ) 0 ,U U
j j =σ φ  (68) 

 { } { }( ) ( ) 0 .L L
j j =σ φ  (69) 

We can easily extract out the true eigenvalues, ( )U
j =σ  

( )L
j =σ  {0}, since there exists the same eigensolusion ({t} = 

{ψi}) for the Dirichlet problem using (63) or (66) and (67).  In 
a similar way, Eqs. (61) and (62) can be combined to have 

 { } { }0 ,
( )

( )

E
T

E
T

k
u

k

 
= 

  

T

M
 (70) 

for the Neumann problem.  We can easily extract out the true 
eigenvalues for the Neumann problem with respect to the j th 

zero singular values of { }( ) ( ) 0 .T M
j j= =σ σ  

2. Method to Filter Out the Spurious Eigensolutions 

By employing the LM formulation in the direct BEM, we 
have 

 { } { } { }.E Eu t p   = =   M L  (71) 

Since the spurious eigenvalue ks is embedded in both the 
Dirichlet and Neumann problems, we have 

 { } { } { }0 ,
H

ip =φ  (72) 

where {φ i} satisfies 

 { } { }0 ,( )
HE

S i
k  = L φ  for the Dirichlet problem (73) 

 { } { }0 ,( )
HE

S i
k  = M φ  for the Neumann problem (74) 

according to the Fredholm alternative theorem.  By substitut-
ing (71) into (73) and (74), we have 

{ } { } { }0 ,( )
HH E

s i
u k  = M φ  for the Dirichlet problem (75) 

{ } { } { }0 ,( )
HH E

s i
t k  = L φ  for the Neumann problem (76) 

Since {u} and {t} can be arbitrary boundary excitation for 
the Dirchlet problem and Neumann problem, respectively, this 
yields 

 { } { }0 ,( )
HE

s i
k  = M φ  for the Dirichelt problem (77) 

 { } { }0 ,( )
HE

s i
k  = L φ  for the Neumann problem (78) 

By combining (73) and (74) with (77) and (78) for the 
Dirichlet problem, we have 

{ } { }0

HE

iHE

  
   = 
    

L

M
φ  or { } { }0 .

H E E
i

     =    
L Mφ  (79) 

It indicates that two matrices have the same spurious bound- 
ary mode {φ i} corresponding to the i th zero singular values.  
By using the SVD technique, the two matrices in (79) can be 
decomposed into 

 ( ) ( ) ( )H HE U U U       = Ψ Φ       L Σ  or 

 { }{ }( ) ( ) ( ) ,
HHE L L L

j j j
j

  = ∑ Lλ σ ψ φ  (80) 

 ( ) ( ) ( )H HE M M M       = Ψ Φ       M Σ  or 

 { }{ }( ) ( ) ( ) .
HHE L L L

j j j
j

  = ∑ Mλ σ ψ φ  (81) 

By substituting (80) and (81) into (75) and (76), we have 

 { } { }( ) ( ) 0 ,L L
j j =σ ψ  (82) 

 { } { }( ) ( ) 0 .M M
j j =σ ψ  (83) 
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Table 2.  (a) SVD structure of the four influence matrices for the Dirichlet and Neumann problems in the case of true 
eigenvalue, (b) SVD structure of the four influence matrices by using the UT singular formulation and LM 
hypersigular formulation in the case of spurious eigenvalue. 

(a) Dirichlet and Neumann problems 

The same φ1

Dirichlet problem (k = kT
D) Neumann problem (k = kT

N)

[ΦU]
0 H

[ΦT][ΣT][ΨT]H [ΦU][ΣU][ΨU]H

[ΦM][ΣM][ΨM]H [ΦL][ΣL][ΨL]H

U T U T

L M L M

True eigenvalue
kT

(kT
D, kT

N)

where kT
D and kT

N are the true eigenvalues for the Dirichlet and Neumann problems, respectively.

The same φ1

. . . φ1
D . . .

~
[ΦT]

0 H

. . . φ1
N . . .

~

[ΦM]
0 H

. . . φ1
N . . .

~
[ΦL]

0 H

. . . φ1
D . . .

~

 
 

(b) UT and LM formulations 

UT singular formulation (k = kS
UT) LM hypersingular formulation (k = kS

LM)

Spurious
eigenvalue

kS

(kS
UT, kS

LM)

U T L M
where kS

UT and kS
LM are the spurious eigenvalues by using UT singular and LM hypersigular formulation, respectively.

NeumannDirichletNeumannDirichlet

The same   1
~

~

The same    1
~

[  1
UT. . . ] [Ψ

0
. . .φ

φ φ

~
[  1

UT. . . ]
0

. . .φ [  1
LM . . . ]

0
. . .φ[  1

LM  . . . ]
0

. . .φD
UT]H [ΨN

UT]H [ΨD
LM]H [ΨN

LM]H

 

 
We can easily extract out the spurious eigenvalues since 

there exists the same spurious boundary mode {φ i} corre-

sponding to the i th zero singular value, ( ) 0.M
iσ σ= =   Simi-

larly, the spurious eigenvalue parasitized in the UT formula-
tion can be obtained by using SVD updating documents.  To 
summarize the SVD structure for the four influence matrices, 
Tables 2(a) and 2(b) show that the spurious and true boundary 
modes are imbedded in the left and right unitary vectors, re-
spectively.  Besides, the nontrivial interior boundary mode and 
trivial outer boundary mode are given in Table 2(b). 

VI. ILLUSTRATIVE EXAMPLES AND 
DISCUSSIONS 

Case 1: An eccentric case subject to the Dirichlet boundary 
condition (u1 = u2 = 0) using the semi-analytical 
approach 

An eccentric case with radii a and b (a = 0.5 m, , b = 2.0 m) 

is shown in Fig. 1.  The eccentricity of eccentric membrane 
was changed from e = 0.0 to 1.0 m.  Figure 4 shows the mini- 
mum singular value σ1 versus k for the annular membrane by 
using the null-field BIE and using the truncated Fourier series 
(M = 10).  Figure 5 shows the effect of the eccentricity e on the 
possible eigenvalues for the fixed membrane.  It is interesting 
to find that the spurious eigenvalues of ks = 4.81 and ks = 7.66 
occur no matter what the eccentricity e is.  After checking the 
boundary eigenvectors from the bar chart, we find that the true 
eigenvectors for inner and outer boundaries are nontrivial as 
shown in Fig. 6 for the first true eigenvalue kt = 2.05.  For the 
spurious eigenvalues (ks = 4.81, ks = 7.66, e = 0.0), the outer 
boundary mode is trivial and only the nontrivial inner bound-
ary mode is found as shown in Fig. 7, as theoretically proved.  
This phenomenon is also observed by using the BEM (40 
elements) as shown in Fig. 8.  Both figures indicate that null 
field BIEM use the generalized coordinate of Fouries  
series while BEM interpolates with nodal constant value.  
For the eccentricity of e = 0.5 m, the similar result is 
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Fig. 4. The minimum singular value σ1 versus k for the annular mem-

brane subject to the Dirichlet boundary condition by using the 
UT null-field BIE (b = 2.0, a = 0.5). 
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Fig. 5. Effect of the eccentricity e on the possible (true and spurious) 
eigenvalues. 
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Fig. 6. Real part of Fourier coefficients for the first true boundary mode 

(kt = 2.05, e = 0.0). 

 
found as shown in Figs. 9-11.  All the numerical results agree 
well with our theoretical prediction in the UT formulation.  It 
is interesting to point out that the nontrivial inner boundary 
mode of eccentric case agree well with that of circular mem-
brane as theoretically proved.  For the null-field BIEM using 
the Fourier series, we obtain only nonzero components of  
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Fig. 7. Real part of Fourier coefficients for the first and second spurious 

boundary modes (ks = 4.81, 7.66, e = 0.0). 

 

-0.05
0

0.05
0.1

0.15
0.2

0.25

-0.4
-0.2

0
0.2
0.4

Inner boundary density 
(constant)

Outer boundary density 
(trivial)

Inner boundary density 
(harmonic, cosθ, sinθ )

Outer boundary density 
(trivial)

Boundary ID 

ks = 4.86

ks = 7.74

0 10 30 4020

0 10 30 4020
 

Fig. 8. Real part of the first and second spurious boundary modes by 
using BEM (ks = 4.86, 7.74, e = 0.0). 
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Fig. 9. Real part of Fourier coefficients for the first true boundary mode 
(kt = 1.74, e = 0.5). 
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Fig. 10.  Fourier coefficients for the first and second spurious boundary 
modes by using the UT null-field BIE (ks = 4.81, 7.76, e = 0.5). 

 
a1,0 (a1,1 or b1,1) for the J0(ka) (J1(ka)) case in Fig. 7.  When the 
boundary density is interpolated by using constant elements of 
BEM, constant and simple harmonics (cosθ or sinθ) distribu-
tion for the inner boundary mode are found as shown in Fig. 8. 
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Fig. 11.  The first and second spurious boundary modes by using BEM 
(40 elements, ks = 4.86, 7.74, e = 0.5). 
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Fig. 12.  The minimum singular value σ1 versus k for the annular mem-

brane subject to the Neumann boundary condition by using the 
LM null-field BIE (b = 2.0, a = 0.5). 
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Fig. 13.  Real part of Fourier coefficients for the first and second spuri-

ous boundary modes by using null-field BIEM (ks = 3.68, 6.11, 
e = 0.0). 

 

Case 2: An eccentric case subject to the Neumann bound-
ary condition (t1 = t2 = 0) using the semi-analytical 
approach 

An eccentric case with radii a and b (a = 0.5 m, b = 2.0 m) is 
shown in Fig. 1.  Figure 12 shows the minimum singular value 
σ1 versus k for the annular membrane by using the null-field 
BIE, and using the truncated Fourier series (M = 10).  It is 
found that the spurious eigenvalues of ks = 3.68 and ks = 6.11 
occur on both cases of e = 0.0 and 0.5.  For the spurious ei-
genvalues (ks = 3.68, ks = 6.11, e = 0.0), the outer boundary 
mode is trivial and only the nontrivial inner boundary mode is  
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Fig. 14.  Real part of the first and second spurious boundary modes by 

using BEM (ks = 3.72, 6.18, e = 0.0). 
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Fig. 15.  Fourier coefficients for the first and second spurious boundary 

modes by using null-field BIEM (ks = 3.68, 6.11, e = 0.5). 
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Fig. 16.  Real part of the first and second spurious boundary modes by 

using BEM (ks = 3.72, 6.18, e = 0.0). 

 
found as shown in Fig. 13.  This phenomenon is also observed 
by using the BEM (40 elements) as shown in Fig. 14.  For the 
eccentricity of e = 0.5 m, the similar result is found as shown in 
Figs. 15-16.  All the numerical results agree well with our 
theoretical prediction.  It is interesting to point out that the 
nontrivial inner boundary mode of eccentric case agree well 
with that of the circular membrane as theoretically proved in 
the LM hypersingular formulation. 

Case 3: A square membrane with a circular hole by using 
BEM 

A square (1 m × 1 m) membrane with a circular hole (b = 0.5 
m) subjected to the Dirichlet boundary condition is shown in 
Fig. 17.  Forty elements in the BEM mesh were adopted.  
Figure 18 shows the minimum singular value σ1 versus k for  
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Case 3:
Rectangle: 1m × 1m
Circle: b = 0.5 m
Boundary condition: 
Inner circle: u = 0  
Outer rectangle: u = 0 

b

 
Fig. 17.  A rectangle membrane with one circular hole of radius 0.5 m. 
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Fig. 18.  The minimum singular value σ1 versus k for the rectangle mem-

brane with a circular hole by using BEM. 
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Fig. 19.  The first and second spurious boundary modes by using BEM 

(40 elements, ks = 4.86, 7.74, e = 0.5). 

 
the Dirichlet problem by using BEM.  It is found that the same 
spurious eigenvalues appeared at the ks = 4.86 and 7.74, as 
shown in case 1 due to the same inner boundary.  Figure 19 
shows the first and second spurious boundary modes by using 
BEM (ks = 4.86, 7.74, e = 0.5).  The constant and simple 
harmonic (cosθ or sinθ) distribution for the nontrivial inner 
boundary mode are found for J0(ka) = 0 and J1(ka) = 0, re-
spectively.  As predicted, the outer boundary mode is trivial.  
No matter what the shape of the outer boundary is, the spuri-
ous eigenvalue always depends on the inner boundary. 

Case 4: A circular membrane with a square hole by using 
BEM 

A circular (a = 1.0 m) membrane with a square (1 m × 1 m) 
hole subjected to the Dirichlet boundary condition is shown in 
Fig. 20.  Forty elements in the BEM mesh were adopted.  
Figure 21 shows the minimum singular value σ1 versus k for 
the Dirichlet problem by using BEM.  It is found that the same  
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Fig. 20.   A circular membrane with one square hole. 
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Fig. 21.  The minimum singular value σ1 versus k for the circular mem-

brane with a square hole by using BEM. 
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Fig. 22.  The first and second spurious boundary modes by using BEM 

(40 elements, ks = 4.44, 7.01, e = 0.2). 

 
spurious eigenvalues appeared at the ks = 4.44 and 7.01 (ana-

lytical solution is 
2 2

,mn

m n
k

b b
π    = +   

   
 m, n = 0, 1, 2, …), 

due to the inner square boundary.  Figure 22 shows the first 
and second spurious boundary modes by using BEM (ks = 4.44, 
7.01, e = 0.2).  The simple harmonic (cosine function) for the 
nontrivial inner boundary mode are found to be u11(x, y) = 
cos(πx) cos(πy) and u12(x, y) = cos(πx) cos(2πy), respectively.  
No matter what the shape of the outer boundary is, the spuri-
ous eigenvalue depends only on the inner boundary. 

VII. CONCLUDING REMARKS 

Spurious eigenvalues for the doubly-connected membrane 
were studied analytically and numerically.  Computer assisted 
proof for the existence of spurious eigenvalue in conjunction 
with the trivial outer boundary density was also done.  Four 
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examples were demonstrated to see how the spurious eigen-
value occurs.  The trivial outer boundary densities were found 
in case of spurious eigenvalues which is found to be the true 
eigenvalue for the domain bounded by the inner boundary.  
The contribution of the work is to show the existence of spu-
rious eigenvalue occur in the doubly-connected problems in an 
analytical manner by using the degenerate kernels and the 
Fourier series.  It can be easily extended to the problem con-
taining multiple circles and arbitrarily shaped membrane as 
well as 3-D problems [22]. 
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