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In Ref. [1], Kang and Lee presented a non-dimensional dynamic influence function (NDIF)
method for plate vibration. This paper extended the NDIF method from membrane vibration [2] to
plate vibration problems. Kang and Lee [3] also applied this method to solve the membrane
vibration by using domain partition for multiply connected and concave problems. Although
Laura and Bambill [4] commented that the considered problem is very simple, it really proposed an
easy method for engineers. Since only boundary node is required, the approach is meshless. Many
successful examples of the clamped boundary conditions were demonstrated. It seems that this
method is very attractive. However, this method can be treated as one kind of the Trefftz method
[5–7] or boundary collocation method [8]. Based on the dual formulation developed by Chen and
Hong [9–11], the interpolation function is nothing but the imaginary-part of the fundamental
solution ðW ðs;xÞ ¼ ði=ð8l2ÞÞfH

ð2Þ
0 ðlrÞ þ H

ð1Þ
0 ðilrÞÞ; where Kang and Lee chose J0ðlrÞ and I0ðlrÞ as

radial basis functions. The method proposed by Kang and Lee [1] can be treated as a special case of
the imaginary-part dual BEM, and its occurrence of spurious eigenvalues has been verified in Refs.
[12,13]. In addition, Chen et al. [14] and Kuo et al. [15] employed the theory of circulants to prove
that spurious eigensolutions and ill-posed problems may occur in case of circular membrane. For
general shape problems, the two drawbacks are also inherent. To overcome the problem of
spurious eigensolutions, a net approach was proposed by Kang and Lee [16]. Another alternative
to avoid the occurence of spurious eigensolution was also proposed by Chen et al. [12] using the
double-layer approach. This singularity-free method also results in the ill-posed behavior when the
number of degrees of freedom becomes large [14]. Kuo et al. [17] employed the generalized singular
value decomposition (GSVD) method in conjunction with the Tikhonov regularization to deal
with the ill-posed problem for the incomplete boundary element formulation. Until now, research
of ill-posed problem is an active area. However, why the spurious eigenvalues occur in Ref. [1] for a
circular plate was not studied analytically. In this letter to editor, we will prove it.
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1. Derivation of true and spurious eigensolutions for the plate vibration using degenerate kernels and

circulants in the NDIF method

As mentioned earlier, spurious eigenvalues occur in the NDIF method. Here, we will derive
analytically the true and spurious solutions in the discrete system for a circular clamped plate by
using the NDIF method [1]. The degenerate kernels and circulants are employed to study the
discrete system in an exact form. On the basis of the NDIF method, the displacement and slope
solutions can be represented by

wðxiÞ ¼
X2N

j¼1

W ðlrijÞAðsjÞ þ
X2N

j¼1

YðlrijÞBðsjÞ; ð1Þ

yðxiÞ ¼
X2N

j¼1

@W ðlrijÞ
@nxi

AðsjÞ þ
X2N

j¼1

@YðlrijÞ
@nxi

BðsjÞ; ð2Þ

where l is the frequency parameter, W ðlrijÞ ¼ J0ðlrijÞ is the zeroth order Bessel function,YðlrijÞ ¼
I0ðlrijÞ is the zeroth order modified Bessel function, rij ¼ j xi � sj j; xi is the ith observation point,
sj is the jth boundary point, w and y ¼ @w=@nxi

are the transverse deflection and its slope along the
normal direction, respectively, AðsjÞ and BðsjÞ are the generalized unknowns at sj; 2N is the
number of boundary points, and the four kernels can be expressed in terms of degenerate kernels
as shown below [18]:

W ðs; xÞ ¼ J0ðlrÞ ¼
XN

m¼�N

JmðlrÞ JmðlrÞ cosðmðy� fÞÞ; ð3Þ

Yðs; xÞ ¼ I0ðlrÞ ¼
XN

m¼�N

ð�1Þm ImðlrÞ ImðlrÞ cosðmðy� fÞÞ; ð4Þ

@W ðs;xÞ
@nx

¼
XN

m¼�N

lJmðlrÞ J0mðlrÞ cosðmðy� fÞÞ; ð5Þ

@Yðs; xÞ
@nx

¼
XN

m¼�N

lð�1ÞmI0mðlrÞ ImðlrÞ cosðmðy� fÞÞ; ð6Þ

where r is the distance between x and s; and Jm and Im denote the first kind of the mth order Bessel
and modified Bessel functions, respectively, x ¼ ðr;fÞ and s ¼ ðr; yÞ in the polar co-ordinate. For
simplicity, we consider the same problem of a clamped plate of circular domain [1]. The boundary
conditions for the clamped plate are given by

wðxÞ ¼ 0 and yðxÞ ¼ 0; x on the circular boundary: ð7Þ

By matching the boundary conditions on the 2N circular points into Eqs. (1) and (2),
we have

f0g ¼ ½W �fAg þ ½Y�fBg; ð8Þ

f0g ¼ ½W 0�fAg þ ½Y0�fBg; ð9Þ
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where ½W �; ½Y�; ½W 0� and ½Y0� are the corresponding matrices of W ðs;xÞ; Yðs; xÞ; @W ðs;xÞ=@nx and
@Yðs;xÞ=@nx; respectively. fAg and fBg are the undetermined coefficients. Eq. (8) can be
rearranged to

fBg ¼ �½Y��1½W �fAg: ð10Þ

By substituting Eq. (10) into Eq. (9), we have

½W 0�fAg � ½Y0�½Y��1½W �fAg ¼ f0g; ð11Þ

then, we obtain

½½W 0� � ½Y0�½Y��1½W ��fAg ¼ f0g ) ½SMN �fAg ¼ f0g; ð12Þ

where

½SMN � ¼ ½½W 0� � ½Y0�½Y��1½W ��: ð13Þ

For the existence of non-trivial solution for fAg; the determinant of the matrix must become zero,
i.e.,

det½SMN � ¼ 0: ð14Þ

Since the rotation symmetry is preserved for a circular boundary, the four influence matrices in
Eqs. (1) and (2) are denoted by ½W �; ½Y�; ½W 0� and ½Y0� of the circulants with the elements

Kij ¼ Kðr; yj;r;fiÞ ¼ aij ; ð15Þ

where ½K � can be ½W �; ½Y�; ½W 0� or ½Y0�; fi and yj are the angles of observation and boundary
points, respectively. By superimposing 2N lumped strength along the boundary, we have the
influence matrices,

½K� ¼

a0 a1 a2 ? a2N�2 a2N�1

a2N�1 a0 a1 ? a2N�3 a2N�2

a2N�2 a2N�1 a0 ? a2N�4 a2N�3

^ ^ ^ & ^ ^

a1 a2 a3 ? a2N�1 a0

2
6666664

3
7777775
; ð16Þ

where the elements of the first row can be obtained by

aj�i ¼ Kðsj; xiÞ; ð17Þ

where the kernel K can be W ; Y; @W=@n or @Y=@n: The matrix ½K � in Eq. (16) is found to be a
circulant [15] since the rotational symmetry for the influence coefficients is considered. By
introducing the following bases for the circulants I ; ðC2NÞ

1; ðC2NÞ
2;y; ðC2NÞ

2N�1; we can expand
½K � into

½K� ¼ a0I þ a1ðC2NÞ
1 þ a2ðC2NÞ

2 þ?þ a2N�1ðC2NÞ
2N�1; ð18Þ
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where I is a unit matrix and

C2N ¼

0 1 0 ? 0 0

0 0 1 ? 0 0

^ ^ ^ & ^ ^

0 0 0 ? 0 1

1 0 0 ? 0 0

2
6666664

3
7777775
2N
2N

: ð19Þ

Based on the circulant theory, the eigenvalues for the influence matrix, ½K�; can be easily found as
follows:

lc ¼ a0 þ a1ac þ a2a2c þ?þ a2N�1a2N�1
c ; c ¼ 0;71;72;y;7ðN � 1Þ;N; ð20Þ

where lc and ac are the eigenvalues for ½K � and ½C2N �; respectively. It is easily found that the
eigenvalues for the circulant ½C2N � are the roots of a2N ¼ 1 as show below:

ac ¼ eið2pc=2NÞ; c ¼ 0;71;72;y;7ðN � 1Þ;N or c ¼ 0; 1; 2;y; 2N � 1: ð21Þ

Substituting Eq. (21) into Eq. (20), we have

lc ¼
X2N�1

m¼0

amam
c ¼

X2N�1

m¼0

ame
ið2p=2NÞmc; c ¼ 0;71;72;y;7ðN � 1Þ;N: ð22Þ

According to the definition for am in Eq. (17), we have

am ¼ a2N�m; m ¼ 0; 1; 2;y; 2N � 1: ð23Þ

Substitution of Eq. (23) into Eq. (22) yields

lc ¼ a0 þ ð�1ÞcaN þ
XN�1

m¼1

ðam
c þ a2N�m

c Þam ¼
X2N�1

m¼0

cosðmcDyÞam: ð24Þ

Putting Eq. (17) into Eq. (24) for choosing W for K ; the Reimann sum of infinite terms reduces to
the following integral:

lc ¼
X2N�1

m¼0

cosðmcDyÞW ðmDy; 0ÞE
1

rDy

Z 2p

0

cosðcyÞW ðy; 0Þr dy ð25Þ

as N approaches infinity, where Dy ¼ 2p=2N: By using the degenerate kernel for W ðs;xÞ in
Eq. (3), Eq. (25) reduces to

lc ¼
1

rDy

Z 2p

0

cosðcyÞ
XN

m¼�N

JmðlrÞ JmðlrÞ cosðmyÞr dy

¼
2

rDy
pr JcðlrÞ JcðlrÞ ¼ 2N JcðlrÞ JcðlrÞ; c ¼ 0;71;72;y;7ðN � 1Þ;N: ð26Þ
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Similarly, we have

mc ¼ 2N IcðlrÞIcðlrÞ; c ¼ 0;71;72;y;7ðN � 1Þ;N; ð27Þ

nc ¼ 2Nl JcðlrÞJ0cðlrÞ; c ¼ 0;71;72;y;7ðN � 1Þ;N; ð28Þ

dc ¼ 2Nl I0cðlrÞIcðlrÞ; c ¼ 0;71;72;y;7ðN � 1Þ;N; ð29Þ

where mc; nc and dc are the eigenvalues of ½Y�; ½W 0� and ½Y0� matrices, respectively. The
determinants for the four matrices can be obtained by multiplying all the eigenvalues as shown
below:

det½W � ¼ l0ðl1l2?lN�1Þ
2lN ; ð30Þ

det½Y� ¼ m0ðm1m2?mN�1Þ
2mN ; ð31Þ

det½W 0� ¼ n0ðn1n2?nN�1Þ
2nN ; ð32Þ

det½Y0� ¼ d0ðd1d2?dN�1Þ
2dN : ð33Þ

Since ½W �; ½Y�; ½W 0� and ½Y0� are all symmetric circulants, they can be expressed by

½W � ¼ F

l0 0 0 ? 0 0 0

0 l1 0 ? 0 0 0

0 0 l�1 ? 0 0 0

^ ^ ^ & ^ ^ ^

0 0 0 ? lðN�1Þ 0 0

0 0 0 ? 0 l�ðN�1Þ 0

0 0 0 ? 0 0 lN

2
666666666664

3
777777777775
2N
2N

F�1; ð34Þ

½Y� ¼ F

m0 0 0 ? 0 0 0

0 m1 0 ? 0 0 0

0 0 m�1 ? 0 0 0

^ ^ ^ & ^ ^ ^

0 0 0 ? mðN�1Þ 0 0

0 0 0 ? 0 m�ðN�1Þ 0

0 0 0 ? 0 0 mN

2
6666666666664

3
7777777777775
2N
2N

F�1; ð35Þ
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½W 0� ¼ F

n0 0 0 ? 0 0 0

0 n1 0 ? 0 0 0

0 0 n�1 ? 0 0 0

^ ^ ^ & ^ ^ ^

0 0 0 ? nðN�1Þ 0 0

0 0 0 ? 0 n�ðN�1Þ 0

0 0 0 ? 0 0 nN

2
666666666664

3
777777777775
2N
2N

F�1; ð36Þ

½Y0� ¼ F

d0 0 0 ? 0 0 0

0 d1 0 ? 0 0 0

0 0 d�1 ? 0 0 0

^ ^ ^ & ^ ^ ^

0 0 0 ? dðN�1Þ 0 0

0 0 0 ? 0 d�ðN�1Þ 0

0 0 0 ? 0 0 dN

2
666666666664

3
777777777775
2N
2N

F�1; ð37Þ

where

F ¼
1ffiffiffiffiffiffiffi
2N

p




1 1 0 ? 1 0 1

1 cosð 2p2N
Þ sinð2p2N

Þ ? cosð2pðN�1Þ
2N

Þ sinð2pðN�1Þ
2N

Þ cosð2pN
2N

Þ

1 cosð 4p2N
Þ sinð4p2N

Þ ? cosð4pðN�1Þ
2N

Þ sinð4pðN�1Þ
2N

Þ cosð4pN
2N

Þ

^ ^ ^ & ^ ^ ^

1 cosð2pð2N�2Þ
2N

Þ sinð2pð2N�2Þ
2N

Þ ? cosðpð4N�4ÞðN�1Þ
2N

Þ sinðpð4N�4ÞðN�1Þ
2N

Þ cosðpð4N�4ÞðNÞ
2N

Þ

1 cosð2pð2N�1Þ
2N

Þ sinð2pð2N�1Þ
2N

Þ ? cosðpð4N�2ÞðN�1Þ
2N

Þ sinðpð4N�2ÞðN�1Þ
2N

Þ cosðpð4N�2ÞðNÞ
2N

Þ

2
66666666664

3
77777777775
2N
2N

:

ð38Þ

By employing Eqs. (34)–(37) for Eq. (13), we have

½SMN � ¼ F

s0 0 0 ? 0 0 0

0 s1 0 ? 0 0 0

0 0 s�1 ? 0 0 0

^ ^ ^ & ^ ^ ^

0 0 0 ? sðN�1Þ 0 0

0 0 0 ? 0 s�ðN�1Þ 0

0 0 0 ? 0 0 sN

2
666666666664

3
777777777775

F�1; ð39Þ
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where

sc ¼ 2NlJcðlrÞJ0cðlrÞ �
2Nl IcðlrÞI0cðlrÞ2N JcðlrÞJcðlrÞ

2N IcðlrÞIcðlrÞ

¼ 2Nl
JcðlrÞ½J0cðlrÞIcðlrÞ � I0cðlrÞJcðlrÞ�

IcðlrÞ
; c ¼ 0;71;72;y;7ðN � 1Þ;N: ð40Þ

According to Eqs. (39) and (40), we have

det½SMN � ¼ detjFj s0ðs1s2?sN�1Þ
2sN detjF�1j

¼ s0ðs1s2?sN�1Þ
2sN ; ð41Þ

since detjFj ¼ detjF�1j ¼ 1: By employing the differential formula for the Bessel and the modified
Bessel functions, we can prove the following identity for any l:

J0cðlrÞIcðlrÞ � I0cðlrÞJcðlrÞ ¼ �½JcðlrÞIcþ1ðlrÞ þ IcðlrÞJcþ1ðlrÞ�: ð42Þ

Zero determinant in Eq. (41) implies that the eigenequation is

JcðlrÞ½JcðlrÞIcþ1ðlrÞ þ IcðlrÞJcþ1ðlrÞ�
IcðlrÞ

¼ 0; c ¼ 0;71;72;y;7ðN � 1Þ;N: ð43Þ
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Fig. 1. Logarithm curves for det½SMN � versus frequency parameter of the circular plate using the NDIF method [1].
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Since the denominator term of IcðlrÞ is never zero for any value of l > 0; eigenequation reduces to
JcðlrÞ½JcðlrÞIcþ1ðlrÞ þ IcðlrÞJcþ1ðlrÞ� ¼ 0; c ¼ 0;71;72;y;7ðN � 1Þ;N: Logarithm curves
for det½SMN � versus frequency parameter of the circular plate using the NDIF method are
shown in Fig. 1 as quoted from Ref. [1]. By employing the circulant properties of Eq. (41), the
similar results are shown in Fig. 2. This result in Fig. 2 matches well with that of the NDIF
method in Fig. 1. After comparing with the exact solutions for the fixed circular membrane and
the fixed circular plate, we find that the NDIF method results in the spurious eigenequation of
JcðlrÞ ¼ 0; c ¼ 0;71;72;y;7ðN � 1Þ;N; which is the true eigensolution of membrane
vibration and the true eigenequation is preserved ðIcðlrÞIcþ1ðlrÞ þ IcðlrÞJcþ1ðlrÞ ¼ 0; c ¼
0;71;72;y;7ðN � 1Þ;NÞ for plate vibration.

2. Concluding remarks

In this Letter to the Editor, we have proved that spurious eigensolutions were embedded in the
NDIF method for the circular clamped plate. This can support the net approach which Kang and
Lee proposed by dividing the spurious eigenequation. For the non-circular plate, only numerical
experiments can be performed without the theoretical proof in the discrete system. Very recently,
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Fig. 2. Logarithm curves for det½SMN � versus frequency parameter of the circular plate using the circulant method.
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the authors became aware of relevant pioneer works by Chen [19,20] where he also utilized the
imaginary-part kernel in his boundary knot method.

References

[1] S.W. Kang, J.M. Lee, Free vibration analysis of arbitrarily shaped plates with clamped edges using wave-type

functions, Journal of Sound and Vibration 242 (1) (2001) 9–26.

[2] S.W. Kang, J.M. Lee, Y.J. Kang, Vibration analysis of arbitrarily shaped membranes using non-dimensional

dynamic influence function, Journal of Sound and Vibration 221 (1) (1999) 117–132.

[3] S.W. Kang, J.M. Lee, Application of free vibration analysis of membranes using the non-dimensional dynamic

influence function, Journal of Sound and Vibration 234 (1) (2001) 455–470.

[4] P.A.A. Laura, D.V. Bambill, Comments on ‘‘Free vibration analysis of arbitrarily shaped plates with clamped

edges using wave-type functions’’, Journal of Sound and Vibration 252 (1) (2002) 187–188.

[5] J. Jirousek, A. Wroblewski, T-elements: state of the art and future trends, Archives of Computational Methods in

Engineering 3 (4) (1996) 325–435.

[6] Y.K. Cheung, W.G. Jin, O.C. Zienkiewicz, Direct solution procedure for solution of harmonic problems using

complete nonsingular Trefftz functions, Communication Applied Numerical Methods 5 (1989) 159–169.

[7] Y.K. Cheung, W.G. Jin, O.C. Zienkiewicz, Solution of Helmholtz equation by Trefftz method, International

Journal for Numerical Methods in Engineering 32 (1991) 63–78.

[8] J.A. Kolodziej, Review of applications of boundary collocation methods in mechanics of continuous media, Solid

Mechanics Archive 12 (1987) 187–231.

[9] H.-K. Hong, J.T. Chen, Derivations of integral equations of elasticity, Journal of Engineering Mechanics 114 (6)

(1988) 1028–1044.

[10] J.T. Chen, H.-K. Hong, Review of dual integral representations with emphasis on hypersingular integrals and

divergent series, Transactions of ASME, Applied Mechanics Reviews 52 (1) (1999) 17–33.

[11] J.T. Chen, M.H. Chang, K.H. Chen, S.R. Lin, The boundary collocation method with meshless concept for

acoustic eigenanalysis of two-dimensional cavities using radial basis function, Journal of Sound and Vibration 257

(4) (2002) 667–711.

[12] J.T. Chen, M.H. Chang, I.L. Chung, Y.C. Cheng, Comments on ‘‘Eigenmode analysis of arbitrarily shaped two-

dimensional cavities by the method of point matching’’, Journal of Acoustical Society of America 111 (1) (2002)

33–36.

[13] J.T. Chen, S.R. Kuo, K.H. Chen, Y.C. Cheng, Comments on ‘‘Vibration analysis of arbitrarily shaped membranes

using non-dimensional dynamic influence function’’, Journal of Sound and Vibration 235 (1) (2000) 156–171.

[14] J.T. Chen, S.R. Kuo, K.H. Chen, A nonsingular integral formulation for the Helmholtz eigenproblems of a

circular domain, Journal of Chinese Institute of Engineers 12 (6) (1999) 729–739.

[15] S.R. Kuo, J.T. Chen, C.X. Huang, Analytical study and numerical experiments for true and spurious

eigensolutions of a circular cavity using the real-part dual BEM, International Journal for Numerical Methods in

Engineering 48 (2000) 1401–1422.

[16] S.W. Kang, J.M. Lee, Eigenmode analysis of arbitrarily shaped two-dimensional cavities by the method of point

matching, Journal of Acoustical Society of America 107 (2000) 1153–1160.

[17] S.R. Kuo, W. Yeih, Y.C. Wu, Applications of the generalized singular-value decomposition method on the

eigenproblem using the incomplete boundary element formulation, Journal of Sound and Vibration 235 (5) (2000)

813–845.

[18] J.T. Chen, Y.P. Chiu, On the pseudo-differential operators in dual boundary integral equations using degenerate

kernels and circulants, Engineering Analysis with Boundary Elements 26 (2002) 41–53.

[19] W. Chen, Symmetric boundary knot method, Engineering analysis with Boundary Elements 26 (2002) 489–494.

[20] W. Chen, M. Tanaka, A meshless, integration free and boundary-only RDF technique, Computers and

Mathematics with applications 43 (2002) 379–391.

J.T. Chen et al. / Journal of Sound and Vibration 262 (2003) 370–378378


	Comments on ’’Free vibration analysis of arbitrarily shaped plates with clamped edges using wave-type function’’
	Derivation of true and spurious eigensolutions for the plate vibration using degenerate kernels and circulants in the NDIF meth
	Concluding remarks
	References


