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In this paper, four incomplete boundary element formulations, including the real-part
singular boundary element, the real-part hypersingular boundary element, the
imaginary-part boundary element and the plane-wave element methods, are used to solve
the free vibration problem. Among these incomplete boundary element formulations, the
real-part singular and the hypersingular boundary elements are of the singular type and
the other two are of the regular type. When the incomplete formulation is used, the spurious
eigensolution may be encountered. An auxiliary system, whose boundary conditions are
linearly independent of those of the original system, is required in the proposed method in
order to eliminate the spurious eigensolution. A mathematical proof is given to show that
the spurious eigensolution will appear in both the original and auxiliary systems. As a result,
one can eliminate spurious eigensolution by means of the generalized singular-value
decomposition method. In addition to the spurious eigensolution problem, the regular
boundary element formulation further su!ers ill-conditioned behaviors in the problem
solver. It is explained analytically using a circular domain why ill-conditioned behaviors
exist. Two main ill-conditioned problems are the numerical instability of solution and the
nonexistence of solution. To solve the numerical instability of solution problem existing in
these proposed regular formulations, the Tikhonov's regularization technique is used to
improve the condition number of the leading coe$cient matrix; further, the generalized
singular-value decomposition method is used to eliminate spurious eigensolutions.
Numerical examples are given to verify the performance of these proposed methods, and the
results match the analytical values well.

( 2000 Academic Press
1. INTRODUCTION

The Helmholtz equation is often encountered when one deals with the acoustic problem or
the vibration problem. It is often used to describe the vibration of a structure [1], the
acoustic cavity problem [2], the radiation of a wave [3] and the scattering of a wave [4]. To
solve the Helmholtz equation numerically, usually, the "nite element method (FEM) or the
boundary element method (BEM) is adopted. The basic idea of the boundary element
method is to use the so-called fundamental solution, which physically means the response at
the observation point due to the action at the source point, and the Maxwell}Betti
reciprocity theorem. (Some researchers call it the Green's identity in the potential problem.)
However, for the Helmholtz operator, the complex-valued fundamental solution is required
theoretically, and the boundary element formulation has been studied using such an
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814 S. R. KUO E¹ A¸.
approach [5, 6]. De Mey [7] later proposed a simpli"ed formulation that used the real-part
function of the complex-valued fundamental solution to construct the real-part BEM for
the Helmholtz equation. This simpli"ed method can save computation time since only the
real-value computation is required. However, he only searched for the "rst eigenvalue, so
the accompanying spurious eigenvalue phenomenon occurring due to use of the real-part
formulation did not appear in his paper. Hutchinson [8] used the real-part BEM to solve
vibration problems of a membrane, and he found that the spurious eigensolution
phenomenon existed when he used this approach. He proposed a sorting technique to "lter
out the spurious eigenmode by examining the mode shape. Later, other real-valued
formulations were developed, e.g., the multiple-reciprocity method (MR/BEM) [9}11] and
the dual-reciprocity method (DR/BEM) [12}14]. In these algorithms, the Helmholtz
equation is treated as a Poisson equation with an external source; therefore, the
fundamental solution of the Laplace equation is considered. Kamiya et al. [15] found by
means of a two-dimensional demonstration that the MR/BEM is nothing more than the
real-part formulation. Subsequently, Yeih et al. [16] gave a general proof of this statement
and found that the conventional MR/BEM and the real-part BEM formulation are not
a complete solution method; as a result, a spurious eigensolution occurs. In order to "lter
out the spurious eigenvalue, several methods have been developed so far. Chen and Wong
[17] "rst proposed combining the real-part singular and hypersingular boundary element
equations and then checking the consistency of their corresponding modal shapes. Later,
a threshold method was further proposed by Liou et al. [18]. Yeih et al. [19, 20] proposed
the combined use of the real-part singular and hypersingular equations to construct an
overdetermined system, and the singular-value decomposition method (SVD) was adopted
to eliminate spurious eigensolutions. In the above-mentioned methods, the real-part
singular and hypersingular methods are both used to "lter out the spurious eigenvalue.
Chang et al. [21] recently discovered that one can "lter out the spurious eigenvalue within
the real-part singular or hypersingular integral equation system. They used the domain
partition technique and "ltered out the spurious eigenvalue by simply adjusting the position
of the internal links (the partition boundaries). However, in their methods, at least two
meshes are required; thus, more computation is required. Nevertheless, it was then proved
that one can successfully "lter out the spurious eigenvalue using the real-part singular or
hypersingular equation alone. This is quite meaningful from the computational point of
view since the derivation of the hypersingular element requires a lot of theoretical
derivation work, and numerical integration of a higher order shape function within the
hypersingular element is usually not easy to accomplish. In the above-mentioned methods,
the singular-type BEMs are used but they are all incomplete due to using the real-part
formulation only. In addition to singular formulations, there exist other attempts using
regular formulation and we will give a brief summary as follows.

De Mey [7] not only presented the real-part formulation in his paper, he also claimed
that the imaginary-part formulation that used imaginary parts of kernels could be used in
vibration problems. Notice that there exists no singular source in the imaginary-part
formulations; therefore, this formulation does not need to treat the singular or even the
hypersingular integral. Since no singular source exists in this formualtion, we call this
formulation the regular formulation or source-free formulation. Further, it preserves the
merit of the real-part formulation; that is, only the real-valued calculation is employed in
such an approach. De Mey has also proposed using another source-free formulation in
which a solution satisfying the Helmholtz equation is adopted as the auxiliary system.
However, De Mey found that he could not reach the correct answer by means of this
approach. From the mathematical point of view, no matter which kind of source-free
formulation we use, the same situation shall we encounter. It is then puzzling why De Mey
JSV 20002946



GSVD ON EIGENPROBLEM 815
claimed that one could obtain the solution using one regular formulation but have no
de"nite result using another regular formulation. Kim and Kang [22] used the wave-type
base functions to analyze the free vibration of membranes. In this paper, the wave-type base
functions, which are periodic along each element and propagating into the domain of
interest, were selected to construct the needed equations. They pointed out that some
incorrect answers would appear and they also explained this phenomenon as
incompleteness of base functions. Later, Kang et al. [23] proposed another regular
formulation using the so-called non-dimensional dynamic in#uence function. Simply
speaking, their method took the response at any point inside the domain of interest as
a linear combination of many non-singular point sources located on the selected boundary
nodes. They claimed that their method worked very well and no numerical instability
behaviors were reported. Recently, Chen et al. [24] used the circular domain and the
property of circulants to examine theoretically the possibility of using the imaginary dual
BEM as a solver for the Helmholtz eigenproblems. They reported that spurious
eigensolutions also appeared in the imaginary dual BEM; however, no numerical examples
were illustrated in their paper. Another non-singular boundary-type approach is the Tre!tz
method, which have been widely used to deal with many types of problems [25}27]. The
boundary-type Tre!tz method basically employs the complete set of solutions satisfying the
governing equation as the beginning step. To derive the boundary integral equation, either
the reciprocity law can be used, which is similar to that used in the conventional BEM, or
the weight residual method can be used. A main bene"t for the Tre!tz method is that it does
not involve singular integrals due to its solution basis functions (T functions); thus, it can be
categorized into the regular boundary element method. A review article about the Tre!tz
method can be found in reference [28]. The above-mentioned boundary element
formulations are all regular; however, they are not complete formulations as we will explain
this later in this paper.

The main goal of this research is to seek for the solution method for the Helmholtz
eigenproblem using an incomplete BEM formulation. For the incomplete singular BEM,
the spurious eigensolutions are eliminated by means of the generalized singular-value
decomposition method (GSVD). Unlike the traditional approaches, this method can
successfully eliminate spurious eigensolution within the singular real integral equation or
the hypersingular real integral equation. For the incomplete regular BEM, in addition to
the spurious eigensolution numerical instability of solution may appear. The Tikhonov's
regularization method is adopted with the GSVD, it can successfully solve the numerical
instability of solution and possible spurious eigensolutions at the same time. Further, the
limitation of using the incomplete regular BEM is studied analytically.

The present paper consists, apart from the literature review and the motivation of this
study given in the introduction (section 1), of the following six sections. Section 2 describes
the construction of various BEM formulations including the complex-valued formulation,
real-singular formulation, real-hypersingular formulation, imaginary-regular formulations
and plane-wave formulation for solving the Helmholtz equation. Further, the incomplete
formulation is de"ned in the sense completeness of the basis functions and well-posedness of
solution. In Section 3, the spurious eigensolution is re-examined based on the
non-uniqueness of solution in the integral equation formulation, which results in the
inde"nite form of zero divided by zero. In section 4, a theorem to establish the theoretical
background of this study is given. From this theorem, it is known that one can distinguish
the true eigenvalue from the spurious one since spurious eigenvalues will exist in both the
original problem and the auxiliary problem, where the boundary conditions of these two
problems are linearly independent. Further, two alternative ways to "lter out the spurious
eigenvalues are proposed. In section 5, ill-conditioned behavior of regular BEM is examined
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by using a circular domain. It is shown that numerical instability of solution is a key issue
for the regular BEM. Following that, the Tikhonov's regularization is introduced for
stabilizing the problem. Furthermore, the non-existence of solution for proposed regular
formulations for treating a multiply connected domain is theoretically examined. In section
6, numerical examples are given to demonstrate the validity of the proposed methodology,
and some important discussions are given. In the "nal section (section 7), some concluding
remarks are made based on the results of this study.

2. CONSTRUCTION OF VARIOUS BEM FORMULATIONS

The problem we consider here is a two-dimensional Helmholtz equation written as

(+2#k2) u (x)"0, x3X, (1)

where u (x) is the potential (acoustic pressure in the acoustic problem or displacement
function for the membrane vibration problem), x is the position vector of a point inside the
domain of interest X, k is the wave number and +2 is the Laplacian operator. To solve this
equation using the BEM, the complex-valued kernels are usually adopted, and the following
equation can be derived [29]:

(singular integral equation: UT equation)

cu (s)"RP< PC

;
C
(x, s) t (x) dC(x)!CP< PC

¹
C
(x, s) u (x) dC(x), (2a)

(hypersingular integral equation: LM equation)

ct (s)"CP<PC

¸
C
(x, s) t(x) dC(x)!HP< PC

M
C
(x, s) u(x) dC(x), (2b)

where CPV, RPV and HPV denote the Cauchy principal value, the Riemann principal
value and the Hadamard principal value, respectively; t(s),Lu (s)/Ln

S
with n

S
denotes the

outnormal direction at point s; C denotes the boundary enclosing the domain X. It should
be noted that the constant value of c depends on where s is located. When s point
approaches the smooth boundary, the value of c is taken as n, and c is equal to 2n when s is
located inside the domain X. The four kernels used in the above equations are
complex-valued and have the following properties: (+2#k2);

c
(x, s)"2nd(x!s) where

d( ) ) is the Dirac delta function and the ;
C
(x, s) satis"es the radiation condition, ¹

C
(x, s)

,L;
C
(x, s)/Ln

x
, ¸

C
(x, s),L;

C
(x, s)/Ln

S
and M

C
(x, s),L2;

C
(x, s)/Ln

x
Ln

S
. Detailed

expressions of these four kernels in the constant element scheme can be written as

;
C
(x, s)"!
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2
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(kr), (3a)

¹
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where H(1)
n

(kr) denotes the nth order Hankel function of the "rst kind; r is the distance
between the source point, s, and the "eld point, x; n

i
is the ith component of the outnormal

vector at x; nN
i
is the ith component of the outnormal vector at s; and

y
i
,x

i
!s

i
. (4)

After constant element discretization is performed on the boundary, equations (2a) and (2b)
can be written in the following matrix form:

(complex UT equation)

[T1 !U] C
u

tD"[0], (5a)

(complex LM equation)

[M!L1 ] C
u

tD"[0], (5b)

where

;
pq
,PC

q

;
C
(x, s

p
) dC(x), (6a)

¹M
pq
,nd

pq
!PC

q

¹
C
(x, s

p
) dC(x), (6b)

M̧
pq
,nd

pq
!PC

q

¸
C
(x, s

p
) dC(x), (6c)

M
pq
"PC

q

M
C
(x, s

p
) dC(x), (6d)

in which C
q
represents the qth element, s

p
represents the collection point in the pth element

and d
pq

is the Kronecker delta symbol.
To avoid complicated computation in the complex-valued domain, the real-part BEM

formulation is usually used to solve such an eigenproblem. The real-part BEM can be
understood as using the real parts of the complex-valued kernels to replace the
complex-valued ones in the above formulations. This means that one can simply use the
following four kernels to replace complex-valued ones:

(real singular integral equation: real UT equation)

cu(s)"RP< PC

;
R
(x, s) t(x) dC(x)!CP< PC

¹
R
(x, s) u(x) dC(x) (7a)

(real hypersingular integral equation: real LM equation)

ct (s)"CP< PC

¸
R
(x, s) t(x) dC(x)!HP< PC

M
R
(x, s) u(x) dC(x), (7b)
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where

;
R
(x, s),Real(;

C
(x, s)), (8a)

¹
R
(x, s),Real(¹

C
(x, s)), (8b)

¸
R
(x, s),Real(¸

C
(x, s)), (8c)

M
R
(x, s),Real(M

C
(x, s)). (8d)

However, the real-part BEM formulations will result in the spurious eigensolution that has
been mentioned in the Introduction. The existence of such a spurious eigenvalue has been
explained by Yeih et al. [16] as being due to a lack of information contributed by the
imaginary part of the complex-valued kernels.

Based on a similar idea, we can obtain the imaginary-part formulation, a regular
formulation, by taking the imaginary part of equations (2a) and (2b) as follows:

(imaginary UT equation)

0"PC

;
I
(x, s) t(x) dC(x)!PC

¹
I
(x, s) u (x) dC (x) (9a)

(imaginary LM equation)

0"PC

¸
I
(x, s) t (x) dC(x)!PC

M
I
(x, s) u (x) dC(x), (9b)

where

;
I
(x, s),Imag(;

C
(x, s)), (10a)

¹
I
(x, s),Imag(¹

C
(x, s)), (10b)

¸
I
(x, s),Imag(¸

C
(x, s)), (10c)

M
I
(x, s),Imag(M

C
(x, s)). (10d)

Notice that equations (9a) and (9b) can also be obtained from the Green's identity since
;

I
(x, s) and ¸

I
(x, s) both are solutions of the Helmholtz equation. Although there is no

singular source in the kernel functions, the kernels we use are still in a form of the radial
distance, i.e., they are functions of r. To obtain the regular formulation, we should choose an
auxiliary system which has several properties: (1) the solution of this auxiliary system can
satisfy the Helmholtz equation; and (2) the solution of this auxiliary system needs to have
the ability to construct enough equations. Using the imaginary-part equation is one
alternative; another alternative is to use the "ctitious boundary element method [30], in
which the collocation points are still on the real boundary and the source densities are
distributed on the "ctitious boundary outside the physical domain. Here, we will suggest an
alternative approach. Consider the solution of the auxiliary system as e*k(mx`ny), where
m2#n2"1 and (x, y) is the position vector of a speci"c source point; such a solution
represents a plane wave. Let x"o cos h, y"o sin h, m"cos / and n"sin /; then, we can
rewrite the solution as e*ko #04(h~(). In such an expression, the plane wave propagates in
a direction that has an angle / inclined with respect to the x-axis. Although this solution is
not written as a two-point function, we can construct many equations by adjusting the angle
JSV 20002946
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/. To obtain the real-valued formulations, one can select 2N directions of / such that each
plane-wave direction has an opposite plane wave propagating as shown in Figure 1. Then,
we can choose the real-part of e*ko #04(h~() and imaginary part of e*ko #04(h~() as the basis since
they both satisfy our requirements. Generally, this solution can be written as P (x, /).
Plugging this solution into the Green's identity, we have

0"PC

P (x, /) t(x) dC!PC

LP(x, /)

Ln
x

u (x) dC(x). (11)

No matter whether we solve the boundary unknowns using equations (9a), (9b) or (11), we
do not encounter any singular or hypersingular integral; thus, the formulation quali"es as
a regular BEM formulation. Of course, after the boundary quantities are all known, the
internal "eld quantity cannot be represented by equations (9a), (9b) or (11) but it can be
represented by the regular integral formulation shown in equation (2a) by setting c equal to
2n. This inconsistency is due to that our formulations are of the direct type BEM. Kang's
method [23] will not encounter such di$culties since their method is not of the direct BEM.

The above BEM formulations, no matter they are singular or regular, are incomplete.
The meaning of incompleteness is de"ned as the lack of su$cient and well-posed constraint
equations comparing to the complex-valued formulations, equations (2a) or (2b). For
example, let us compare equations (2a) and (7a). The real-part singular integral equation
although keeps singular property of the kernel, it loses the constraint equation from the
imaginary part. On the contrary, the imaginary-part formulation (imaginary UT or LM
equation) loses information from the real part of the complex-valued kernel. Plane-wave
formulation can be proved to be equivalent to the Tre!tz method for the simply connected
Figure 1. Plane-wave method.
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820 S. R. KUO E¹ A¸.
domain since they have the same basis functions, which will be illustrated later on.
However, when a multiply connected domain is concerned, the complete set of the basis
functions should include more functions. It means that the complete set of basis functions
for the Tre!tz method and plane-wave method must adjust according to the problem. Due
to this property, we still categorize these methods as an incomplete BEM formulation.

Another reason for categorizing all methods proposed in this paper as incomplete
formulations is that they all su!er some side-e!ects such as spurious eigensolution,
numerical instability of solution or non-existence of solution. It is then very important for
us to know how to deal with these side-e!ects.

3. FILTERING OUT SPURIOUS EIGENSOLUTIONS

In the following, we brie#y review the conventional approach of "ltering out spurious
eigensolutions. First, let us rewrite equations (7a) or (7b) in the real-part BEM formulations
and combine the set of boundary conditions in the following matrix form [31]:

(real UT equation)

C
T1
R

!U
R

a b D C
u

tD"[0], (12a)

(real LM equation)

C
M

R
!L1

R
a b D C

u

tD"[0], (12b)

where elements for the submatrices U
R
, T1

R
, L1

R
and M

R
are obtained by simply using the

real parts of equations (6a), (6b), (6c) and (6d) respectively. It should be noted that
au#bt"0 in equations (12a) and (12b) is the homogeneous boundary condition, and that
a and b are diagonal matrices. For the eigenvalues, whether they are true or spurious, they
cause rank de"ciency of the leading coe$cient matrix in equations (12a) or (12b); as a result;
the inverse of the leading coe$cient matrix does not exist. Nevertheless, previous studies
[18}20] found that the spurious eigenvalues appearing in the real singular integral equation
(real UT equation) will not cause rank de"ciency in the real hypersingular integral equation
(real LM equation) and vice versa. They further proposed creating an overdetermined
system by combining the real-part UT and LM equations to "lter out the spurious
eigenvalues.

Let us take another look at the spurious eigenvalue problem beginning with results
obtained for the Dirichlet and Neumann type problems for the unit circular cavity (see
reference [32]) shown in Figures 2(a) and 2(b) using the real UT equation. In these "gures,
the minimum singular value is plotted versus the wave number since the singular-value
decomposition method is widely recognized as the best method for representing the rank of
a leading coe$cient matrix [33, 34]. From these "gures, one can amazingly "nd that the
spurious eigenvalues in both problems, one of the Dirichlet type and the other of the
Neumann type, appear at the same wave numbers. Although there also exists a true
eigenvalue (k"3)83) which appears in both problems, the eigenmodes are J

1
(3)83q)e$*h

and J@
0
(3)83q) for the Dirichlet and Neumann problems respectively. In the

above-mentioned terms, J
n
(x) is the nth order Bessel function of the "rst kind and q is the

distance measuring from the center of the circle. Let us now examine the Dirichlet problem
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Figure 2. Eigenvalues for a unit circular domain using the real-part UT equation for the Dirichlet case (a) and
the Neumann case (b). S: Spurious eigenvalue; T: True eigenvalue; w: 3)83.
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"rst; the equation we obtain is actually

U
R
t"T1

R
u"0. (13a)

On the other hand, the equation for the Neumann problem is

T1
R
u"U

R
t"0. (13b)

By comparing equations (13a) and (13b), and considering the conclusion we drew from
Figures 2(a) and 2(b), we can say that the spurious eigenvalue, which causes rank de"ciency
for U

R
and T1

R
at the same time, may be a false alarm due to that degeneration of integral

equation representation. Going back to equation (13a), let us assume that the following
JSV 20002946
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decomposition exists:

(PR
U
V*

1
)t"(PR

T
V*

2
) u"0, (14)

where P is a non-singular matrix; R
U

and R
T

represent the diagonal matrices, which has
values allocated on the diagonal line; V*

1
and V*

2
are the complex conjugate transpose of the

unitary matrices V
1

and V
2
. This decomposition method does exist and will be introduced

in detail in the next section. Following that, we can obtain

u"(V
2
R~1

T
R
U
V*

1
) t"(V

2
RV*

1
) t"0 (15)

provided that the inverse of the T1
R

matrix is permissible, in which R,R~1
T

R
U
.

From the numerical point of view, when the wave number approaches the true eigenvalue
of the U

R
matrix, the minimum diagonal value in R will be very near to zero which means

rank de"ciency exists. When the wave number approaches the spurious eigenvalue of the
U

R
matrix, the minimum diagonal value in the R

U
matrix is very near to zero; as a result, it

makes us to take this wave number as a true eigenvalue. However, the diagonal value in R,
which is obtained by dividing the minimum diagonal value in the R

U
matrix by the

corresponding entry in the R
T

matrix, now is not near zero due to the cancelling e!ect.
Analytically speaking, non-uniqueness of solution occurs at the spurious eigenvalues due to
the undetermined form of zero divided by zero. Therefore, such an integral representation
method theoretically will not lead to spurious eigenvalues if one can obtain the inverse
operator analytically and the L'Hospital rule is adopted. Comparing the above-mentioned
spurious eigenvalues with the "ctitious resonance frequencies of the radiation problem for
the exterior domain [35], one can conclude that such unreasonable rank de"ciency
problems occur due to the degeneration of the integral equations. Theoretically, they lead to
the same mathematical problem of the undetermined form of zero divided by zero.
A comprehensive review of solution non-uniqueness can be found in reference [36]. It
should be noted that although only the real singular integral equation (real UT equation)
has been used as an example to explain the phenomenon of spurious eigenvalues, the same
mathematical structure exists in the real-part hypersingular integral equation (real-part LM
equation). Further, one can conclude that the value at which the "ctitious eigenvalue occurs
is independent of the boundary conditions given but does depend on the integral equation
one selects. The above statement sheds light on our goal of "nding an algorithm to "lter out
the spurious eigenvalues within the real-part UT or LM equation itself; however, several
questions must be answered "rst. First for all, the examples given above are Dirichlet- and
Neumann-type problems. How can we generalize the cancel e!ect mentioned above to
a Robin-type problem? Furthermore, how can one implement the above-mentioned cancel
e!ect in the numerical sense? We will answer these questions one by one in the following
sections.

4. MATHEMATICAL BACKGROUND FOR THE GENERALIZED SINGULAR-VALUE
DECOMPOSITION METHOD

In this section, we will begin with a mathematical lemma.

Lemma 1. Given that the governing equation is a Helmholtz equation, (+2#k2) u (x)"0,
for a domain X enclosed by the boundary C as shown in Figure 3, and that the overspeci,ed
homogeneous boundary conditions are u (x)"0 and t(x)"0 for x on the sub-boundary
C LC, there exists a unique solution, u (x)"0 for x3X#C.

1
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Figure 3. Illustration of a domain.
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Proof. Assume there are two solution systems, u(1)(s) and u(2)(s), and both satisfy the
Helmholtz equation in the domain X. For the "rst solution set, assume that u(1)(x)"0 and
t(1)(x)"0 for x on C

1
. For the second solution set, assume that u(2)(x)"0 but that

t(2)(x)O0 for x on C
2
, where C

2
"C!C

1
. Then, from the Green's identity, one can obtain

the following identity:

PC
1`C

2

t(2) (x) u(1)(x) dC(x)"PC
1`C

2

t(1)(x) u(2) (x) dC(x). (16)

Based on the conditions given, equation (16) can be reduced to

PC
2

t(2) (x) u(1)(x) dC(x)"0.

Since t(2)(x) is arbitrary for x on C
2
, it can be concluded that u(1)(x)"0 for x on C

2
. We then

have u(1)(x)"0 for x on the whole boundary C.
Similarly, we can design another solution set, u(3)(s), which has t(3)(x)"0 but u(3)(x)O0

for x on C
2
. Then, we will have the following identity:

PC
2

t(1) (x) u(3)(x) dC(x)"0.
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Finally, we have t(1) (x)"0 for x on C
2
; thus, we can conclude that t(1)(x)"0 on the entire

boundary.
Let us remember that the above derivation does not have any speci"c restriction of C

2
. It

means that if we choose any boundary C* such that C
1
#C* constructs a closed boundary

and encloses a subdomain D, we still have u(1) (x)"0 and t(1)(x)"0 for x on C*. Therefore,
we conclude that u(1)(x)"0 and t(1)(x)"0 for x3C#X. K

Before going further, we will "rst give a de"nition of the homogeneous linearly
independent boundary conditions.

De5nition. Two sets of boundary conditions, a
1
(x) u (x)#b

1
(x) t (x)"0 and a

2
(x) u (x)#

b
2
(x) t(x)"0, where a

1
(x), a

2
(x), b

1
(x) and b

2
(x) are given functions, are said to be

homogeneous linearly independent boundary conditions if and only if

det KK
a
1
(x) b

1
(x)

a
2
(x) b

2
(x)KKO0

for any x on the boundary.

According to Lemma 1, the following theorem can be proved.

Theorem 1. For the Helmholtz equation, given two systems having homogeneous linear
independent boundary conditions on part of the boundary denoted as C

1
, it is impossible for

both systems to have the same eigensolution.

Proof. Assume that these two systems can have the same eigensolution, i.e., they have the
same non-trivial eigenmode at the same eigenvalue. However, it is known that they have
homogeneous linearly independent boundary conditions on the same boundary C

1
. It can

then be concluded that for their common eigenmode, u (x)"0 and t (x)"0 on the boundary
C
1
. From Lemma 1, the only possible eigenmode is u (x)"0; i.e., the trivial mode, which

obviously leads to a contradiction. Therefore, we complete the proof. K

Theorem 1 suggests that one can pick an auxiliary system whose boundary conditions are
homogeneous linearly independent of those of the original system. Then, these two systems
should not have the same eigensolution. Therefore, if one "nds that at a speci"c wave
number both systems have rank de"ciency, then one can directly says that this wave
number is not a true eigenvalue but a spurious eigenvalue.

It should be noted here that the minimum singular value versus wave number diagrams
for the two systems should not be used to judge whether the eigenvalue is true or spurious.
It is possible for two systems to have di!erent eigensolutions at the same wave number
owing to the existence of di!erent eigenmodes.

We will propose two alternative ways to "lter out spurious eigenvalues in the
following:

Proposition 1. For the original problem, we symbolically write the equations we want to
solve as

[A] C
u

tD"C
T1
R

!U
R

a
1

b
1
D C

u

tD"[0]. (17a)
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Then, we choose another auxiliary system and symbolically express it as

[B] C
u

tD"C
T1
R

!U
R

a
2

b
2
D C

u

tD"[0]. (17b)

Consider the QR factorization of the matrix [AT
BT]; we have

C
AT

BTD"C
Q

11
Q

12
Q

21
Q

22
D C

R

0D , (18)

where

Q"C
Q

11
Q

12
Q

21
Q

22
D

is an orthogonal matrix and R is an upper triangular matrix.
Let

Q"C
Q

11
Q

12
Q

21
Q

22
D"C

U 0

0 !VD C
C S

!S CD C
W 0

0 YD
T

(19)

be the C-S decomposition of Q. Here, U, V, W and Y are orthogonal matrices, C"diag (c
i
)

with c
i
*0, S"diag(s

i
) with s

i
*0 and C2#S2"I. Then, we have

A"RTQT
11
"(RTW)CUT (20)

and

B"RTQT
21
"(RTW)SVT. (21)

The above method is called the generalized singular-value decomposition method [37].
Also, diagonal entries of the diagonal matrix C or S, then, are called the generalized singular
values. It can be found that due to the property C2#S2"I, if the rank de"ciency occurs
only for matrix A, then the minimum generalized singular value in matrix C will approach
zero and vice versa. However, if rank de"ciency occurs for both matrices A and B, at least
one diagonal entry in R will become zero, and the minimum generalized singular value will
not approach zero theoretically. To examine equations (20) and (21) with equation (14), we
can say that the generalized singular-value decomposition method can be used to extract
the common part between two matrices as we expect in equation (14). Further, the common
part, matrix P in equation (14), now is (RTW) in equations (20) and (21). It is also important
to note that if the common part in matrices A and B is a singular matrix, it should appear in
matrix R but not in matrix W since matrix W is required to be orthogonal.

The above algorithm may encounter di$culties in numerical implementation. Since the
inde"nite form of zero divided by zero can be determined by the generalized singular-value
decomposition in the theoretical sense, it is actually not so easy to implement in numerical
sense once errors are introduced. In other words, it is not physically correct to implement an
inde"nite form of zero divided by zero in the numerical sense. A simple threshold
generalized singular-value decomposition method is then proposed as follows. We known
from the above statement that when the minimum value of diagonal entries of matrix
R approaches zero, both matrices A and B face rank de"ciency. This means the inde"nite
form of zero divided by zero is encountered. To avoid di$culty of numerical
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implementation for the inde"nite form, one can simply skip such an attempt. Therefore, one
can select a threshold value such that no numerical calculation is performed while the
minimum diagonal value of matrix R is smaller than that threshold. Detailed discussions
about this method will be given in section 6 later.

Proposition 2. From the above proposition, one can say that the spurious eigenvalue which
cause both matrices A and B to degenerate must be embedded in matrix R.=e can check the
rank of matrix [AT

BT] using the singular-value decomposition method or QR factorization [37].
In the singular-value decomposition method, if the minimum singular value approaches zero,
then the rank is de,cient. For QR factorization, if the matrix is rank de,cient, then at least one
diagonal entry in R is zero or very near zero. ¹herefore, comparing this information with the
rank de,ciency information obtained from the original problem, the spurious eigenvalue can
then be easily eliminated.

It should be mentioned here that the matrix condensation is performed to reduce the
dimensionality of the submatrices corresponding to the original and auxiliary systems
before any QR factorization or GSVD operation. Therefore, the actual size of the matrices
used in the numerical operation is half the size of that in equation (18).

5. ILL-CONDITIONED BEHAVIORS OF THE REGULAR FORMULATION

In the previous two sections, the spurious eigensolutions existing in the incomplete BEM
formulations are eliminated by means of the generalized singular-value decomposition.
Spurious eigensolutions do not only occur in the incomplete singular BEM formulations
but also possibly appear in the regular formulation such as the imaginary UT or imaginary
LM equation [24]. For regular formulation, the price we pay may not include spurious
eigensolutions only. In order to understand what price we pay when the regular formulation
is used, we will begin with the analytical derivation of the eigenvalue analysis for a circular
domain with radius o. We will begin with imaginary formulations then the plane-wave
method.

5.1. IMAGINARY FORMULATION

For simplicity, the imaginary UT formulation shown in equation (9a) is selected, and the
boundary condition selected is of the Dirichlet type, i.e., u"0 on the boundary. A circular
domain with radius of o is selected as an example, the analytical derivation shown as follows
is similar to previous studies [38, 39]. First let us discretize the boundary into 2N constant
elements, we have the following matrix representation:

At"0, (22)

where t is the #ux value on the boundary and the matrix A is found to be symmetric and to
have the circulant form as

A"

a
0

a
1

a
2

2 a
2N~1

a
2N~1

a
0

a
1

2 a
2N~2

a
2N~2

a
2N~1

a
0

2 a
2N~3

F F F } F

a
1

a
2

a
3

2 a
0

, (23)
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in which

a
n
";

I
(x, s) ) oDh";

I
(h

n
) ) oDh, Dh,

2n
2N

, h
n
"nDh, n"0, 1,2, 2N!1 (24)

and ;
I
(x, s)"Imag[;

C
(x, s)]";

I
(h

n
)"+=

m/~=
J
m
(ko) J

m
(ko) cos (mh

n
). Notice that the

kernel ;
I

is a function of the position vectors of the source point, s, and "eld point x.
However, when x and s are both located on the boundary of the circular domain with
de"nite radius o, the kernel then becomes a function of the relative angle between two
elements, that is a function of h

n
.

From the de"nition, it is easy to verify that a
2N~k

"a
k
. For a discretized Fourier's

transformation matrix, R, that is

R"

1

J2N

1 1 1 2 1

a1
0

a1
1

a1
2

2 a1
2N~1

a2
0

a2
1

a2
2

2 a2
2N~1

F F F 2 F

a2N~1
0

a2N~1
1

a2N~1
2

2 a2N~1
2N~1

, (25)

where a
1
"e(2n@2N)i"e*Dh and a

m
,(a

1
)m, we have

RM TR"I, (26)

where R1 is the complex conjugate of R. Further, we have

a2N~n
m

"a~n
m

, a
2N~m

"aN
m

and a2N
m

"1.

It can then be concluded that the matrix A can be decomposed into

AR"RA3 , (27)

where A3 is a diagonal matrix with diagonal entries

aJ
m
"

2N~1
+
n/0

a
n
an
m
"

2N~1
+
n/0

a
n
(an

m
#a~n

m
)/2#

2N~1
+
n/0

a
n
(an

m
!a~n

m
)/2, (28)

and the last summation on the right-hand side of the above equation is zero since

2N~1
+
n/0

a
n
(an

m
!a~n

m
)/2"

2N~1
+
n/0

a
n
(an

m
!a2N~n

m
)/2"

2N~1
+
n/0

(a
n
an
m
/2!a

2N~n
a2N~n
m

/2)"0. (29)

It can then be concluded that

aJ
m
"

2N~1
+
n/0

a
n
an
m
"

2N~1
+
n/0

a
n
(an

m
#a~n

m
)/2"

2N~1
+
n/0

a
n
cos(mnDh), m"0, 1, 2,2, 2N!1.

(30)
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Notice that the following property holds:

aJ
2N~m

"

2N~1
+
n/0

a
n
cos[n(2N!m)Dh]"

2N~1
+
n/0

a
n
cos[2nn!mnDh]

"

2N~1
+
n/0

a
n
cos[nmDh]"aJ

m

for m"1, 2,2, N!1.
When N becomes very big, it yields

aJ
m
+o P

2n

0

;
I
(h) cos(mh) dh"o P

2n

0

=
+

l/~=

J
l
(ko) J

l
(ko) cos(lh) cos(mh) dh

"2noJ
m
(ko) J

m
(ko), m"0, 1, 2,2, N. (31)

Taking the determinant value of matrix A, we have

det(A)"det(A3 )+a
0

'Ca
N

'C N~1
<
m/1

aJ 2
m

"(2no)2NJ2
0
(ko) J2

N
(ko)

N~1
<
m/1

[J2
m
(ko)]2. (32)

In equation (32), we "nd that the expected rank de"ciency of matrix A occurs at the wave
number that makes J

m
(ko)"0 for the imaginary UT equation. Similar derivation [24] from

the imaginary LM equation can be conducted, and we "nd that rank de"ciency occurs at
a wave number that makes J

m
(ko)"0 or J@

m
(ko)"0, where d@ means to take derivative with

respect to o, i.e., to take derivative with respect to the radial direction. Combining these
derivations, we can conclude that J

m
(ko)"0 is the true eigenequation. In this case, the

imaginary UT equation does not have spurious eigenvalues theoretically, but the imaginary
LM equation may have spurious eigenvalues [24]. Although spurious eigensolutions are
expected, we can combine both sets of equations together and then use the singular-value
decomposition method to "lter them out theoretically [19, 20]. It seems that we should
obtain the solution from the imaginary-part equations. Figure 4 shows the minimum
singular-value plot obtained using the combination of imaginary UT and LM equations
with the singular-value decomposition technique. From the "gure, we can see that the true
eigenvalue cannot be found. The reason is as follows. Let us examine equation (32); we "nd
that there exists a very small value for J

m
(ko) and/or J@

m
(ko) in the imaginary UT and LM

equations when m is big enough and ko is small. Such a small value will mislead us to believe
that the leading coe$cient matrix is rank de"cient in the numerical sense; furthermore, this
phenomenon becomes worse when the number of elements increases. We can say that the
high order modes contaminate the eigenvalue search. De Mey [7] claimed that he could
"nd the "rst eigenvalue for the Dirichlet case using the imaginary UT method. Based on our
arguments, this declaration is not generally true. Numerically speaking, the high order
mode contamination is an ill-posed behavior that is often called numerical instability.
Therefore, we "nd that the price we pay when we use the regular formulation is that the
solution is not continuously dependent of data (numerical instability). When the solution is
solvable, numerical instability is encountered.

How can we deal with this numerical instability phenomenon? Let us remind ourselves
that the in#uence matrix we encounter here is an ill-conditioned matrix, so numerical
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Figure 4. Contamination in eigenvalue searching using the imaginary BEM formulation.
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instability occurs. In the case of the inverse problem, numerical instability is often
encountered, and the Tikhonov's regularization method [40] is often used to improved the
condition number of an ill-conditioned matrix. Here, we will brie#y introduced the
Tikhonov's regularization method. An ill-conditioned real matrix C has the singular-value
decomposition

C"P&VT, (33)

where P is an orthogonal matrix constructed by right singular vectors, & is a diagonal
matrix with singular values, p

i
, allocating in the diagonal line with p

1
)p

2
)2)p

max
and VT is the transpose of an orthogonal matrix constructed by the left singular vectors.
The condition number is de"ned as CM ,p

max
/p

1
. When CM is very big, the matrix C is said to

be an ill-conditioned matrix, and the numerical instability is expected. The Tikhonov's
regularization method basically provides a way to improve the condition number by adding
a small quantity to the singular value.

That is, a new matrix C3 is de"ned as

C3 ,C#P&eV
T, (34)

where &e is a diagonal matrix in which the diagonal entries are equal to e. It then can be
proved that the new condition number of C3 is (p

max
#e)/(p

1
#e)@CM when e is properly

chosen. When the value of e is bigger than the smallest singular value of matrix C, p
1
, but

much smaller than the maximum singular value of matrix C, p
max

, the condition number
will be dramatically improved. However, it should be mentioned here that e should not be
very big, otherwise, it will distort the system too much. Mathematically speaking, such an
operation will replace the original eigenproblem, A(k)t"RA3 (k)RTt"0, with a distorted
problem, A< (k)t"RMA3 (k)#eIN RTt"0. Although the condition number now is improved,
let us see what happens to the high order mode contamination now. Since e is added into the
singular value, we now have J2

m
(ko)#e+e if e is much bigger than J2

m
(ko) for the high order

mode under a small ko (i.e., m is big). However, for values near the true eigenvalue at low
wave numbers (low order mode, i.e., m is small), we have J2

m
(ko)#e+J2

m
(ko).
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Following the idea presented in section 4, we can choose an auxiliary system, whose
boundary condition is linearly independent of that of the original problem, and then use the
generalized singular-value decomposition method. Let us choose as our auxiliary system
the Neumann case, i.e., t"0 on the boundary. Similar analytical derivation shows that the
imaginary UT equation yields the eigenequation J@

m
(ko)J

m
(ko)"0. If the Tikhonov's

regularization method is also adopted, the singular value becomes J@
m
(ko)J

m
(ko)#e*, where

e* is another small value designated for the T
I
kernel. For the high order mode with a small

argument ko, this value is very close to e*. When these two regularized matrices are treated
together, the high mode contamination can be viewed as a &&contaminated'' spurious
eigensolution since both J2

m
(ko)#e+e and J@

m
(ko) J

m
(ko)#e*+e* are small. The

generalized singular-value decomposition method can then be adopted to "lter them out.
As mentioned in section 4, this method will treat rank de"ciencies occurring simultaneously
in the original and auxiliary system as the spurious eigensolution. Thus, this method is also
available in eliminating the high order mode contamination in the regular BEM
formulations if we take the high order mode contamination as a kind of spurious
eigenvalue.

From the above discussion, it seems that the regular formulation has no di$culty dealing
with eigenproblems. The above analytical derivation tells us that the basis functions we
have in the imaginary UT equation or LM equation is nothing but J

m
(ko) and J@

m
(ko). If

there is a problem which has a solution needed to be represented in terms of Y
m
(ko), can our

method work? Also, since the basis functions we have now are J
m
(ko) and J@

m
(ko) which are

evidently non-singular functions, can we represent a singular "eld quantity, e.g., the
displacement "eld of a membrane with a stringer? The answer is no; that is, we cannot
expect to use the regular formulation to represent a "eld quantity having a singular
behavior. To illustrate this, let us examine an annular region with an outer radius equal to
r
1

and inner radius equal to r
2
, and where the Dirichlet boundary condition is selected on

the boundary as shown in Figure 5. The analytical eigenequation for this case was derived
in reference [41], and is written as J

m
(kr

2
)Y

m
(kr

1
)!J

m
(kr

1
)Y

m
(kr

2
)"0. It can be seen for

some special selections of r
1

and r
2

we have Y
m
(kr

1
)"0 and Y

m
(kr

2
)"0 at the same

k value; thus, we have a mode shape Y
m
(kq) which is singular at q"0. Can we derive the

same eigenequation from the imaginary UT equation? The analytical derivation is given as
follows.
Figure 5. Illustration of an annular region.
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Assume that the outer radius and inner radius boundaries are all discretized into 2N
equal length elements, the imaginary UT formulation leads to

C
A B

D ED C
t
1

t
2
D"C

0

0D , (35)

where A, B, D and E are in#uence matrices in circulant form, and t
1
and t

2
are #ux values on

the outer boundary with radius r
1

and inner boundary with radius r
2
. Omitting lengthy

derivation, we "nally have the determinant value of leading coe$cient matrix:

det C
A B

D ED"k
0
k
1
2k

2N~1
"k

0
k
N

N~1
<
m/1

(k
m
)2, (36)

where

k
m
"(2n)2r

1
r
2
J
m
(kr

1
) J

m
(kr

2
) det K

J
m
(kr

1
) J

m
(kr

2
)

J
m
(kr

1
) !J

m
(kr

2
) K"0, (37)

k
2N~m

"k
m
, m"0, 1, 2,2, N.

It should be mentioned here that each k
m

value in equation (37) actually represents the
multiplication of two eigenconstraint equations; therefore, there are in total 4N
eigenconstraint equations in equation (36) rather than 2N equations.

Based on the above, the imaginary UT equation leads to an incorrect conclusion that for
every k value, the system degenerates.

From the spectrum theory, we know that for a speci"c operator and a speci"c boundary
condition, there exists a unique spectrum. If we miss some basis in the spectrum, no
surprising that we can only represent solution of some problems but not for all problems. As
for the regular BEM formulations, we can conclude that they are only suitable for problems
with non-singular eigensolutions, not for those with singular solutions. For problems that
cannot be solved using the regular BEM formulations, we call this ill-conditioned behavior
the non-existence of solution due to an incomplete set of basis functions for representation.

5.2. PLANE-WAVE FORMULATION

In the following, the plane-wave formulation is considered. Again, a circular domain with
a radius of o is considered and the boundary condition is of Dirichlet type. 2N equal length
elements are used to discretize the circular boundary and 2N plane waves are used as the
complementary solutions, P (x, /), in equation (11). Omitting lengthy derivation, one can
obtain

Gt"0, (38)

with G being a circulant matrix as

G"

g
0

g
1

g
2

2 g
2N~1

g
2N~1

g
0

g
1

2 g
2N~2

g
2N~2

g
2N~1

g
0

2 g
2N~3

F F F } F

g
1

g
2

g
3

2 g
0

. (39)
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The entries in equation (39) can be expressed as

g
m
"e*ko #04(mDt)oDt, (40)

where Dt,2n/2N and mDt is the relative angle between the normal direction of a speci"c
element and propagating direction of a speci"c plane wave. The mth eigenvectors of the
matrix G can be expressed as

[1 c
m

c2
m

2 c2N~1
m

]T (41)

where c
m
"e*mDt. The mth eigenvalue, j

m
, then can be found as

j
m
"

2N~1
+
n/0

cn
m

g
n
"

2N~1
+
n/0

e*nmDt g
n
. (42)

By using that

e*ko #04t"
=
+

l/~=

(i)lJ
l
(ko) e*lt (43)

and assigning N to a big value, equation (42) can be rewritten as

j
m
+P

2n

0

=
+

l/~=

(i)lJ
l
(ko) e*lt cos(mt) o dt

"no[(i)mJ
m
(ko)#(i)~mJ

~m
(ko)]

"noJ
m
(ko)[im#(!i)~m]. (44)

It then can be concluded that for a de"nite m, we have

j
m
"im2noJ

m
(ko). (45)

After "nding the eigenvalues of matrix G, the determinant of matrix G can be obtained as

det(G)"j
0
j
N

N~1
<
m/1

j2
m
, (46)

in which the relation of j
m
"j

2N~m
is used.

Then, it can be concluded that the eigenequation of the plane-wave method is simply
J
m
(ko)"0 which is correct. Similar derivation for the Neumann problem using the

plane-wave method can obtain the eigenequation is J@
m
(ko)"0. From the above derivation,

it is found that the plane-wave method will not yield the spurious eigensolutions. Further, it
can be said that the plane-wave method is mathematically equivalent to the Tre!tz method
in this case since they all have the same basis functions as shown in equation (43). Although
the plane-wave method does not su!er from the spurious eigensolution, the numerical
instability of solution still exists in such a formulation. It can be seen from equation (45) that
for small argument ko and big m, the value of the mth eigenvalue will be near to zero, thus
misleading us to believe that the rank de"ciency of matrix G occurs. Except for the
numerical instability, the plane-wave method also fails in dealing with a multiply connected
domain for the same reason that we introduce in the imaginary part formulation.
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6. NUMERICAL EXAMPLES

Example 1. A unit circular domain with the Dirichlet boundary condition, u"0.

6.1. REAL UT EQUATION

Choosing the auxiliary system as the Neumann-type boundary condition, t"0, let us
"rst examine Proposition 2 and check the rank de"ciency by means of QR factorization.
For simplicity, only the real UT equation is chosen to represent the singular incomplete
BEM formulation. The direct search method is adopted for the eigenvalue searching.
Although there exist many better methods such as the Newton}Raphson method, the
steepest descent method and so on, the direct search method is used because we want to
illustrate the full spectrum. It is shown in Figure 6 that at some speci"c wave number the
Figure 6. (a) Rank de"ciency appearing in the system using the SVD method. (b) Spurious eigenvalues
appearing in the system using QR factorization. S: Spurious eigenvalue; T: True eigenvalue.
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minimum value of the diagonal entries in matrix R (we will call it the minimum R value in
the remainder of this paper) can be very close to zero. Thus, such a wave number is
recognized as the spurious eigenvalue. Comparing this "gure with Figure 2(a), one can
easily "lter out the spurious eigenvalue. In Proposition 2, the auxiliary system can be
arbitrary but needs to have homogeneous, linearly independent boundary conditions. To
check this, another auxiliary system with the boundary condition given as 2u#3t"0 is
chosen. The minimum R value for this combination is shown in Figure 7. One can "nd that
our conclusion is correct. It then can be concluded that the spurious eigensolutions are
common for all problems once the integral equation is selected. If only the spurious
eigenvalue is in concern, one can simply take the QR factorization of [U

T
R

TT
R
] for the real UT

equation or [ L
T
R

MT
R
] for the real LM equation. The minimum R value plot can then help us to

"nd out spurious eigenvalues.
Figure 7. (a) Rank de"ciency appearing in the system using the SVD method. (b) Spurious eigenvalues
appearing in the system using QR factorization. S: Spurious eigenvalue; T: True eigenvalue.
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6.2. IMAGINARY LM EQUATION

The imaginary LM equation is chosen since it encounters the spurious eigenvalue
problem and the numerical instability in this case, which is the worst one in the regular
formulation. In this case, 60 elements were used along the boundary. When no treatment
was adopted, the minimum singular-value plot had puzzling information as mentioned in
the previous section and shown in Figure 4. After choosing an auxiliary system with t"0
on the boundary, we obtained the minimum generalized singular-value plot for the original
system shown in Figure 8. In this "gure and subsequent similar "gures, the analytical values
for eigenvalues are also illustrated by values inside the brackets. We "nd from this "gure
that the proposed method can successfully "nd true eigenvalues. Further, the "rst three
eigenmodes are illustrated in Figures 9(a)}9(c). Remember that the method we propose
here actually forces us to disturb the original system of equations a little bit; however, this
seems to make little di!erence in the eigenmodes for the "rst three modes. Another auxiliary
system with 2u#3t"0 was selected, and the result for the generalized singular value of the
original system is illustrated in Figure 10. From this "gure, we can con"rm that any system
having homogeneous, linearly independent boundary conditions can be selected as an
auxiliary system. We should mention here that for the complex-valued formulation and the
real-valued formulation, the hypersingular integral equation requires much theoretical and
numerical e!ort and, thus, is less welcome. However, in the imaginary BEM formulations,
there is no di!erence between UT and LM equations since they are both regular
formulations.

6.3. THE PLANE-WAVE METHOD

In this case, the plane-wave method proposed in section 2 was adopted. Since 60 elements
were used to discretize the boundary, 60 plane-wave solutions with di!erent / angles were
used to construct a su$cient number of constrained equations. The contamination
phenomenon before the regularization did appear as shown in Figure 11. As mentioned in
section 5, the plane-wave method will not result in spurious eigensolutions but still have the
Figure 8. Eigenvalue searching for the Dirichlet problem using the imaginary LM equation. ( ): Analytical solution.
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Figure 9. (a) The "rst mode shape of the Dirichlet case. (b) The second mode shape of the Dirichlet case.
(c) The third mode shape of the Dirichlet case.
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contamination phenomenon, i.e., the numerical instability. To deal with the numerical
instability, the regularization technique should be employed. After using the regularization
method with an auxiliary system having the boundary condition t"0, true eigenvalues
could be determined easily as shown in Figure 12.

Example 2. A unit circular domain with the Neumann boundary condition, t"0.

6.4. REAL UT EQUATION

In this example, we use the generalized singular-value decomposition method mentioned
in Proposition 1. The auxiliary system is the Dirichlet-type system. The minimum
JSV 20002946



Figure 10. Eigenvalue searching for the Dirichlet problem using the imaginary LM equation with a di!erent
auxiliary system. ( ): Analytical solution.

Figure 11. Contamination in eigenvalue searching using the plane-wave method.
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generalized singular value versus wave number diagram is shown in Figure 13. It can be
seen that one cannot distinguish spurious eigenvalues from true eigenvalues in this "gure.
The reason is explained as follows. We should note that at the spurious eigenvalue, one
performs numerical calculation of an undetermined form of zero divided by zero while using
the generalized singular-value decomposition. Theoretically speaking, the de"nite value of
this undetermined form can be found by means of the L'Hospital rule. However, one may
encounter di$culties in the numerical implementation. When the numerical methods
one uses induce some errors, for example, collocation errors, mesh errors and so on, this
JSV 20002946



Figure 12. Eigenvalue searching for the Dirichlet problem using the plane-wave method. ( ): Analytical solution.

Figure 13. Numerical inaccuracy results in some spurious eigenvalues in the generalized singular value diagram.
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eventually will cause failure for having rank de"ciencies of both systems at the same wave
number. Therefore, one may improve the numerical method in order to reduce errors such
that good accuracy can be obtained; then, the chance of failure may be reduced. Since 60
elements are used in our analysis, using more elements possibly will still not prevent this
phenomenon, and increasing number of elements implies that more degrees of freedom
should be used, which is not economical. A natural guess is to choose for our auxiliary
system a boundary condition that is a small perturbation from that of the original system.
Then, one can expect that the true eigensolutions for both systems will be very close, and
that the spurious one will occur at exactly the same position such that the generalized
JSV 20002946
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singular-value decomposition method can be implemented successfully. However, in order
to "nd the true eigenvalue, one needs to make the searching step smaller. Therefore, we tried
an auxiliary system having the boundary condition t#0)001u"0. The results are shown in
Figure 14, where only true eigenvalues appear, thus verifying our conclusions.

The above method although can be successfully used to eliminate spurious eigenvalues,
but we pay a price in the form of a "ner searching step. Here, we propose another alternative
that can eliminate spurious eigenvalues and save computation at the same time. If we go
back and check the generalized singular-value decomposition method, we "nd that it
actually combines two steps, QR factorization and C-S decomposition. Therefore, we can
say that the wave number at which the minimum R value approaches zero is the spurious
one. However, to avoid possible failure in eliminating the rank de"ciency at spurious
eigenvalues due to numerical inaccuracy, one can set a threshold for the minimum R value
and omit calculation of generalized singular values when the minimum R value is lower
than the threshold. This method can be understood in the following way: since numerical
implementation of zero divided by zero is not accurate enough for a rough calculation, one
must simply give up on this attempt. However, if one connects points on the minimum
generalized singular values versus wave number diagram by lines, no more drop down
behaviors exist. Since this method combines the generalized singular-value decomposition
method and the threshold, we call this method the threshold generalized singular-value
decomposition method. Figure 15 shows the results obtained using this method. Although
no more drop behaviors occur, kinks exist if the threshold is too small. Results obtained
when a better threshold is used are shown in Figure 16. In this "gure, kinks are less
signi"cant than those found in Figure 15. It must be mentioned here that the choice of the
threshold value depends on the auxiliary system one selects. Generally speaking, if the
boundary condition of the auxiliary system is very close to that of the original problem, it is
then expected that the threshold value is smaller. On the contrary, the threshold value is
bigger. From the minimum R value plot, it is evidently the very position at which the
numerical implementation of zero divided by zero will encounter di$culties is at the local
minimum value. We propose to adopt a threshold value e in a way that while the wave
number k falls in the region of Ek!k

0
El

c
)e, the numerical implementation ceases. In the
Figure 14. Elimination of numerical inaccuracy by selecting an auxiliary system very near the original one. h,
dk"0)01; s, dk"0)001; e, dk"0)0001.
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Figure 15. Kinks appearing in the threshold method near the spurious eigenvalues for a smaller threshold. ( ):
Analytical solution.

Figure 16. Smoothing of kinks by selecting a larger threshold.
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above criterion, k
0

is the local minimum value in the minimum R value plot, l
C

is the
characteristic length for the domain interested and the largest distance between any two
points on the boundary is selected as our characteristic length in the present study. For the
cases we study, the threshold value is about 0)01}0)1 according to numerical experiments.

6.5. IMAGINARY UT EQUATION

In this case, the imaginary UT equation has both the spurious eigensolutions and the
numerical instability of solution. Sixty constant elements were used along the boundary.
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Figure 17. Eigenvalue searching for the Neumann problem using the imaginary UT equation. ( ): Analytical
solution.
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The result for the imaginary UT equation is illustrated in Figure 17. The selected auxiliary
system had u"0 on the boundary. Basically, good results were obtained.

Example 3. A one by one square, Neumann problem, t"0.

6.6. REAL LM EQUATION

In this case, we solved the problem using the real LM equation. To check proposition 2,
the minimum singular-value plot and the minimum R value plot are shown in Figures 18(a)
and 18(b) respectively. From these "gures, one can "lter out the spurious eigenvalues. The
results obtained using the threshold generalized singular-value decomposition method are
shown in Figure 19.

6.7. IMAGINARY UT EQUATION

In section 5, it is seen that regular BEM formulations, no matter the imaginary
formulations or the plane-wave method, can solve the problem of a circular domain. The
purpose of this example is to show that the regular BEM method is still workable for cases
without symmetry, i.e., cases with arbitrary shapes. It should be mentioned here that the
imaginary UT or LM equation is not "rst proposed by us, these imaginary formulations
have been studied previously by Chen et al. [24]. However, Chen et al. only illustrated their
algorithm in an analytical sense by a circular domain. To implement the imaginary
formulation in numerical sense, it is evidently di$cult due to the numerical instability
problem. Our method has a deeper insight comparing with previous studies since we point
out the numerical instability problem existing in the regular formulation and further we
proposed a regularization method. Since our method is independent of geometry, it can be
quali"ed as a universal method. The numerical results are shown in Figure 20. It is not
surprising that good results can be obtained by our proposed method.
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Figure 18. (a) Rank de"ciency appearing in the system using the SVD method. (b) Spurious eigenvalues
appearing in the system using QR factorization. S: Spurious eigenvalue; T: True eigenvalue.
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7. CONCLUDING REMARKS

In this paper, incomplete BEM formulations for solving the Helmholtz equation have
been examined. Due to the incompleteness of BEM formulations, one may encounter
spurious eigensolutions, numerical instability of solution and nonexistence of solution. In
this paper, the mathematical structure of spurious eigenvalues, which exists in the
eigenvalue analysis using the real BEM formulation and imaginary BEM formulation, has
been re-examined. It has been found that the spurious eigenvalues cause rank de"ciency of
the original system and the auxiliary system at the same time. Two alternative ways to "lter
out spurious eigenvalues have been proposed; one method uses the minimum singular-value
JSV 20002946



Figure 19. Filtering out spurious eigenvalues using the threshold method. T: True eigenvalue.

Figure 20. Eigenvalue searching for the Neumann case of a one by one square using the imaginary UT
equation. ( ): Analytical solution.
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plot of the original problem and the minimum R value plot of QR factorization, and the
other method uses the generalized singular-value decomposition method or the threshold
generalized singular-value decomposition method. In addition, two regular BEM
formulations for solving the eigenproblem have been proposed. It has been found that
contamination exists in the regular BEM formulations. A uni"ed method combining the
Tikhonov's regularization technique and the generalized singular-value decomposition
method has been proposed. Further, the possible non-existence of solution due to limited
basis functions has been theoretically demonstrated. It has been concluded that the regular
formulation cannot be used to search for a solution having singular behavior; thus, the
regular formulation has its limitation. Despite this limitation, the regular BEM formulation
has the advantage that it is easy to implement.
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