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Introduction

Acoustic problems are generally modeled by the wave equation, which is transient, or by

the Helmholtz equation, which is time harmonic. Terai [1] used the dual integral formulation
to solve the acoustic problem with a screen. Wu and Wan [2] also applied this formulation to
thin-body acoustic problems. Burton and Miller 3] first combined the dual integral equations
to avoid fictitious eigenvalues and to ensure a unique solution for all wave numbers. For exterior
problems, it is well known that fictitious eigenvalues stem from the numerical resonance instead
of the physical resonance. In the literature, Martin [5] pointed out that the Neumann bound-
ary condition has fictitious frequencies corresponding to the interior Dirichlet eigenvalues while
the Dirichlet boundary condition has fictitious frequencies corresponding to interior Neumann
eigenvalues if the integral equation of second kind is used. However, the relations between vari-
ous boundary integral equation formulations of the Dirichlet and Neumann problems has been
clarified using indirect BEM by Kleinman and Roach [6]. As quoted from the Martin’s paper
[5):
“It 45 well known that both of these methods(potential method and Green’s theorem) yield integral
equations which have unique solutions, ezcept at the same discrete set of wave numbers(the
irregular values), corresponding to the eigenfrequencies of the interior Dirichlet problem. The
same methods can be modified to solve the exterior Dirichlet problem, and both yield integral
equations of the second kind which have unique solutions except at the eigenfrequencies of the
interior Neumann problem.”

A similar statement can be found in Shaw’s [7] paper as quoted below:

“Ezterior Dirichlet — Interior Neumann eigenvalues
Exterior Neumann — Interior Dirichlet eigenvalues”

The two quoted sentences are easily misleading. Therefore, many researchers, e.g., Rizzo
et al. [8, 9] and Huang and Fan [10], have taken it for granted that boundary conditions will
change fictitious eigenvalues. For example, Rizzo [9] pointed out that
“Fictitious eigenvalues are equal to eigenvalues of interior domain with “ reverse ” boundary
conditions.”

This paper will confirm the conclusion in [6] that the positions of fictitious eigenvalues
are independent of the boundary conditions once the method is chosen. From the numerical
point of view, this nonunique problem can be seen as the indefinite form of zero divided by
zero. If L’hospital’s rule is employed analytically, no fictitious eigenvalues will occur. However,
L’hospital’s rule can not be applied in the numerical computation.

In this paper, degenerate kernels in [11] will be employed to demonstrate the mechanism of
fictitious eigenvalues using dual integral equations. As we shall see in the following, the theory
of dual integral equations with degenerate kernels involves nothing more than linear algebra([12].
Therefore, some analytical results can be derived. Based on the degenerate kernels, the relations
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between the natural frequencies for the interior domain and the fictitious eigenvalues for the
exterior domain are examined. It will also be shown that boundary conditions can not change
the fictitious eigenvalues once the integral representation for the solution is chosen. Finally,
three examples, one-dimensional, two dimensional and three dimensional cases, are illustrated
to show the mechanism of fictitious eigenvalues in radiation problems solved using the direct
method. Some misleading statements will become clear and will be corrected.

Dual integral formulation for an acoustic problem with a degenerate boundary

The linearized acoustic equation can be written as
_v2u+ C_— ZQ((L',t), (1)

where u is the velocity potential, ¢ is the wave velocity and Q(z,?) is a source term. In the

frequency domain, the governing equation is changed to
V3 + k*a = Q(z), 2)

where the bar over the symbol means the complex amplitude, and % is the wave number defined

by k = w/c. In choosing an auxiliary system, the fundamental solution U(z, s) satisfies

V2U(z,s) + k*U(z,s) = 6(z — 8) (3)
where )
_e—zkr
U(.’L‘,S)— dnr | r—lx—sl (4)

for three-dimensional case. Using Green’s third identity, we have the first equation of dual

integral equations as follows:

u(z) = /B (T(s, z)u(s) — U(s, z)t(s)}dB(s), € D, (5)

where D is the domain, ¢ = gﬁ:— and the bar is omitted for simplicity. Applying the normal

derivative operator to the above equation, we have

H(z) = /B {M(s,z)u(s) - L(s,z)t(s)}dB(s), z € D, (6)

where U, T, L and M are the four kernels in the dual integral equations.

Kernel decomposition using degenerate series

Let R, (kz) and I,,,(kz), m € {0,1,2,3---}, be two linearly independent bases which satisfy

(V2 4+ k)R (kz) =0, z€R*, n=1,2,3 (N
(V24+ k), (kz) =0, € R", n=1,2,3. (8)
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It follows that we can write

In(kz) (V24 k%) Ry (kz) = 0, (9)
Riu(kz) (V2 + k%) In(kz) = 0. (10)

Subtracting Eq.(10) from Eq.(9), we obtain
V - {Rpn(kz)VIn(kz) — In(kz)V Rm(kz)} = 0. (11)
Let the general Wronskian, W, be defined as
W(Rn(kz), Im(kz)) = {Rm(kz)V Ln (k) — I (kz) VR (kx)}

Rpn(kz) VRp(kz)
Im(kz)  Vin(kz)

(12)

where | | denotes a determinant. W can be reduced to the conventional Wronskian in the one
dimensional case and will be elaborated on later. Eq.(11) assures that W is solenoidal(without

source); therefore, there exists a field, 9, such that
W (R (kz), Im(kz)) = V x 9. (13)

When one solution Ry, (ki) is known, Egs.(9) and (10) can be used to find a secondary linearly

independent solution I,,(kz) using the method of variations of parameters. Noting that

W (Rn(la), L) = R (k) V{2000, (14)
we have . ;
In(ka) = Ron(kz) [ ’g(f()k'z;ds, (15)

where xg is any reference point, and ¢, is the tangential direction along the contour ds.

By using the two bases, we can decompose the kernel functions into

Ui(s,z) = m=0 o m(ks) n(kx), z € D
Uls,z) = { Ue(s,z) = 3% (:)Cn kz) m(ks), z € D¢ (16)

“(s,2) = Tixcp o {VsCnlks) - n(s)}Rn(ke), z'€ D
T(s,2) ={ Te(s, 7) = ‘zc (kz) {v Ro(ks) -n(s)}, @€ D (17)
| Lis,z) = Cr(ks){ViRm(kz) - n(z)}, z€ D'
Is,2) = { L(s,2) = T ; {(VaCon(kz) - n(2)} Rm(ks), € D° (18)
Mi(s,z) = S cm{V Cm(ks) n(8)}{VoRm(kz) - n(z)}, ze€ D
Ms,2) = {ME(S 2) = 55 B {VuCo (k) ()} (Vo Bon(ks) m(s)), @€ DF, (19

where ¢,,, can be determined by the jump value using Wronskian, D! and D¢ denote the interior
domain and exterior domain enclosed by boundary B, Cr,{kz) is a complex function and R,, (kz)
is its real part with the physical meaning of the eigenmode if k is a certain eigenvalue. The

imaginary part of Cy,(kz) is denoted by —I.(kz). The symmetry and transpose symmetry
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properties for the four kernels in [11] can be easily verified by the degenerate kernels. The
explicit forms for the three special cases, the one-dimensional case, two-dimensional case for
circular boundary, and three-dimensional case for spherical boundary, are shown in Table 1.
The terms, cos(ks), Jm(kp) and jn(kp), are the eigenmodes for the interior domain of 1-D duct,

2-D disc and 3-D sphere in case where & is an eigenvalue, respectively.

On acoustic frequencies(interior problem) and fictitious frequencies(exterior problem)

Based on the special one, two and three dimensional cases, the operator of “V-n” is reduced
to “” for simplicity.
(A). Natural frequency for the internal problem

The eigenvalue, k, for the interior domain using the degenerate U, T and L, M kernels can
satisfy the following relations:

lim Cm(kz)Ry(kzg) —kCp(kz)R],(kzp) tm | _J O (20)
e—zg | kC! (kx)Ry(kzp) —k*C! (kzg)R),(kz) um [ 1 0 [’

where z g is the boundary point, the first equation results from the UT' method while the second
results from the LM method. Eq.(20) can be reformulated into

Cm(kzp) —kCp(kzp) R (kzp) 0 tm { ] O (21)
kC! (kzp) —k:C! (kzpg) 0 R (kzpg) um [ 1 O [
The second matrix in Eq.(21) is defined as a postmultiplying matrix, [V], where
_ [ Rul(kzp) 0

Since Cm(kzp) and C,, (kzp) are never zero for any k, both the UT and LM methods have the

same eigenequation constraint as shown below:
Ry(kzp)tm — kR (kxp)um = 0. (23)

It is never a trivial task to find a non-trivial solution for the eigensystem, as shown below:
For the case of the Dirichlet boundary condition with u,, = 0, both methods have the same
eigenequation:

Jlim Rn(kzp) tn =0, (24)

where a nontrivial solution occurs at R,,{(kzp) = 0 when k is a certain eigenvalue. In a similar
way, the method can be extended to problems with Neumann and mixed type boundary con-
ditions. It is found that the acoustic frequency for the interior domain is independent of the
integral representations, e.g., the UT or LM methods, but is changed by the types of homoge-
neous boundary conditions as the physical phenomenon shows.

(B). Fictitious eigenvalue for the exterior problem
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The algebraic equations for the exterior domain obtained using the dual degenerate kernels
can be obtained as follows:

[cm(sz)Rm(kz) —kC! (kz ) Rom (k) H tm }z{ 0 }

m | O (ko) R, (kz) —k2CL (ke)R. (ks) | | um 0

IR

(25)

where the first equation results from the UT method while the second results from the LM
method. Eq.(25) can be reformulated into

Rm(ka) 0 Cm(k:I:B) —kC;n(sz) tm _
0 R, (kzg) kCr{kzp) —k2C! (kzB) um |

The first matrix in Eq.(26) is defined as a premultiplying matrix, [S], where

[S] _ |: Rm(ka) 0 :l i (27)

0
0 } : (26)

0 R, (kzg)

For radiation problems with any boundary conditions, the UT and LM methods have different

trivial constraints as show below:
Ron(kurzg) =0, UT method

Rl (kpy zg) =0, LM method,

where kyr and kpy denote different fictitious eigenvalues for the UT and LM methods, respec-
tively. This means that the UT or LM method provides trivial information when kyr or kr s is
a fictitious eigenvalue which renders [S] singular. In comparison with the acoustic frequency in
the interior domain, the results indicate that the boundary condition type can not change the

positions of fictitious eigenvalues, but that the integral representations can.

Concluding remarks

The mechanism of fictitious eigenvalues in direct BEM has been discussed in detail using
dual series representations. The fictitious eigenvalues for the three special cases are summarized
in Table 1. Also, the fictitious eigenvalues embedded in the indirect method by single layer
potential or double layer potential occur at the same positions obtained by the UT or LM
methods, respectively. It is found that the irregular values depend on the first or second equation
used in the dual integral equations. The theoretical proof of the independence of boundary
conditions has been shown in this paper by using degenerate kernels, and three examples have
been given. All three examples show that the first UT equation produces fictitious eigenvalues
which are associated with the interior acoustic frequency with essential homogeneous boundary
conditions, while the second LM equation produces fictitious eigenvalues which are associated

with the interior eigenfrequency with natural homogeneous boundary conditions.



534

References

J. T. CHEN

[1] Terai, T., J. Sound Vib., 69, 71(1980).

[2] Wu, T. W. and Wan, G. C., J. Acoust. Soc. Am., 92(1992).

[3] Burton, A. J. and Miller, G. F., Proc. R. Soc. London Ser A, 323, 201(1971).

[4] Schneck, H. A., J. Acoust. Soc. Amer. 44(1), 41(1968).

[5] Martin, P. A., Q. JI. Mech., 27, 386(1980)

[6] Kleinman, R. E. and Roach, G. F., SIAM Review, 16, 214(1974).

[7] Shaw, R. P., Boundary Integral Equation Methods Applied to Wave Problems, Chapter 6,
in Developments in Boundary Element Methods, Vol.2, edited by P. K. Banerjee and R. P.
Shaw, 121(1979).

[8] Rezayat, M., Shippy, D. J. and Rizzo, F. J.,

349(1986).

Comp. Meth. Appl. Mech. Engng., 55,

[9] Rizzo, F. J., Shippy, D. J. and Rezayat, M., Final Project Report for NSF Research Grant
CEE-8013461(1985).
(10] Huang, I. T. and Fan, C. N., in Proceedings of the Institute of Mechanical Engineers,
IMech Publ.(1991).
[11] Chen, J. T. and H.-K. Hong, Boundary Element Method, New World Press, 1992.

[12] Cochran,

J. A,

Wadsworth, Belmont(1982).

Applied Mathematics—Principles,

Techniques and Applications,

Table 1: Fictitious eigenvalues for one, two and three dimensional problems.

duct circular disc spherical body
1-D 2-D 3-D
single layer
using U, L cos(ka) =0 Jm(ka) =0 jm(kd) =0
double layer
using T, M sin(ka) =0 I (ka) =0 Jr(ka) =0
direct BEM
using U, T cos(ka) =0 Imlka) = Jm(ka) =0
direct BEM
using L, M sin(ka) =0 J! (ka) =0 Jra(ka) =0
R,.(ks) cos(ks) =0 Jom(kp)e™® Jm(kP) P! (cos(8))cos(l$)
C(ks) ks HD (kp)e—in® r2 (kp) PL (cos(B))cos(lP)
I,(ks) sin(ks) =0 Y, (kp)e™? Y (kD) P, (cos())cos(ld)
em k 4 4n/k
Wronskian | W (cos(ka), sin(ka)) = 1 | W(Jm(ka), Ym(ka)) = -2 | W(jm(ka), ym(ka)) = g

where H,(nz)(kﬁ) is the Hankel function of the second kind with the m* order, hﬁ)(kﬁ) is the

spherical Hankel function of the second kind with the m* order, and P/, (cos(f)) is the associated

Lengendre function.




