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Introduction

Integral equation has been used to solve exterior acoustic problems (radiation and scattering)
for many years. It is well known that fictitious (irregular) frequencies stem from the numerical
resonance instead of physical resonance if integral representation for the solution is assumed.
Many researchers claimed that integral solution does not have a unique solution at the natural
frequencies of an associated interior problem [1-11]. However, their conclusions on the “associ-
ated interior problem” are not correct. Chen in [12, 13, 14] confirmed the conclusion that the
positions of fictitious frequencies are independent of the boundary conditions once the method
is chosen by using the dual series model. The roles of dual formulations can be found in [15]. To
demonstrate why fictitious frequencies occur, Chen and Hong [12] and Chen et al. [13] showed
that they depend on the kernels in the integral representation for the solution by using one
and two dimensional examples, respectively. Also, numerical experiments using the dual BEM
program were performed and the results matched the analytical solutions well [13]. From the
numerical point of view, this nonunique problem can be seen as the indeterminate form of zero
divided by zero. Since the L’hospital’s rule can be employed analytically, no fictitious frequen-
cies (or wave number) occur. However, L'Hospital’s rule can not be applied in the numerical
calculation for computer.

In this paper, a circular boundary is discretized into finite-length circular arcs and the
influence matrices results in circulants [19, 20, 21, 22] due to the circular symmetry. The
circulants for the influence matrices corresponding to the four kernel functions in the dual
formulation are constructed to verify the conclusion in [14]. The relations of the influence
matrices between the interior and exterior acoustic problems are also examined. The positions
of fictitious frequencies for the exterior problems using only the UT (singular integral equation)
or LM (hypersingular integral equation) formulation are derived by transforming the finite-
dimensional space into continuous system. Two examples, including the Dirichlet and Neuman
problems, are illustrated to show the mechanism of fictitious frequencies in radiation problems
of a cylinder. After the kernels are expressed in degenerate form using dual series model,
the influence matrices can be constructed. Since a circular domain is considered, the four
matrices result in circulants [19, 20, 21, 22] such that the spectral properties can be investigated
analytically. The eigenvalues for the circulants are found analytically using the similar property
and the determinant for the matrices can be obtained easily [19, 20, 21, 22, 24] Numerical
results using the dual BEM program are verified in comparision with the analytical solutions.
It is shown that the type of boundary condition, Dirichlet or Neumann, can not change the
positions where fictitious frequencies occur once the integral representation for the solution is
chosen. Based on the theoretical proof [13, 14] for continuous system and present study using
circulants for a discrete system, some misleading statements can be clarified.
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Dual integral formulation for a two-dimensional exterior acoustic radiation problem

The governing equation for an exterior acoustic problem is the Helmholtz equation as follows:
(V2 + E)u(zy, z2) =0, (z1,29) € D,

where V2 is the Laplacian operator, D is the domain of the cavity and k£ is the wave num-
ber, which is angular frequency over the speed of sound. For simplicity, radiation problem is
considered only. The boundary conditions can be either the Neumann or Dirichlet type.

Based on the dual formulation [16, 17], the dual equations for the boundary points are

ru(z) = C.P.V. /B T(s, z)u(s)dB(s) — R.P.V. /B U(s, z)t(s)dB(s), z € B (1)

rt(z) = H.P.V. /B M(s, z)u(s)dB(s) — C.P.V. /}; L(s,z)t(s)dB(s), z € B 2)

where C.P.V., R.P.V. and H.P.V. denote the Cauchy principal value, the Riemann principal
value and the Hadamard principal value, t(s) = %“n(fl, B denotes the boundary enclosing D and

the explicit forms of the four kernels, U, T, L and M, can be found in [16].

Relations of the influence matrices between interior and exterior problems using the dual BEM

The linear algebraic equations for an interior problem discretized from the dual boundary integral

equations can be written as
[Tal{ug} = [Upl{te} ®3)
M, {ug} = (Lot} @)
where the superscript “/” denotes the interior problem, {ug} and {t,} are the boundary potential
and flux, and the subscripts p and g correspond to the labels of the collocation element and inte-

gration element, respectively. The influence coeficients of the four square matrices [0, I11,1L)

and [M] can be represented as

Ui, =R.PV. /B Uls2)dB(s,) (5)
Ti, = —ndpg + C.P.V. /B To0,2,)dB(s,) 6)
L;, = méyq + C.P.V. /B ,, L(sq,7p)dB(s,) (7)
M; =HPYV. /B M(sq,zp)dB(sq), (8)

where B, denotes the ¢** element and Opq = 1 if p = g; otherwise it is zero.

For the exterior problem, we have

(Tral{ug} = Uggl{te} (9)
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(Mpgl{uq} = [Lygl{te}- (10)

“e” denotes the exterior problem. According to the dependence of the

where the superscript
outnormal vectors in these four kernel functions for the interior and exterior problems, their

relationship can be easily found as shown below [17]:

U;,q = U;fq (11)
M, = Mg, (12)
i _ ‘T;w lf p # q,
Toa = { Ti, ifp=q (13)
; -L;, ifp#q
- g )
Lo = { I, ifp=gq. (14)

Based on the relations in Eqgs.(11) ~ (14), the dual BEM program [16] can be easily extended
to solve for exterior problems. In order to compare with the analytical solutions, a circular
domain is considered. Without loss of generality, the conclusion of the present paper can be
applied to problems with general geometries and will be published in the followinfg paper. The
absolute value for the determinant of the eight matrices, Uy, T, Lig, Mg Ug,, Tgy, LE, and My,
versus the wave number k are ploted in Fig.1 using the dual BEM program [16]. The poles or

eigenvalues occur at the local minimum. It is found that the characteristic values for the four

kernels, Us,, Ly, Ug,, and Ty, are equal to the eigenvalues of the associated interior Dirichlet
problem as shown in Table 1. On the other hand, the four kernels T}, M;,, L¢,, and Mg, have

the same characteristic values which are the eigenvalues of the interior associated Neumann

problem as shown in Table 2.

Table 1 Characteristic solutions for the Helmholtz equation with the Dirichlet boundary condi-

tions
No. (n) | eigenvalues (k) | eigen equation | eigenmode un,(r,6) | multiplicity
1 2.4048(2.4070) | Jo(ka) =0 Jo(2.4048r) 1
2,3 | 3.8317(3.8342) | Ji(ka) =0 | J1(3.8317r)ex? 2
4,5 5.1356(5.1388) | Jo(ka) =0 | Jo(5.1356r)eF 20 2
6 5.5201(5.5223) | Jo(ka) =0 Jo(5.5201r) 1

Note that data in parenthesis are obtained by the dual BEM.

Table 2 Characteristic solutions for the Helmholtz equation with the Neumann boundary con-

ditions
No. (n) | eigenvalues (k,) | eigen equation | eigenmode un(r, ) | multiplicity
1 0.0000(0.0000) | J(ka) =0 Jo(0.00007) 1
2,3 1.8412(1.8436) | Ji(ka) =0 J1(1.8412r)e** 2
45 | 3.0542(3.0586) | Ja(ka) =0 | J2(3.0542r)e*% 2
6 3.8317(3.8364) | J4(ka) =0 Jo(3.8317r) 1
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Note that data in parenthesis are obtained by the dual BEM.

Circulant matrices for exterior problems in the dual BEM

By using the two bases J,,(kz) and Y;,(kz), we can decompose the two-dimensional kernel

functions into

B e R
T = o) - R B s v enior, B2y (9
ol ={ Fa o B A L iy A2 oD
M(s’x):{ Me(((z’ g)) ::::_2%—[[—%,1((];?)):;:;((:S]),]J:(i%);::((::)), ﬁi’; (18)

where J,, and Y,, are the mth order Bessel functions of the first and second kind, respectively,
z = (p,0) and s = (R, 6) in polar coordinate. For a problem with a circular domain, the circular
boundary can be discretized into 2N arcs with equal length. Based on the circular symmetry, the
influence matrices for the discrete system are found to be circulants. All the influence matrices

can be expressed as shown below.

ap ay az ' azN-2 Qa2N-1
G2N-1  Qp ay --- Q2N-3 G2N-2
[U] =| @2N-2 @2n-1 @ - QaN-4 GN-3 (19)
a az az - A2N-1 ag
[ b by by - ban—2 ban—1 ]
bon-1 bp by - ban-3 ban-2
[T =| ban—2 bav—1 bo -+ bonv—sa bon—3 (20)
b by b3 - boyo1 by ]
L €1 € -+ CoaN-2 CaN-1 |
CaN—-1 Co €T '+ C2N-3 C2N-2
[Li]=| ¢2v-2 CaN-1 €0 - CaN—4 CoN-3 (21)
| a c2 ¢z -+ CN-1 € |
[ do di  dy -+ day—2 dan-1
doy-1  dp  dy -+ dan-3 dan—2
M) =| don-2 don-1 do -+ dan-4 doN-3 (22)
| d dy d3 - dany-1 do
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Po 41 p2 P2N-2 P2N-1
P2N-1 Po n P2N-3 P2N-2
[U] =] Pan-2 pan-1 Po P2N—4 D2N-3
L N D2 p3 PaN-1 Do
) q @ @N-2 @N-1 ]
gaN -1 qo0 q1 92N-3 Q2N-2
[Te] =| @©2N-2 @2N-1 Qo 92N-4 Q2N-3
L @1 /) q3 q2N-1 d
Vo U1 v2 VaN-2 UVaN-1 |
V2N -1 Vo U1 V2N-3 V2N-2
[Lf] = | van—2 vaN-1 o UaN-4 V2N-3
v v2 U3 VaN-1 U0 |
Wo w wsy W2N-2 W2N-1
WaN -1 wop wy W2N-3 Wa2N-2
[Me] = | W2N-2 W2N-—1 Wy W2N-4 W2N-3
w w2 w3 W2N-1 wo
where
(m+3)a8
A = ( a0 U®(6,0)pdf =~ U*(6,,0)p AP, m=0,1,2,---,2N —1
m—1
(m+1)A0
b = / | T(6,0)pd0 ~ T*(6n, 0p A0, m=0,1,2,--,2N ~ 1
(m-1)A
(m+1)a0
Cm = (m=1)0 L%(6,0)pdf ~ L*(6,m,0)p A8, m=0,1,2,---,2N —1
m~l
(m+3)A0
,,,=/ Me(8,0)pd0 ~ M®(6,,,0)pA8, m=0,1,2,---,2N —1
(m—%)AG
(m+5)ae i
Pm = /( Lyae U*(8,0)pdb = U'(0m,0)p A6, m=0,1,2,---,2N —1
m-z
(m+1)A
qm=/ Do T(8,0)pd0 ~ T*(0m, 0)p A8, m=0,1,2,---,2N — 1

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)
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(m+d)ae )
Oy = Li(6,0)pd6 ~ L'(8,,,0)p A8, m=0,1,2,---,2N — 1 (33)
(m~1)A8
(m+3)Aa8 )
em :/ M(0,0)pd0 ~ M¥(6,,,0)p A8, m=0,1,2,--- 2N — 1 (34)
(m~3)A8
in which 8,, = mAf and A8 = £-. Based on the circular symmetry, it is easy to find that all the

influence matrices in Eqgs.(19) ~ (26) are symmetric circulants. By using the similar properties

for all the eight matrices with respect to circulants, we have

det[U"] = Ag(M1Ag - - An_1)? AN (35)
det[U¢] = Ag(Athe - An—1)*An (36)
det[T] = po(papz - pun-1)°un (37)
det[L'] = po(pipz -+ pn—1)’un (38)
det[T" ] =y(ivg--- vn_1)*vN (39)
det[L] = vo(vyvz - - vy_1) v (40)
det[M*] = Ko(k1k2 -+ Kn-1)*KkN (41)
det[Me] Ko(lilnz ne KN_l)ZIiN (42)
where
Ae :sz(_z']l(kp)+Y2(kp))‘]l(kp)7 ean:tlv,i(N— 1)7N (43)
pe = w2kp (—iJy(kp) + Y] (kp))Je(kp), £ =0,%1,---,=(N —1),N. (44)
ke = m2k?p (=i Jy(kp) + Y (kp))Js(kp), £=0,+1,---, (N — 1), N. (46)

According to Eqs.(35) ~ (42), the corresponding spectral properties are shown in Table 3. The
fictitious solution for the exterior Helmhotlz problem is shown in Tables 4 and 5 using the UT

and LM formulation, respectively.

Table 3 The spectral properties of the four influence matrices for interior and exterior domains

in the dual formulation

Im(ka)=0| U [ U® | T®| L}
Jl(ka)=0| M | M| T | L®

Table 4 Fictitious solutions for the exterior Helmholtz equation using the UT formulation

No. (n) | fictitious values (k,) | fictitious equation | multiplicity
1 2.4048(2.4070) Jo(ka) = 0 1
2.3 3.8317(3.8342) Ji(ka) =0 2
15 5.1356(5.1388) Jr(ka) = 0 2
6 5.5201(5.5223) Jo(ka) =0 1

Note that data in parenthesis are obtained by dual BEM.
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Table 5 Fictitious solutions for the exterior Helmholtz equation using the LM formulation

No. (n) | eigenvalues (k,) | eigen equation | multiplicity
1 0.0000(0.0000) 7(ka) = 0 1
2,3 | 1.8412(1.8436) | Ji(ka) =0 2
45 | 3.0542(3.0586) | Jh(ka) =0 2
6 3.8317(3.8364) "(ka) = 0 1

Note that data in parenthesis are obtained by dual BEM.

In comparing with the numerical results in Fig.1, Fig.2 shows the analytical results for
the absolute values of the determinant in Eqgs.(35) ~ (42) by using the circulant property of
finite-dimensional space. The spectral properties for the eight matrices can be easily found.
The positions of k with zeros of the determinants in Fig.2 for the interior matrices show the
eigenvalues for the interior problem, while those for the exterior matrices indicate the fictitious
wave number. Good agreement was made for the locations of poles or eigenvalues between
the analytical study using circulants (Fig.2) and numerical experiments using the dual BEM
program (Fig.1). Only a scale difference can be found. When the number N in circulants

approaches to infinity, the continuous system can be simulated analytically.

Concluding remarks

The mechanism of fictitious frequencies in the direct dual BEM has been examined by considering
the circulants for the inflence matrices of a circular problem. The discrete system with 2N
elements can be extended to be infinite for continuous system and analytical solution can be
derived. It is found that the irregular values depend on the integral formulation, UT or LM
equation used in the dual integral equations, instead of the type of specified boundary condition.
Two examples have been given to illustrate this conclusion. Both examples show that the first
UT equation results in fictitious frequencies which are associated with the interior acoustic
frequency with essential homogeneous boundary conditions, while the second LM equation
produces fictitious frequencies which are associated with the interior eigenfrequency with natural
homogeneous boundary conditions. The numerical results using the dual BEM program agree

very well with the analytical solutions using circulants.
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