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Abstract

Boundary integral equations and boundary element methods were employed analytically, semi-analytically and
numerically to study the occurrence of fictitious frequency for the exterior Helmholtz equations subject to the mixed-
type boundary conditions. A semi-infinite rod and a circular radiator of problems were addressed. Degenerate kernel of
the fundamental solution and Fourier series for boundary density were utilized in the null-field integral equation to
examine the occurrence of fictitious frequency semi-analytically. The BEM was utilized to solve the solution numeri-
cally. The CHIEF technique and Burton and Miller method were adopted to suppress the occurrence of the fictitious
frequency. It is emphasized that the occurrence of fictitious frequency depend on the adopted method (singular or
hypersingular formulation) no matter what the given type of boundary condition for the problem is. The illustrative
examples were tested to verify this finding successfully.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Boundary integral equation methods and boundary element methods have been used to solve exterior
acoustic problems (radiation and scattering) for many years. The importance of the integral equation in the
solution, both theoretical and practical, for certain types of boundary value problems is universally rec-
ognized. One of the problems frequently addressed in BEM is the problem of irregular frequency (fictitious
frequency) in boundary integral formulations for exterior acoustics and water wave problems. Fictitious
frequency does not represent any kind of physical resonance but are due to the numerical method, which
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has no unique solution at some certain frequencies for a corresponding interior problem (Dokumaci, 1990;
Lee and Sclavounos, 1989; Lee et al., 1996; Malenica and Chen, 1998; Ohmatsu, 1983; Ursell, 1981). The
non-uniqueness problem is numerically manifested in rank-deficiency of the BEM coefficient matrix. In
order to obtain the unique solution that is known to exist analytically, several modified integral equation
formulations that provide additional constraints to the original system of equations have been proposed.
Burton and Miller (1971) proposed an integral equation that is valid for all wave numbers by forming a
linear combination of the singular integral equation and its normal derivative with an imaginary number.
However, the calculation for the hypersingular integration is required. To avoid this computation, an
alternative one, CHIEF method, was proposed by Schenck (1968) and Benthien and Schenck (1997). Many
researchers (Juhl, 1994; Poulin, 1997; Seybert and Rengarajan, 1989) applied the CHIEF method to deal
with the problem of fictitious frequencies. Schenck proposed the CHIEF method, which employed the null-
field integral equations by collocating the interior point as an auxiliary condition to make up deficient
constraint condition. The fictitious frequency for the problems subject to either the Dirichlet or the Neu-
mann boundary condition have been discussed by analytical and numerical methods (Chen et al., 2000,
2003; Chen and Kuo, 2000; Chen, 1998) but only a few papers focused on the mixed-type boundary
conditions. The existence theorem and uniqueness theorems for the Helmholtz equation with mixed-type
boundary condition problem had been proved by Kress and Roach in the three-dimensional problem by
using a modified layer approach. Nevertheless, no numerical results were provided (Kress and Roach,
1977). It is found that the occurrence of the fictitious frequency only depends on the formulation no matter
what the boundary condition in Dirichlet or Neumann type (Chen et al., 2000, 2003; Chen and Kuo, 2000;
Chen, 1998). It is interesting to extend the conclusion to the problem subject to the mixed-type boundary
conditions. The fictitious frequency for the two-dimensional radiation problem will be derived by using the
degenerate kernels and the Fourier series and numerical examples will be tested. Two examples will be
considered by using BEMs. One is the semi-infinite rod, and the other one is the circular radiator. Both the
Burton and Miller approach and the CHIEF method will be adopted to overcome the problem of fictitious
frequencies in the radiation problem.

2. Analytical derivation for one-dimensional exterior problems subject to the mixed-type boundary condition
using the dual BEM (DBEM)

For a semi-infinite rod, the governing equation for the exterior problem is the Helmholtz equation,
d’u(x)
a2
where k and u(x) denote the wave number and potential, respectively.
By utilizing an auxiliary system, the fundamental solution U(s,x) satisfies

+Ku(x) =0, x <x < oo, (1)

%+k2U(x,S):5(x7S), (2)
where d(x — s) is the Dirac delta function and explicit form of the kernel U(s,x) is shown below:
eikbr—s]
U(s,x) = T (3)
By employing the reciprocal theorem, we have the singular formulation
u(x) = T(s,x)u(s)l;, — Uls, x)t(s)],, (4)

where T'(s,x) = 0U(s,x)/0s and #(s) = du(s)/ds.
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After taking the spatial derivative with respect to Eq. (4), the second equation (hypersingular formu-
lation) of the dual boundary integral equations can be derived

1(x) = M (s, x)u(s)[, — L(s, x)t(s)[ (5)

S0 s0?

where L(s,x) = 0U(s,x)/0x and M (s,x) = d*U(s,x)/s0x.
Although the auxiliary system U(s,x) in Eq. (3) is a free-space Green function (fundamental solution),
two other choices (symmetric and anti-symmetric systems) can be adopted as follows:

For symmetric case of free end at the origin (7(0,s) = 0), we have

L [Ulsn) = fe P eoske, s>

U(s,x) = { U(s,x) = te *cosks, x>s>0, )
_ [ T'(s,x) =e ™ coskx, s>x

T(s,x) = { T’ (s,x) = —ie ™ sinks, x>s>0, 7
_ J L'(s,x) = —ie ™ sinkx, s>x

Lisix) = {L’(s,x) =e ®cosks, x>s5>0, X

[ M'(s,x) = —ke ™ sinkx, s>x
M(s,x) = {Mr(&x) = —ke ™ sinks, x>s>0. ?)

For anti-symmetric case of fixed end at the origin (U(0,s) = 0), we have
_JU'(s,x) =e®sinkx, s>x
Uls,x) = { Ur(s,x) = Le™sinks, x>s>0, (10)

T!(s,x) = ie ™ sinkx, s>x
T(s,x) = {]*r(s7x):—e‘i’”‘cosks7 x>s5>0, "

L'(s,x) = —e ®coskx, s>x
_ 7 o ; 12
L(s,x) {L’(s,x) =ie™gsinks, x>s>0, .

[ M'(s,x) = ike ™ coskx, s>x
M(s,x) = {M’(s,x) = ike"* cosks, x>s>0. (13)

Hx So=1 §;= ©

¢ :>o

i I >
0 1 o0

mu(l)+ t(1)= n

Fig. 1. The 1-D radiation problem subject to the mixed-boundary condition.
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By moving the field point x to be close to the end of rod as shown in Fig. 1, we have

UT equation (singular formulation)

i

0=u(l)e ™ cosk+#(1)-e*cosk (auxiliary system : symmetric Green function),

1

0 = u(1)ie *sink + (1) %e*”‘ sink (auxiliary system : anti-symmetric Green function).

LM equation (hypersingular formulation)

0= —u(l)ke *sink — t(1)ie*sink (auxiliary system : symmetric Green function),

0 = u(1)ike ™ cosk — t(1)e * cosk (auxiliary system : anti-symmetric Green function).

By utilizing the mixed-type (Robin) boundary conditions,
mu(l) 4+ ¢(1) = n,

where m and 7 are constants, the boundary integral equations can be derived as follows:
By choosing the auxiliary system of symmetric Green function,

UT equation yields

0=u(l)e™cosk + (7 — ﬁm(l))ée*”‘ cosk,
n  cosk

1) = cosk

u(1) m + ik cosk’

the possible irregular values occur at the positions where k satisfies cos k = 0;

LM equation yields
0= —u(l)ke *sink — (7 — mu(1))ie *sink,
n sink
)=—F —,
u(1) m + ik sink
the possible irregular values occur at the positions where £ satisfies sink = 0.
By choosing the auxiliary system of anti-symmetric Green function,

UT equation yields

) 1
0 = u(1)ie ™ sink + (7 — ﬁzu(l))%e”" sin k,
n sink
)= Smk
u(1) m + ik sink’

the possible irregular values occur at the positions where k satisfies sink = 0;

LM equation yields
0 = u(1)ike ™* cosk — (7 — mu(1))e ™* cos k,



J.-T. Chen et al. | Mechanics Research Communications 32 (2005) 75-92 79

Table 1
The fictitious eigenvalues of the one-dimensional exterior problem subject to the Dirichlet, Neumann and mixed-type boundary
conditions using the dual formulations

Exterior problem Fictitious eigenequations
Dirichlet Neumann Mixed-type
u(l)y=u t(1)=1¢ mu(l) +t(1) =n
Symmetric auxiliary system ur cosk cosk cosk
LM sink sink sink
Anti-symmetric auxiliary system ur sin k sink sin k
LM cosk cosk cosk
(1) n cosk
u = -7 5
m + ik cosk’

the possible irregular values occur at the positions where & satisfies cosk = 0.
The fictitious frequencies for the Dirichlet, Neumann and mixed-type problems by using the dual BEMs
are shown in Table 1.

3. Semi-analytical derivation of the fictitious frequencies for the two-dimensional exterior problem by using the
degenerate kernels and Fourier series expansions in a continuous system

The governing equation for the two-dimensional eigenproblem is the Helmholtz equation,

Vu(x) + Ku(x) =0, x€D, (19)

where D is the domain of interest, x is the field point, k is the wave number and u(x) is the acoustic po-
tential, respectively. On the basis of the dual boundary integral formulation (Chen and Chen, 1998; Chen
and Hong, 1999), we have

ou(x) = C.P.V./ T(s,x)u(s)dB(s) — R.P.V./ U(s,x)t(s)dB(s), x € B, (20)
ot(x) = H.P.V. / M(s,x)u(s)dB(s) — C.P.V. / L(s,x)t(s)dB(s), X € B, (21)

where s is the source point, u(s) and #(s) are the potential and its normal derivative on the boundary,
respectively, R.P.V. denotes the Reimann principal value, C.P.V. denotes the Cauchy principal value,
H.P.V. denotes the Hadamard principal value and « is the interior angle of the boundary at field point. The
explicit forms of the four kernel functions U(s,x), 7(s,x), L(s,x) and M (s, x) are summarized as follows:

 —inH" (kr)

Ve 2 (22)
. aU(S, X) _ —ikm 1) yin;
Tex) ==, =2 A 0~ (23)
_0U(s,x) ikm Vil
L(s,x) = .~ 2 H," (kr) =, (24)
M(S ) _ azU(va) o —ikn _ kHz(l)(kl‘) _— (1)(kr) - (25)
= ondn, 2 2 P L |
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where H(V(kr) is the nth order Hankel function of the first kind, r = |x —s|, y; =s; — x;, i* = —1, n; and 7
are the ith component of the outer normal vectors at s and x, respectively. The null-field integral equations
(Matrin, 1980) corresponding to Egs. (20) and (21) are

():/T(s,x)u(s)dB(s)—/U(sx)t(s)dB(s), x € D, (26)
0= /M(s, X)u(s)dB(s) —/L(s, x)t(s)dB(s), x € D", (27)

where D¢ is the complementary domain.
The kernel functions in Egs. (22)—(25) can be expanded into the following degenerate kernels:

Uls.x) = >0 (ko) H(kR) cos(m(0 — ), R > p,

U(s,x) = " (28)
Us,x) = 30 FURRHL (kp) cos(m(0 — #)), > R,
T'(s,x) = % 2k, (kp)H.V(kR) cos(m(0 — §)), R > p,

T(s,X) = m:;oc (29)
Te(s,x) = 3 kI, (R)H (kp)cos(m(0 — $)), p > R,
Lis,x)= > kI, (kp)HS (kR) cos(m(0 — $)), R > p,

L(57 X) = m:o;OO (30)
LX) = Y kI, (kR)H (kp) cos(m(0— §)), p > R,
Mi(s,x) = Y2 I, (ko)L (kR) cos(m(0 — $)), R > p,

M(s,x) = m:;m (31)
Me(sx) = 32 U, (R)H (1), (kp) cos(m(0 — 9), p >R,

where (R, 0) and (p, ¢) are the polar coordinates of s and x, respectively. Note that U = U, T =T, L =L
and M = M’ are for the exterior problem; U = U¢, T = T¢, L = L* and M = M* are for the interior problem.

For the exterior problem subject to the mixed-type boundary condition on the circular boundary as
shown in Fig. 2, the null-field integral equation can be rewritten as

0= /j}g[T"(s7 x)u(s) — U'(s, x)#(s)] dB(s)
= / [T'(s,x)u;(s) — U'(s,x)t;(s)]dB (s) +/ [T'(s,X)us(s) — U'(s, X)t2(s)] dB,(s). (32)

B By
Give the boundary conditions,

7Y (kr) .
1(0) = kL()—K cos N0, s€EB, (33)
H(kp) R
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H0R) N
w(0)=(k Hr;;;(k”‘g - )eos N8
N

a—

Hy (kR)

u,(8)= s NG

HY(kp)

Fig. 2. The 2-D radiation problem subject to the mixed-boundary condition.

HY (kR
uy(0) = ’(‘1)<k ) cos N0, s €& By, (34)
H (kp)

as shown in Fig. 2, the designed analytical solution is

(1)
u(0) = H“("]") (kR) cos A0, (35)
Hy (kp)

where ./ is a natural number.
Substituting the given boundary conditions into Eq. (32), it can be rewritten as

0= | [ P00, 6300)38:0) - [ UR.0:p.910(0)08:(0)

By B>
. HY (kR . A (kR
+ / T'(R, 0; p, d>)—(l)(k ) cos A 0dB,(0) — / U'(R,0;p,) (k%() A
B2 H\/ (kp) By HV(kp) R
x cos A"0dB,(0)|. (36)
We can expand the unknown boundary densities in terms of Fourier series with the period ©
u1(0) = ap + Z(a,, cos2nd + b, sin2n0), 0<0<m, s€B, (37)
n=1
t(0) = po + Z(p,, cos2nl + g, sin2nl), 7© <0 <2m, s€B,, (38)

n=1

where ay, a,, b,, py, p, and g, are the undetermined Fourier coefficients.
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Eq. (32) can be calculated as follows:
. s k o0
/ T'(R, 0; p, $)ur (s) dB, = / {zﬁé(kR)Jo(kﬂ) 1k > HY (kR)J, (kp) coslm(0 — ¢>}}
B 0 m=1

X |ay + Z(a,, cos2nf + b, sin 2n6) | Rd6

n=1

_ /0 { 70 3 kRW k) + ke ZH (R)n{kp) cosim(8 = 9

k = .
+5 —Hy(kR)Jo(kp) > (@, cos 2n0 + b, sin 2n0)

n=1

+ mk Z H! (kR)J,,(kp) cos[m Z a, cos 2n6 + b, sin 2n0) }R do.

m=1 n=1
(39)
By employing the relation of the trigonometric function and the theorem of orthogonality in an interval
between 0 and = to Eq. (39), we have

2smm¢> l
2

Rk{ ”2a°H'(kR)Jo(kp)+nao i H. (kR)J,,(kp)

Z (kR)J>, (kp)(a, cos 2n¢
n=1

m=13

W

: S = 2m sin me¢ 4ncos m¢o
+ b,sin2ng) +n H, (kR)J,,(kp) ( a, + b,,) }
; m:;i“. m2 - 4}’!2 m2 - 47’12

Rk{ TH, (kR)J()(kp + ag Z 2m+1 kR)Jz,,H,l (kp) m T 1

m=0

+ g S Hy, (kR)J2, (kp) (@, c0s 2nh + b sin 2ng))

n=1

N o=, 2(2m+ 1)sin(2m + 1)¢ dncos(2m + 1)¢
+ H,,  (kR) a1 (K a, + b,
;Z 2t (R m( Q2m+1)° — 42 Q2m+1)7 — 42

m=!

0
= mkR { (kR)J», (kp)(a, cos 2n¢ + b, sin 2nd)

+ Zoo:HgmH(kR)JZ,nH(kp) (2(2m +1)sin2m +1)¢ 4n cos(2m + 1)¢b ) }
m=0

a, n
2m + 1) — 4n? (2m + 1) — 4n?

a"l

2(2m+1)
= an; { [ kR Jzn(kp) COS 271(]5 + ; m 2m+1(kR)J2m+1(kp) sm(Zm + 1)(]5
b }

4n

+ - 00 @ 69>
Qm+1)’ — 4n

2 Hy, (KR)J2, (kp) sin 2n¢p + Z Hy, iy (kR) i1 (kp) cos(2m + 1)

(40)
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Similarly,

. > i - 2(2m+1)
U'(R,0;p,¢)tr(s)dB, = nR —H,,(kR)J,,(kp) cos 2n¢p — —_——H,,
/B2 ( p, $)t2(s) dBy ;}:{[2 on(kR)J 2 (kp) ¢ ;(2m+1)2—4n2 2m+1

% (KR)Jams1 (kp) sin(2m + 1)¢ | p, + gHzn(kR)Jzn(kp) sin 2n¢)

qn}‘ (41)

/ {zk H" (kR)Jy (kp) +nk2 D(kR)J,, (kp) cos[m(0 — ¢)]} (I)EkRi cos N 0RO
(

o0

—H2m+1 (kR)JQ,,H,l (kp) COS(Zm + 1)(]5
= 2m+1)" — 4n?

m

Furthermore,

m=1

_ / " {gng(kR)Jo(kp) + niH,f})(kR)Jm(kp) cos[m(6 — ¢)]} (

kR H(kR) R kR) N
_I k‘l)( )H_/i”(kR) (kp) cos N+ —— kL() 2
2 HY(kp) 2 U HVkp) R

(kR) N

T R > cos NORdAO
H ) (kp

> H' (kR)J - (kp) cos N .
Then Eq. (32) is rewritten as

> @m+1) .
0 = mkR Z { [ 2n kR Jz,,(kp) COs 2}’l¢ + Z T)“. zi,iil(kR)szﬂ(kP) Sln(zm + 1)¢ a

n . 4n
+ EH;il)(kR)Jzn(kp) sin 2n¢ + Z mHéﬁ;ll(kR)Jz,nH(kp) cos(2m + 1)¢ b,,}

m=0 -

R VIR (kp) cos 2np — S~ —2MED g0 emy o (kp) sin(2m + 1
-n Z 2n 2 (kp) cos2ng — Zm Hy, 1 (kR) o1 (kp) sin(2m + 1) | p
+ | 58 (kR) 2 (kp) sin 2n — Z 2m+1 oy (kR (kp) cos 2 + 1)¢ qn}

kR H' (kR) ) ’R LLKR) A\

L 1D (kR). - (kp) cos N + ——— k‘+7—— H')(kR)J ;- (kp) cos N .

2 Hu(p(kp) 2 ,4'” (kp) R

(42)

3.1. Semi-analytical approach—reduction to linear algebraic system

To solve the unknown coefficients in Eq. (42) is not an easy work, a semi-analytical approach is adopted
by choosing collocation points on the boundary instead of deriving the Fourier coefficients of the boundary
densities exactly. Eq. (42) can be simplified to

o0

0 = nR Z(kaT (pn) an + ngT (f)n fUT (/)n n gUT((b,n)qn) + hUT Ccos JV(]S ) (43)

n=0
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where the symbols, fll/T( o) g/UT( o) Sur(¢n)> 8ur(¢.n) and hyr, denote the influence coefficients of a,, by, pu, gx
and cos . /"¢, respectively, as follows:

m < 202m+1 ,
fll/T((/),n) = EH;;I)(kR)Jzn(kp) COos 27’l¢ + Z ml{égll(ﬂe)'}?mﬂ%p) sm(2m + 1)¢7 (44)
m=0
4n
Lot :2 o (kR)Jau (kp) sm2n¢—|—zm Hy )y (KR) Ty (kp) cos(2m + 1), (45)
1 = ZH\Y (kR)J, (kp) cos 2n¢p — i 2’"+ HY (kR o1 (kp) sin(2m + 1)¢ (46)
Jur(pn) = 2 2n 2 \KP 2 om+1 4n2 Hy, 2m+1\KP )
g = ZH\Y(kR)Js, (kp) sin 2n¢) — i S (kR)Jos1 (kp) cos(2m + 1), (47)
UT(¢,n) 2 2,1 2n\KP Z 2m+1)2—4 2 2m+1 2m+1(KP
nkH'" (kR) nkH' (kR) ~N'm
hor = —=—=H\V (kR - (kp) + | —— i — === | H (kR). i (kp). 48
U gy (kR)J.y-(kp) 2w 2R ) (kR)J v (kp) (48)

To match the number of Fourier coefficients, 4n + 2 collocation points are collocated and Eq. (43) can be
extended to an algebraic equation with matrix [Wyg] and vectors, {v} and {Hyr}, as follows:

0= [WUT](4n+2)><(4n+2){v}(4n+2)><1 + {HUT}(471+2)><1’ (49)
a cos N ¢,
b cos N ¢,
0=[A B —P —Qluun p + hur : , (50)
4 ) ni2yx1 08 N Ganr } gy
where
B ! ! !
Jorwo Joreny 0 Sor
Jorgry  Sirwny T Turan
[A] = TCkR . . . . )
i ! . i
_fUT(¢4n+2~0) fUT(dezJ) fUT(¢4n+2~,”> (4n+2)x (n+1)
B / / /
glvm,l) g/UTwl,z) T g;ff(qa],n)
Surgry  Sure,2) T 8ur(gym
[B] = mkR ) ) ,
] / /
_gUT(¢4n+zJ) gUT(¢4n+2«,2) o gUT(‘/)4n+27") (4n+2)xn
Jorgno)  Surgy o Jurga
Jurgs0)  Surgnny o Jurim

[P] = 7R : : . : ;

JUr(b420) JUrhaiz) 7 JUTaram d apiayeuiny
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[ urp1)  8ure2) &ur(eiw
gur(g1)  8ur(¢2) T 8UT(ha)
Q] =R . . ) ) ,
LEUT(dani2)  EUT(bani22) "~ ° " EUT(ayiam) (4n+2)xn
ap bl Do q1
a b, b1 92
a=<¢ . 5, b=<¢ > p=<". and q=4 .
ai’l bl’l pﬂ qn

Based on the same procedure using the singular formulation, the coefficient matrix [Wyr] of Eq. (49) is
replaced by [Wpm] for hypersingular one. The coefficients of Eq. (42) for the hypersingular formulation can
be calculated as follows:

= 202m+1)

! = kR)J., (kp)cos2nd + kR)J, . (kp)sin(2m + 1)¢, 51
fLM(dJAn) 2 2n ( ) 2/1( p) ¢ Z (2 + 1) _ 42 2m+l( ) 2m+1( p) ( )¢ ( )
/ ! 4n !
gLM((f)ﬁn) 2 Zn (kR)JZn (kp) sin 2I’l¢ + Z m 2m+l (kR)J2m+1 (kp) COS(2m + 1)¢7 (52)
- kR)J,, (kp) cos 2 y_2@m+1) KRV, ., (kp)sin(2m + 1 53
Jumgm = 2 Hy, (kR)J3, (kp) cos 2ndp — mz m 2m+1( ) om i1 (kp) sin(2m + 1) ¢, (53)
gLM(d’:”) 2 Zn (kR)JZ/n kp sin Zn(rb —2 2m+l (kR)JémJA (kp) cos(Zm + 1)¢? (54)
m=0 2m + — 4
nkH', (kR nhkH kR) N'm
i = S GR) 1y, (kg + <# - §>H_ﬁﬂ? (kR), (ko). (53)
20 (kp) 20 (kp)

The rank-deficiency of matrices, [Wyr| and [Wpy], due to fictitious frequencies for non-trivial solutions is
checked by using the concept of the minimum singular value.

4. Formulation of the two-dimensional exterior problem by discretizing the BIEs into a discrete system—
boundary element method

Discretizing the boundary B into N boundary elements in Egs. (26) and (27), we obtain the dual alge-
braic system as follows:

(UKt} = [Tu}, (56)
[L){e} = [M]{u}. (57)

For the problem with mixed-type boundary conditions, Eq. (56) can be decomposed into

AN A AN %)
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By collecting the given and unknown sets, we rearrange the influences matrices into

. t .
HUL] : TR]NxN{u} = [TL : UR}NXN{ } : (59)
Nx1 Nx1
Therefore, Eq. (56) can be simplified to
[A] ity = Blyaid v (60)

where

=

M =[U : -], Bl=[L : —Ul (61)

w={,} wm @={,} (62

Similarly, Eq. (57) yields
[C]NxN{P}le = [D]NXN{q}NXI' (63)

Substituting the given boundary condition Egs. (33) and (34) into Eq. (63), we have the column vector
below

cos N Q;jvv)"
(2+N)n 2
H (k) cos /V( N "‘W)
(Lt )
A
COS. V( 2+N>“+ (N — 1)) o
la} = cos N &= N (64)
o cos A" ( 210 +2ﬁ”)
H ) :
COSJV( G 21 (N — 1))

5. Review of the treatments for the fictitious frequency
5.1. Burton and Miller method

For the Dirichlet or Neumann problem, Burton and Miller (1971) utilized the product of hypersingular
equation with an imaginary constant to the singular equation,

(@k[U] + [L]{} = Gk[T) + [M]){u} (65)

to deal with the problem of fictitious frequency which result in the non-uniqueness solution. The mixed-
type boundary condition problem can be solved by the same concept for the equation

(ik[4] + [C){p} = (ik[B] + [D]){q}, (66)
where [4], [B], [C] and [D] can be found in Egs. (60) and (63).



J.-T. Chen et al. | Mechanics Research Communications 32 (2005) 75-92 87

5.2. CHIEF method

In order to remove the fictitious frequencies, Schenck (1968) and Benthien and Schenck (1997) used the
CHIEF method, which employed the boundary integral equations by collocating the interior point as an
auxiliary constraint to promote the rank of influence matrix. By using the concept, combination of the
integral equations for the boundary points and those for the points in the complementary domain with the
mixed-type boundary conditions yields an over-determined equation system,

i o = | ] (6)

axN axN

where the superscript B denotes collocation on the boundary, the superscript ¢ denotes collocation on the
complementary domain and « is the number of additional interior points.

6. Numerical experiments and discussions

Case I: A semi-infinite rod. A semi-infinite rod is considered. The boundary condition is shown in Fig. 1.
The fictitious frequencies for the mixed-type boundary conditions using different auxiliary systems (sym-
metric and anti-symmetric) are compared with those of Dirichlet and Neumann problems in Table 1. The
fictitious frequencies satisfy cosk = 0 for the singular formulation and sink = 0 for the hypersingular
formulation by using the symmetric auxiliary system with Neumann boundary condition. The fictitious
frequencies satisfy sin £ = 0 for the singular formulation and cos k£ = 0 for the hypersingular formulation by
using the anti-symmetric auxiliary system with Dirichlet boundary condition. The fictitious frequencies
appear as shown in Figs. 3 and 4 with the potential versus the wave number for symmetric and anti-
symmetric auxiliary system, respectively. The irregular values occur at the zeros of the trigonometric
function, sink or cosk, that match with those of the Dirichlet and Neumann problems.
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8 o ° |
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000 | Exact solution: u(k)=1
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T T T T T
0 4 8 12

k

Fig. 3. The potential versus the wave number using the singular and hypersingular formulations by using symmetric auxiliary system.
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Fig. 4. The potential versus the wave number using the singular and hypersingular formulations by using anti-symmetric auxiliary
system.

Case I1: A circular radiator. A circular radiator with a radius 1 m is considered. The boundary condition
and the number of collocating points are shown in Fig. 2. A semi-analytical approach is adopted instead of
calculating the Fourier coefficients of the boundary densities exactly. The number of the terms for Fourier
series and the order of the Bessel functions are n = 5 and m = 20 in Egs. (44)-(47) and Eqgs. (51)—(54),
respectively. Twenty two (4n + 2) collocation points on the boundary are used. The fictitious frequencies
appear as shown in Figs. 5 and 6 by using the singular and hypersingular formulations, respectively, where
J» denotes the nth zero for J,, function.

10

1
ATV WYY
0.01
0.001 Jo! 32 J21 302 31 943 ugt
o 0.0001
1E-005
1E-006
1E-007
1E-008 n=5
1E-009 m=20
1£010 — . I . I . T T
0 2 4 6 8
k

Fig. 5. The minimum singular value versus k using the singular formulation for the semi-analytical approach.
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Fig. 6. The minimum singular value versus k using the hypersingular formulation for the semi-analytical approach.

The number of boundary elements are 30. Taking ./~ = 4 for our numerical experiment in Eq. (64), the
BEM is utilized to solve the radiation problem. The CHIEF technique and Burton and Miller method are
applied to filter out the irregular values in the numerical experiments. To demonstrate that, we show the
potential and the flux at (R, 0) = (1,0) and (R, ) = (1, n), respectively, where the CHIEF point locates at
(x,y) = (0.5,0.5). The irregular values of the potential and the treatments for them are plotted and com-
pared with the analytical solution, Eq. (35), in Figs. 7 and 8, respectively. The irregular values of the flux

Jo2 443 441

u(1,0)

B 7L L S L L

Hypersingular formulation

Analytical solution: u(k)=1

2 T T T I T T T
0 2 4 6 a

K

Fig. 7. The potential u(1,0) versus & using the singular and hypersingular formulations for the BEM.

______ Singular formulation }
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[z CHIEF method (X)
Burten & Miller method
Analytical solution: u(k)=1
2 T T T T T T T
0 2 4 6 8

Fig. 8. The potential u(1,0) versus k using the Burton and Miller method and CHIEF technique for the BEM.
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= |
~
= !
J3t
0 — Jq2
—————— Singular formulation
Hypersingular formulation
Analytical solution: f(k)=1
2 T T T T T ‘ T
o 2 4 6 8

Fig. 9. The flux #(1,x) versus k by using the singular and hypersingular formulations for the BEM.

and the treatments for them are plotted and compared with the analytical solution, Eq. (35), in Figs. 9 and
10, respectively. The irregular values locate at the zeros of J,(k) by using the singular formulation (UT
formulation), while locate at the zeros of J) (k) by using the hypersingular formulation (LM formulation).
The contour of BEM result and the exact solutions are shown in Figs. 11 and 12, respectively. The
numerical experiments match well with our semi-analytical results.
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Burton & Miller method
Analytical solution: f(k)=1

(— CHIEF method (X) J

2

4

k
Fig. 10. The flux #(1, ) versus k by using the Burton and Miller method and CHIEF technique for the BEM.

Fig. 11. The BEM solution for radiation problem subject to the mixed-type boundary condition (k = 1) for the BEM.

7. Conclusions

The study presented in this article has focused on the occurrence of fictitious frequencies for the
problems subject to the mixed-type boundary condition. How to overcome the fictitious frequencies were
also addressed. The derivations of irregular values for a semi-infinite rod were implemented analytically and
numerically. The irregular values were derived semi-analytically and numerically for circular problems
through null-field integral equations and BEM, respectively. The fictitious frequencies of circular radiator
subject to the mixed-type boundary condition were studied by using the BEM. The irregular values were
treated by using the CHIEF technique and Burton and Miller method. It was verified that the occurrence of
fictitious frequencies depend on the integral representation (singular or hypersingular formulation) no
matter what the given type of boundary condition for the problem is. A good agreement is made.
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Fig. 12. The exact solution for the radiation problem subject to the mixed-type boundary condition (k = 1) for the BEM.
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