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ABSTRACT 

 
This paper describes a numerical procedure 
for solving the Laplace problems of circular 
domain containing multiple circular holes 
by using the null-field integral equation, 
Fourier series and degenerate kernels. The 
unknown boundary potential and flux are 
approximated by using the truncated Fourier 
series. Degenerate kernels for the 
fundamental solutions are utilized in the 
boundary integral equation. A linear 
algebraic system is obtained without 
boundary discretization. Degenerate scale in 
the multiply-connected domain is also 
examined. Several examples are illustrated 
and the results are compared well with the 
exact solution and those of Caulk’s data. 
 
Keywords: multiple circular holes, Laplace 
problem, null-field integral equation, 
degenerate kernel, Fourier series 

INTRODUCTION 

A number of engineering problems require 
the solutions of Laplace’s equation in 
regions with circular holes, e.g. steady state 
heat conduction of tube [1], flow of 
incompressible flow around cylinders, 
electrostatic fields of wires and torsion bar 
with holes. Although analytical methods 
involve special mapping technique or 
restricted solution representations, only 
limited cases were solved. Numerical 
methods are always resorted to deal with the 
problems. Finite element method (FEM) has 

been commonly employed to solve such 
problems, but a large number of elements 
are required to model this region. To reduce 
the effort of mesh generation, boundary 
element method (BEM) is also an efficient 
alternative which has been extensively used 
[2]. Caulk and his coworkers [1, 3, 4] have 
adopted the Fourier series in his special 
boundary integral method. Bird and Steele 
also utilized Fourier series for harmonic and 
biharmonic problems with circular holes 
[5-6]. Wang et al. also employed complex 
Fourier series and complex variable 
boundary integral equation method (BIEM) 
to handle elasticity problems with circular 
boundaries [7]. However, they did not 
employ the null-field integral equation and 
degenerate kernels to fully capture the 
circular boundary. Shen et al. have proposed 
a new method to deal with the half-plane [8] 
or infinite-plane problems [9] with circular 
holes. Null-field integral equation in 
conjunction with the degenerate kernels and 
Fourier series are fully incorporated to 
capture the circular geometry. 
In this paper, BIEM is utilized to solve 
problems with multiple circular boundaries. 
To utilize the geometry of circular boundary, 
Fourier series for boundary densities and 
degenerate kernels for fundamental 
solutions are incorporated into the null-field 
integral equation. The unknown boundary 
potential and flux are approximated by 
using the truncated Fourier series. By 
matching the boundary condition, the 
unknown Fourier coefficients can be 
determined by substituting the degenerate 
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kernels into the null-field integral equation. 
Numerical results are given to illustrate the 
validity of the present approach. The 
accuracy and efficiency for the present 
method are also examined. 

PROBLEM STATEMENT AND 
INTEGRAL FORMULATION 
Consider the Laplace problem with a 
circular domain containing N  randomly 
distributed circular holes centered at 
position vector jc ( j =1, 2, ..., N ) as 
shown in Fig. 1. Let ja  and jB  denote 
the radius and boundary of the jth  circular 
hole. 
 

FIGURE 1 Problem statement 
By employing the Fourier series expansions 
to approximate the potential u  and its 
normal flux t  on the boundary, we have 
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where 0 ja , nja , njb , 0 jp , njp  and njq  
are the coefficients, jθ  is the polar angle 
centered at jc . Based on the boundary 
integral formulation of the domain point for 
the potential problem [10], we have 
2 ( ) ( , ) ( ) ( )
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− ∈
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∫
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where ( ) ( ) / st s u s n= ∂ ∂ , s  and x  are the 
source and field points, respectively, D  is 
the domain of interest, B  is the boundary 
and ( , ) lnU s x r= ( r x s= − ) , is the 
fundamental solution which satisfies 

2 ( , ) 2 ( )U x s x sπδ∇ = −  (4)
in which, ( )x sδ −  denotes the Dirac-delta 
function. ( , )T s x  is defined by 

( , )( , )
s

U s xT s x
n

∂=
∂

 (5)

where sn  denotes the outward normal 
vector at the source point s . By collocating 
x  outside the domain ( ex D∈ ), we obtain 
the null-field integral equation as shown 
below 
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Based on the separable property, the U  
kernel function can be expanded into 
degenerate form as shown below 
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 (7)

where α  is the angle between js c−  and 
jx c− , the superscripts i  and e  denote 

the interior and exterior cases, respectively. 
After taking the normal derivative, the 

( , )T s x  kernel can be derived as 
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In the real computation, only finite M  
terms are used in the summation of Eqs. (1) 
and (2). 

LINEAR ALGEBRAIC SYSTEM 

By collocating the null-field point 
k j kx c a−− =  on the kth  circular 

boundary for Eq. (6), we have 
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where cN  is the number of circles. It is 
noted that the path is counterclockwise for 
the outer circle. Otherwise, it is clockwise. 
For the jB  integral of the circular 
boundary, the kernels of ( , )U s x  and 

( , )T s x  are respectively expressed in terms 
of degenerate kernels of Eqs. (7) and (8), 
and ( )u s  and ( )t s  are substituted by 
using the Fourier series of Eqs. (1) and (2), 
respectively. In the jB  integration, we set 
the origin of the observer system to 
collocate at the center jc  to fully utilize 
the degenerate kernel and Fourier series. By 
collocating the null-field point near kB , Fig. 
2 (a) shows the collocation point and 
boundary contour. A linear algebraic system 
is obtained 

[ ]{ } [ ]{ }U x T y=  (10)

where [ ]U  and [ ]T  are the influence 
matrices, { }x  and { }y  denote the vectors 
of Fourier coefficients, respectively. By 

rearranging the known and unknown sets, 
the unknown Fourier coefficients are 
determined. After obtaining the unknown 
Fourier coefficients, the origin of observer 
system is set to jc  in the jB  integration 
as shown in Fig. 2 (b) to obtain the interior 
potential by employing Eq. (3). The 
boundary integrals on the circle are listed in 
the Appendix. The flow chart of the present 
method is shown in Fig. 3. 
 
 

FIGURE 2 (a) Null-field integral equation 
 

FIGURE 2 (b) Boundary integral equation 
for the domain point 
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Boundary density 

(Fourier series) 

[Eqs. (1) and (2)] 

Laplace problem with circular holes 

Null-field integral equation [Eq. (6)] 

Expansion 

Collocating to the null-field point 

and matching of B. C. 

Linear algebraic system 

BIE for the domain point [Eq. (3)]

Fundamental solution 

(Degenerate kernel) 

[Eqs. (7) and (8)] 

Obtain unknown Fourier coefficient 

 

FIGURE 3 The flow chart of the present 
method 

DISCUSSIONS ON DEGENERATE 
SCALE 

When the outer boundary has a radius of 
one ( 1a= ), the null-field integral equation 
results in 
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no matter what the null-field point is 
collocated due to the property of degenerate 
kernel in Eq. (7). As the radius a  is one, 
the influence matrix is singular for the 
Dirichlet problem. This finding extends the 
proof of annular case where the outer radius 
of one is a degenerate scale [11-14]. No 
matter how many inner holes are located 
inside the outer boundary, the Dirichlet 
problem with radius one of the outer 
boundary is not solvable due to rank 
deficiency in Eq. (11). To avoid the 
nonuniqueness for the BIE formulation, all 
the outer radii of the following examples are 
not equal to one to avoid the degenerate 

scale. 

NUMERICAL RESULTS 

In order to demonstrate the validity of the 
present method. Several examples are given. 
 
Example 1. An eccentric case with radii 1a  
and 2a  ( 1 1a = , 2 2.5a = ) is shown in Fig. 
4 (a). The boundary condition on the hole is 

0u=  and the potential on the outer circle 
is one. The numerical result is shown in Fig. 
4 (b). Good agreement is made after 
comparing well with the exact solution [15], 

2

2

1 16 1 8 cos( , ) ln[ ]
2ln 2 16 8 cos

u ρ ρ φρ φ
ρ ρ φ
+ +=
+ +

(12)

as shown in Fig. 4 (c). 
 
 

FIGURE 4 (a) A circular domain with an 
eccentric circle 
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FIGURE 4 (b) Contour of potential (M=10) 
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FIGURE 4 (c) Exact solution [15] 

 
Example 2. A circular region of radius R  
with two circular holes which are placed on 
a concentric circle of radius b  ( 1b= ). 
Both holes have the same radius a  as 
shown in Fig. 5 (a). The radii of the circular 
holes and the external boundary are 

0.5a=  and 2R= . The results are shown 
in Fig. 5 (b). After comparing with the 
quarter part of Caulk’s result in Fig. 5 (c) 
[1], good agreement is made. 
 
 

FIGURE 5 (a) Two circular holes in a 
circular domain 
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FIGURE 5 (b) Contour of potential (M=10)

 
FIGURE 5 (c) Quarter part of the potential 
by Caulk [1] 
 
Example 3. Consider the same region as the 
above example, but now add a hole of radius 
c  at the center. The boundary conditions 
are different from each other as shown in 
Fig. 6 (a). The radii of the holes are 

0.4a c= =  and the distance 1.2b=  from 
the center of the external boundary. Fig. 6 (b) 
shows the numerical results obtained using 
the present method. The quarter part of the 
potential by Caulk [1] is shown in Fig. 6 (c) 
for comparison, good agreement is made. 
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FIGURE 6 (a) Three circular holes in a 
circular domain 
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FIGURE 6 (b) Contour of potential (M=10)

 
FIGURE 6 (c) Quarter part of the potential  
by Caulk [1] 
 
Example 4. By changing the boundary 
conditions of example 3, we have example 4 
as shown in Fig. 7 (a). The results in Fig. 7 
(b) are compared well with the quarter part 
of Caulk’s data in Fig. 7 (c). 
 

 

FIGURE 7 (a) Three circular holes in a 
circular domain 
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FIGURE 7 (b) Contour of potential (M=10)

 
FIGURE 7 (c) Quarter part of the potential  
by Caulk [1] 
 
In all the examples, only ten terms of 
Fourier series (M=10) were needed to 
converge well with the exact solution [15] 
for example 1 and Caulk’s data for examples 
2, 3 and 4 [1]. The present method is more 
accurate for the Laplace problems with 
multiple circular holes than others (FEM or 

- 2048 -



!"#$%&&'()*+,$%&'-    $./01&    !"#$2345367 

 
BEM) under the same number of degrees of 
freedoms. 

CONCLUSIONS 
For the Laplace problems with circular 
boundaries, we have proposed a special 
BIEM by using degenerate kernels, 
null-field integral equation and Fourier 
series in an adaptive observer system. The 
method shows great generality and 
versatility for the problems with multiple 
circular holes of arbitrary radii and positions. 
The degenerate scale is also discussed for 
the multiply-connected case. Numerical 
results agree very well with the available 
exact solution and Caulk’s data. 
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APPENDIX 

(1) For the null-field integral equation of 
Eq. (6) in Fig. 2 (a), we have 
( j js c x c− > − ). 
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(2) For the interior point of Eq. (3) in Fig. 
2 (b), we have ( j jx c s c− > − ). 
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where js c R− = , jx c ρ− = , θ  and 
φ  are shown in Fig. 8. 
 

FIGURE 8 Sketch of the source and field 
points 
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二維區域含圓洞之 

拉普拉斯問題的新解法 

 

沈文成  陳正宗 

國立台灣海洋大學河海工程系 

 

摘要 

 
本文以勢能理論為基礎，提出以退化核與
傅立葉級數展開搭配零場積分方程求解
含多孔洞拉普拉斯問題。此方法可視為半
解析法。邊界未知勢能與流通量使用有限
項傅立葉級數來近似求得。利用退化核與
傅立葉展開可導得一線性代數方法而無
須對邊界離散，並對退化尺度進行探討。
最後以幾個不同邊界條件的拉普拉斯問
題進行測試。所得結果無論與解析解或是
與 Caulk的數值結果比較，均可驗證本方
法的正確性。 
 
關鍵字：多孔洞，拉普拉斯問題，零場積
分方程式，退化核，傅立葉級數 
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