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ABSTRACT

This paper describes a numerical procedure
for solving the Laplace problems of circular
domain containing multiple circular holes
by using the null-field integral equation,
Fourier series and degenerate kernels. The
unknown boundary potential and flux are
approximated by using the truncated Fourier
series.  Degenerate  kernels for the
fundamental solutions are utilized in the
boundary integral equation. A linear
algebraic system is obtained without
boundary discretization. Degenerate scale in
the multiply-connected domain is also
examined. Several examples are illustrated
and the results are compared well with the
exact solution and those of Caulk’s data.

Keywords: multiple circular holes, Laplace
problem, null-field integral equation,
degenerate kernel, Fourier series

INTRODUCTION

A number of engineering problems require
the solutions of Laplace’s equation in
regions with circular holes, e.g. steady state
heat conduction of tube [1], flow of
incompressible flow around cylinders,
electrostatic fields of wires and torsion bar
with holes. Although analytical methods
involve special mapping technique or
restricted solution representations, only
limited cases were solved. Numerical
methods are always resorted to deal with the
problems. Finite element method (FEM) has

been commonly employed to solve such
problems, but a large number of elements
are required to model this region. To reduce
the effort of mesh generation, boundary
element method (BEM) is also an efficient
alternative which has been extensively used
[2]. Caulk and his coworkers [1, 3, 4] have
adopted the Fourier series in his special
boundary integral method. Bird and Steele
also utilized Fourier series for harmonic and
biharmonic problems with circular holes
[5-6]. Wang et al. also employed complex
Fourier series and complex variable
boundary integral equation method (BIEM)
to handle elasticity problems with circular
boundaries [7]. However, they did not
employ the null-field integral equation and
degenerate kernels to fully capture the
circular boundary. Shen et al. have proposed
a new method to deal with the half-plane [8]
or infinite-plane problems [9] with circular
holes. Null-field integral equation in
conjunction with the degenerate kernels and
Fourier series are fully incorporated to
capture the circular geometry.

In this paper, BIEM is utilized to solve
problems with multiple circular boundaries.
To utilize the geometry of circular boundary,
Fourier series for boundary densities and
degenerate  kernels  for  fundamental
solutions are incorporated into the null-field
integral equation. The unknown boundary
potential and flux are approximated by
using the truncated Fourier series. By
matching the boundary condition, the
unknown Fourier coefficients can be
determined by substituting the degenerate
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kernels into the null-field integral equation.
Numerical results are given to illustrate the
validity of the present approach. The
accuracy and efficiency for the present
method are also examined.

PROBLEM STATEMENT AND
INTEGRAL FORMULATION

Consider the Laplace problem with a

circular domain containing N randomly
distributed circular holes centered at
position vector ¢; (j=1, 2, .., N) as

shown in Fig. 1. Let a; and B; denote
the radius and boundary of the jth circular
hole.

FIGURE 1 Problem statement
By employing the Fourier series expansions

to approximate the potential u and its
normal flux t on the boundary, we have

u(s) = ay, +Z(anj cosng,
n=1

1)
+b,;sinnd;), s € B,
t(§) = poj +Z(pnj cos n(gj
n—1 (2

+4, sinnd;), s € B;

where ay;, a;, b;, py;, p; and q;
are the coefficients, 6, is the polar angle
centered at c; . Based on the boundary
integral formulation of the domain point for
the potential problem [10], we have

27u(x) = [ T(s,x)u(s)dB(s)

®3)
~ [ 0t(9)dB(s), xe D

where t(s)=o0u(s)/on,, s and x are the
source and field points, respectively, D is
the domain of interest, B is the boundary
and U(s,x)=Inr (r=[x-s|) , is the
fundamental solution which satisfies

VAU (x,8) = 276(x - 9) (4)
in which, 6(x—s) denotes the Dirac-delta
function. T(s,x) is defined by

T@x%:@%%ﬁ (5)

where n, denotes the outward normal
vector at the source point s. By collocating
x outside the domain (x € D®), we obtain
the null-field integral equation as shown
below

0= [ T(s,0u(s)dB(s)

— [ U(s0t)dB(s), x€ DF
Based on the separable property, the U

(6)

kernel function can be expanded into
degenerate form as shown below
U(s,x)=
U‘:In‘g—gj‘
=1 ‘Z(_Qj‘
_;E(‘g—gj‘)mcosma’
s-e>x-c| @
Ue:In‘x—gj‘
=1 ‘§_Qj‘
—n;a(‘x_gj‘)mcosma,
x—¢|>|s—¢|

where « is the angle between s—c; and
X—¢;, the superscripts i and e denote
the interior and exterior cases, respectively.
After taking the normal derivative, the
T(s,x) kernel can be derived as
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T(s,X) =
1 = |x—¢|
_ X—¢;
TI_\g—g,\+mzl(\§—9,-\m“)cosma'
s—cl>lx—c| g
o
Te=-> (—1—)cosma,
o [x—c,
x—c¢;|>[s—¢|

In the real computation, only finite M
terms are used in the summation of Egs. (1)
and (2).

LINEAR ALGEBRAIC SYSTEM

By collocating the null-field point
X —C|=a on the kth circular
boundary for Eq. (6), we have

NC
0= [ T(s:x)u(s)dB(S)

T (©)

—Z | U(s:x)t(9)dB(s), x € D°

where N_ is the number of circles. It is
noted that the path is counterclockwise for
the outer circle. Otherwise, it is clockwise.
For the B; integral of the circular
boundary, the kernels of U(s,x) and
T(s,x) are respectively expressed in terms
of degenerate kernels of Egs. (7) and (8),
and u(s) and t(s) are substituted by
using the Fourier series of Egs. (1) and (2),
respectively. In the B, integration, we set
the origin of the observer system to
collocate at the center c; to fully utilize
the degenerate kernel and Fourier series. By

collocating the null-field point near B, , Fig.

2 (@) shows the collocation point and
boundary contour. A linear algebraic system
is obtained

UI{x}=[T{y} (10)
where [U] and [T] are the influence
matrices, {x} and {y} denote the vectors

of Fourier coefficients, respectively. By

rearranging the known and unknown sets,
the unknown Fourier coefficients are
determined. After obtaining the unknown
Fourier coefficients, the origin of observer
system is set to c; in the B; integration
as shown in Fig. 2 (b) to obtain the interior
potential by employing Eq. (3). The
boundary integrals on the circle are listed in
the Appendix. The flow chart of the present
method is shown in Fig. 3.

Vau(x)=0,xeD

FIGURE 2 (b) Boundary integral equation
for the domain point
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Laplace problem with circular holes

Null-field integral equation [Eq. (6)]

Expansion

Fundamental solution Boundary density

(Degenerate kernel) (Fourier series)

[Egs. (7) and (8)] [Egs. (1) and (2)]
1 1

Collocating to the null-field point
and matching of B. C.
Linear algebraic system I

l_l

Obtain unknown Fourier coefficient

FIGURE 3 The flow chart of the present
method

[™] BIE for the domain point [Eq. (3)]

DISCUSSIONS ON DEGENERATE
SCALE

When the outer boundary has a radius of
one (a=1), the null-field integral equation
results in

2ralna .|| p,; o
: P =T ]H 2y (11)
2ralna || qy

mj

no matter what the null-field point is
collocated due to the property of degenerate
kernel in Eq. (7). As the radius a is one,
the influence matrix is singular for the
Dirichlet problem. This finding extends the
proof of annular case where the outer radius
of one is a degenerate scale [11-14]. No
matter how many inner holes are located
inside the outer boundary, the Dirichlet
problem with radius one of the outer
boundary is not solvable due to rank
deficiency in Eg. (11). To avoid the
nonuniqueness for the BIE formulation, all
the outer radii of the following examples are
not equal to one to avoid the degenerate

scale.

NUMERICAL RESULTS

In order to demonstrate the validity of the
present method. Several examples are given.

Example 1. An eccentric case with radii &
and a, (a, =1, a,=2.5) is shown in Fig.
4 (a). The boundary condition on the hole is
u=0 and the potential on the outer circle
is one. The numerical result is shown in Fig.
4 (b). Good agreement is made after
comparing well with the exact solution [15],

1 16p° +1+8pcose
u(p,¢) = In 12
(0.9) 2In2 [p2+16+8pcos¢] (12)
as shown in Fig. 4 (c).

FIGURE 4 (a) A circular domain with an
eccentric circle

e

T T T T T T
-1 0. 0 1 k 2 . 3

FIGURE 4 (b) Contour of potential (M=10)
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FIGURE 4 (c) Exact solution [15]'

Example 2. A circular region of radius R
with two circular holes which are placed on
a concentric circle of radius b (b=1).
Both holes have the same radius a as
shown in Fig. 5 (a). The radii of the circular
holes and the external boundary are
a=0.5 and R=2. The results are shown
in Fig. 5 (b). After comparing with the
quarter part of Caulk’s result in Fig. 5 (c)
[1], good agreement is made.

FIGURE 5 (a) Two circular holes in a
circular domain

FIGURE 5 (b) Contour of potential (M=10)

FIGURE 5 (c) Quarter part of the potential
by Caulk [1]

Example 3. Consider the same region as the
above example, but now add a hole of radius
c at the center. The boundary conditions
are different from each other as shown in
Fig. 6 (a). The radii of the holes are
a=c=0.4 and the distance b=1.2 from
the center of the external boundary. Fig. 6 (b)
shows the numerical results obtained using
the present method. The quarter part of the
potential by Caulk [1] is shown in Fig. 6 (c)
for comparison, good agreement is made.
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FIGURE 6 (a) Three circular holes in a FIGURE 7 (a) Three circular holes in a
circular domain circular domain
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FIGURE 6 (b) Contour of potential (M=10) FIGURE 7 (b) Contour of potential (M=10)
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FIGURE 6 (c) Quarter part of the potential FIGURE 7 (c) Quarter part of the potential
by Caulk [1] by Caulk [1]
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Example 4. By changing the boundary In all the examples, only ten terms of
conditions of example 3, we have example 4 Fourier series (M=10) were needed to
as shown in Fig. 7 (a). The results in Fig. 7 converge well with the exact solution [15]
(b) are compared well with the quarter part  for example 1 and Caulk’s data for examples
of Caulk’s data in Fig. 7 (c). 2, 3 and 4 [1]. The present method is more

accurate for the Laplace problems with

multiple circular holes than others (FEM or
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BEM) under the same number of degrees of
freedoms.

CONCLUSIONS

For the Laplace problems with circular
boundaries, we have proposed a special
BIEM by using degenerate Kkernels,
null-field integral equation and Fourier
series in an adaptive observer system. The
method shows great generality and
versatility for the problems with multiple
circular holes of arbitrary radii and positions.
The degenerate scale is also discussed for
the multiply-connected case. Numerical
results agree very well with the available
exact solution and Caulk’s data.
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APPENDIX
(1) For the null-field integral equation of
Eg. (6) in Fig. 2 (a), we have
(|s—ci|>[x—¢))-
|, Uls0t(s)dB(s)
_fzr[ln‘s—c‘ mf;% “:_EJ“)mcosma]
[pm—FEZ(DMuBnQ%—qﬂﬁnneﬂape
n=1"
= 278, In‘g—gj Py
—mZM;{Wr:j [P ( ::;’“)m cosme
x=cj,
+ Oy ( )" sinma]}
s—¢|
[ T xu()B(s)
a1 & [x=g
j; ‘g_gj‘+mz_:1(‘§_gj‘m+l)cosma]

M
[a,; + > (a,cosnd + b, sinnd)]a,do
n=1"

m

2ma. M
—L+> " {ma [ py(
m=1

‘§_91‘

X—C;
)cosme

m-+1

s—c,

m

‘mﬂ)sm mo]}

x—

e
s-c,

i

(2) For the interior point of Eq. (3) in Fig.
2 (b), we have (|x—¢;| > |s—c|).

[ UG08
27 o) 1
:ﬁ [In‘z(—gj‘—mz;la(“g_g]“) cosma]
[P, +ZM:(pnj cosnd + g, sinnd)]a;dé
n=1"
= 2ma, In‘g—c. Py
—sz:l{ﬂr:j[pm, “ — “) cos Mg

+ Gy (‘X ‘)m sinmg]}

/. ,T(g,x)u(g)ds(g)

_fzr[ Z(‘

)cos ma]

x 91\

[a, -+ Z:(anj cosnd + b, sinnd)]a,do
n=1

m-1
— S trany (5 cosmo
m=1 ‘Z(_Qj‘
‘S ‘mfl
+ Gy () sinme]}
‘)5 N 91‘
where [s—c;|=R, [x—c|=p, 6 and
¢ are shown in Fig. 8.
R>p E
x=(p i s=(R.0)
; . p>R

FIGURE 8 Sketch of the source and field
points
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