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Abstract

In this paper, the eigenproblems with
circular boundaries are studied by using
null-field integral equations in conjunction
with degenerate kernels and Fourier series.
Direct-searching scheme is employed to
detect the eigenvalues by using singular
value decomposition (SVD) technique. It is
analytically verified that an inner circle
results in the spurious eigenvalue and it
appears in the numerical experiment. Also,
the spurious eigenequation due to the inner
circle is examined. Several examples are
demonstrated to see the validity of the
present formulation.

Keywords: null-field integral equation,
singular value decomposition, degenerate
kernel, Fourier series, eigenproblem.

Introduction

Boundary element method (BEM) and
finite element method (FEM) have been
recognized as alternatives for solving
eigenproblems. Although FEM is a popular
method for solving eigenproblems, it needs
a lot of time to generate the mesh. In this
aspect, BEM is an efficient alternative from
the viewpoint of mesh reduction. No mesh
is our final goal. For multiply-connected
domain problems, spurious eigensolution in
the BEM [1-3] and MFS [4-6] has been
noticed until the recent years. To solve
multiply-connected eigenproblems, Lin [7]
employed the transformation technique of
cylindrical wave functions to satisfy the
boundary condition with seven holes.

Nagaya and Poltorak [8] used both the
Fourier expansion collocation method and
point-matching approach to find the
eigenvalues of elliptical or polygonal outer
boundary with eccentric inner boundaries.
Chen et al. [1-3] used the BEM to
determine the eigenvalue and eigenmode
for the multiply-connected eigenproblems.
The spurious eigensolution was found and
filtered out by using the SVD updating
technique and the Burton & Miller method.
In this paper, the boundary integral
equation method (BIEM) is utilized to
solve the eigenproblems with circular
boundaries. To fully utilize the geometry of
circular boundary, Fourier series for
boundary densities and degenerate kernel
for fundamental solutions are incorporated
into the null-field integral equation.
Direct-searching scheme is adopted to
detect the eigenvalue by using the SVD
technique. Mode shape can be
simultaneously determined from the right
unitary vectors of zero singular value. The
results will be compared with those of FEM
and BEM.

Problem Statement and Integral
Formulation

Consider the eigenproblem with a
circular domain containing N randomly
distributed circular holes centered at
position vector ¢; (j=1, 2, .., N) as
shown in Fig. 1. Let a; and B; denote
the radius and boundary of the jth
circular hole.
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FIGURE 1. Problem statement

By employing the Fourier series
expansions to approximate the potential u
and its normal flux t on the boundary, we
have

u(s) = ay; +§:(anj cosnd, O
n=1

+b,;sinnd;),s € B,

t(s) = Py; +Z(pnj cos no;
n=1

+4, sinnd;), s € B;

where aj;, a;, b;, Py, p; and g,
are the Fourier coefficients and 6, is the
polar angle centered at c;. Based on the
boundary integral formulation of the
domain point for the eigenproblem, we
have

2mu(x) = [ T(s,9u(9)dB(S)

— [ U(s:0t(9)dB(s), xe D

where s and x are the source and field

points, respectively, D is the domain of

interest, B is the boundary and U(x,s)

is the fundamental solution which satisfies
(V2 +KU(%,8) = 2m6(x —$) (4)

in which, 6(x—s) denotes the Dirac-delta

function. The T(s,x) kernel, is defined by

oU (s, )

T(s,%) an, (5)
where n, denotes the outward normal
vector at the source point s. By collocating
X outside the domain (x € D?), we obtain
the null-field integral equation as shown
below

()

(3)

0=/ T(s,0u(s)dB(s)

~ J (s 0t(9)dB(s), x€ D

Based on the separable property, the
fundamental function can be expanded into
degenerate kernel form as shown below

U(s,x)=
U= 35 klx-¢))

HY (k| s—¢; ) cos(me),

|s—c[>[x—¢| (7)
s
U(s,%) = gger(nl) (k|x—¢|)

Jn(k|$=¢; ) cos(mez),

(6)

| x—¢|>]s—¢

where i®=—1a is the angle between
s—c; and x—c;, the superscripts | and
E denote the interior and exterior cases,
respectively, and

] m=0,
gm_{z, m¢0,}' ®)

After taking the normal derivative with
respect to U kernel, the T(s,x) kernel can
be derived as

T(s,X)=

—7Zi 0
T'(5%) = gstm(kl x—C|)

{a_ﬁ) (k | s—C |) C(B(m)'F
n

HO (k] s 22y
s-cl>lx-¢|  (9)
T3 -2 SHHIKIxc,)
Kls—c)
{aJ—a1 oos(rmod) +

oo0s(me)
J (k|s— ,
n(k|s—c|) n

| x—¢|>[s—¢|
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In the real computation, only finite M
terms are used in the summation of Eqgs. (1)
and (2).

Linear Algebraic Equation

By collocating the null-field point on the
kth circular boundary for Eq. (6), we have

0=>" [/ TG x)u()B(E)
T (10
-2 [ UG xHdB(E), % €D°

where N, is the number of circles. It is
noted that the path is anticlockwise for the
outer circle. Otherwise, it is clockwise. For
the B, integral of the circular boundary,
the kernels of U(s,x) and T(s,x) are
respectively expressed in terms of
degenerate kernels of Egs. (7) and (8), and
u(s) and t(s) are substituted by using
the Fourier series of Egs. (1) and (2),
respectively. In the B, integration, we set
the origin of the observer system to
collocate at the center c; to fully utilize
the degenerate kernel and Fourier series.
By collocating the null-field point near B, ,
Fig. 2 (a) shows the collocation point and
boundary contour. A linear algebraic
system is obtained

UHxp=[T]{y} (11)

where [U] and [T| are the influence
matrices, {x}and {y} denote the vectors
t(s) and wu(s) of Fourier coefficient,
respectively. For simplicity, the Dirichlet
case of u(s)=0 is considered. We can
obtain nonlinear eigenequation.

U]{x}=0 (12)

By employing the direct-searching
scheme, SVD technique can obtain the
eigenvalues and boundary modes at the
same time. After obtaining the eigenvalues
and unknown Fourier coefficients, the
origin of observer system is set to c; in
the B, integration as shown in Fig. 2 (b)

to obtain the interior potential by
employing Eq. (3). The boundary integrals
on the circle are listed in the Appendix. The
flow chart of the present method is shown
in Fig. 2 (c).

FIGURE 2 (b) Boundary integral equation
for the domain point

Eigenproblems with
circular holes

Null-field integral equation

Boundary density
(Fourier series)
[Egs. (1) and (2)]
|

Fundamental solution
(Degenerate kernel)
[Egs. (7) and (9)]

I

€ollocating to the null-field poi

and matching of B.C.

Algebraic system

_ BIE for the
Solve elgenvalue_s and domain
unknown Fourier point [Eq.3]

FIGURE 2 (c) The flowchart to determine
the eigenvalues and mode shape.
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Discussion on Spurious Eigenvalues

For the multiply-connected problem with
a circular domain with radius a, Eq. (12)
yields

o J(@H K)o (aH () om J (@M (k) smy
o o M f M f

o J@H K)o (a)H (ko) asmy J (@H (ko)snmy
0 0 MM 2 MM 2

o J(@HGK) - (aH () om J (QH (k)snm
o o M M M i

1= @)

o d@@H () e I (aH (@)am J ()H (a)snm)
00 MM 1 MM 1

o d@@H @ - (aH (Qom J(aH s | |
o o M [ M 2

3 ()H ()
0 0

for the Dirichlet problem. The determinant
of the influence matrix is zero for
Jy(ka)=0, M =0,1,2,3---. This is to say,

the eigenvalue for the Dirichlet problem of
circular domain with the radius a, is the
possible eigenvalue for the considered
problem. The possible eigenvalues of
J,,(ka)=0, are found to be the true

eigenvalues of a circular domain with
radius a subject to the Dirichlet boundary
condition. This finding extends the proof of
existence of spurious eigenvalues for
annular case [4, 5]. We can claim that any
inner circle introduces the spurious
eigenvalue for the multiply-connected
problems. The spurious eigenvalues are
found to be the true eigenvalues of the
eigenproblem of inner circle.

< J (RH (k) asmp J (@H ()snmp
M M M M M M

Numerical Results and Discussion

In order to demonstrate the validity of
the present method, several examples are
given.

Example 1. An eccentric case with radii

and r, (r=0.5,r,=2.0) is shown in Fig.
3(a). The Dirichlet boundary condition is
considered. Table 1 shows the former five
eigenvalues by using different methods.
Good agreement is made. Fig. 3(b) shows
the minimum singular value versus k where

the drop indicates the possible eigenvalues.
The present method obtains almost the
same result of BEM [2] where a spurious
eigenvalue appears at  k=4.81
(J,(4.81r;))=0). The spurious eigenvalue
was filtered out by using Burton and Miller
approach [4]. By adopting the truncated
Fourier series (M=10), the mode shapes are
shown in Fig.3(c) and compared with those
by FEM and BEM are also shown in Fig.
3(d).

(V2 +k*)u(x) =0,

FIGURE 3(a) Eigenproblem with an
eccentric domain.
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FIGURE 3 (b) The minimim singular o,
versus k using different approaches for
the Dirichlet problem with an eccentric
domain.

- 2060 -



.S
bt
T

4
4
=y

TABLEL The former five eigenvalues of
with an eccentric domain.

1 2 3 4 S

FEM[2] 173 213 245 276 295

Chen and

Zhou[11] 175 214 247 278 297

BEM[2] 174 214 247 278 298
Present method 1.74 2.14 2.96

2.78

k=296
FIGURE 3(c) The former five
eigenmodes for an eccentric case using
the present method.

Mode Shape Mode Shape

(FEM)

(BEM)

mode 1

k=174 k=174

mode 2

k=213 k=214

mode 3

k=245

mode 4

k=276 k=278
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mode 5

k=2.95 k=297
FIGURE 3(d) The former five eigen-

modes for eccentric case using FEM and
BEM.

Example 2. A circular region of radius R
with two unequal circular holes which are
placed on a concentric circle of radius e
(e=0.5) as shown in Fig. 4 (a). The radii
of the circular holes and the external
boundary are ¢, =03 , ¢,=04 and
R =1.0. The Dirichlet boundary condition
is considered. Table 2 shows the former
five eigenvalues by using different methods.
Good agreement is made. By adopting
truncated Fourier series (M=10), the mode
shapes are shown in Fig. 4(b) and are
compared with those by BEM and FEM as
shown in Fig.4(c).

FIGURE 4 (a) Two unequal circular holes
in a circular domain
TABLE 2 The former five eigenvalues for
a circle domain with two unequal
holes

1 2 3 4 5

FEM[1] 4.79 4.80 6.61 6.63 7.8
BEM[1] 482 4.82 6.72 6.72 7.82
Present method 4.85 4.85 6.77 6.77 7.91
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k=791
FIGURE 4 (b) The former five modes for a
circular domain with two unequal holes by
using the present method.

mode 1

k=482  k=4790 “—=
mode 2

k=482  k=4.801 _ >
mode 3

k=6.72  k=6.619 L —
mode 4

k=6.72  k=6.634L___
mode 5

k=7.82 k=7.797 —

FIGURE 4 (c) The former five modes for a
circle domain with two
unequal holes using FEM
and BEM.

Conclusions

For the eigenproblems with circular
boundaries, we have proposed a special
BIEM by wusing degenerate Kernels,
null-field integral equation and Fourier
series in an adaptive observer system. The
method shows great generality and
versatility for the problems with multiple
circular holes of arbitrary radii and
positions. Also, the occurrence of spurious
eigenvalue was examined. Numerical
results agree very well with those of the
BEM and FEM.
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Appendix

(1) For the null-field integral equation of
Eg. (6) in Fig. 2 (a), we have
(js—¢>[x—¢).

[ U0t 98
:fﬁ[%ﬁi}s 3. (k| x—¢, DH (k| s—c, )cos(mn)]

[p, +Z(pn,» cosnd +q, sinn)]a do
iad (k| x—¢, DH; (k|s—c, D,

—Z{pnﬁiagm(ku—g DHY (k| s—c, [) cosmp

+q,miad, (k| x—c DH (k| s—c, )sinmg]}
J. T(s0u;(s)0B(s)

S S SERROESEY

{8Hr(n1)(k | § - 9 |) COS(mQ) +
on,
HO (ks —e ) 2etmlyy

S

[a, + Z (a, cosnd + b sinnp)]a,dd
n=1"

OHg (k|s—cl),

on
OHO(k|s—c))
on

= [_71— Iao] 0(k | X— C |){

cos(mar) +

-3 (a3, (K1 x— ¢, DE

s

0 C({S(ma)})cos meé
on

s

Hy (kls—cl)

HO®K|s—
+ (niaby, d (KX —c, |){W

s

HO (ks o) 2°0My) GinmeTy
on

s

cos(mar) +

where |s—¢,|=R, [x—¢c]|=p, 6 and

¢ are shown in Fig. 5.

x=(p.0) |

R>p i ______ os= (R0
o= ()
' p>R

FIGURE 5 Sketch of the source and field
points

(2) For the interior point of Eq. (3) in Fig.
2 (b), we have (|x —¢;| > |s—c|).

J v s
il ®
= 7DD (g 03,15 Do)

[p, +> (p, cosnd+q, sinrd)Jadd

n=1"

=—ria H (k| x—¢, )J, (k| s—¢, )p,

—> ¥p,7ia HY (k| x—c, I, (k| s—c, Doosmsp

m=1

+a,miaH (k| x—¢, ), (k| s—¢ DsinmyT}
. T(s.0u,(5)B(9)

2 i 20
=, B e kix=g )

{33 (kIS ch)

cos(ma) +

S

3. (k|s— |)acos(moz)}]

5

[a, +Z(anj cosnf +h sinnd)Ja;dd
n=1"

= [oriagaHE (K x—e, =Dy
nS
—zM:(wziajaij“ (k|x—c; |){w cos(ma) +
HO (ks — ¢y 22y, cos mg
on,
+(mfiab HY (k| x—¢; |){wcos(ma)+

Jomit m
S

HO (k| s—gD%})smmﬂ}

S
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