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Abstract

In this paper, the origins of spurious solutions occurring in the high-order finite difference methods are studied. Based on a uniform
mesh, spurious modes are found in the high-order one-sided finite difference discretizations of many eigenvalue problems. Spurious
modes are classified as spectral pollution and non-spectral pollution. The latter can be partially avoided by mesh refinement, while
the former persists when the mesh is refined. Through numerical studies of some prototype eigenvalue problems, such as those of the
Helmholtz and beam equations, we show that perfect central differentiation schemes do not produce any spurious modes. Nevertheless,
high-order central difference schemes encounter difficulties in implementing complex boundary conditions. We further show that the cen-
tral difference schemes will produce spurious modes as well, if asymmetric approximation is involved in boundary treatments. In general,
central difference schemes are less likely to produce spurious modes than one-sided difference schemes.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Spurious solution or spurious mode is a widely used
term in physics [5,9], mathematics [2–4,8,13,14], and engi-
neering [6,7,12,15], to refer to a non-physical solution that
bears no resemblance to the actual one. However, there is
no rigorous or precise definition of spurious solution in
general. In fact, two spurious solutions raised from differ-
ent fields may have little in common except that they are
both non-physical. Sometimes, a spurious solution may
just mean an unwelcome or unexpected artifact [15]. To
avoid an unwelcome spurious solution, one has to find
out its true origin, which in general could be due to either
physical and mathematical modelings, or numerical
methods.

A typical example of spurious solutions induced by
physical modeling is the one resulting from the multiband
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k Æ p model theory of envelope structures [5,9]. Spurious
solutions induced by mathematical modeling are usually
due to the missing of certain analytical constraints in math-
ematical formulations. In computational electromagnetics,
it has been shown [12] that the divergence equation is an
essential part of Maxwell’s equations. If the divergence free
constraint is neglected, a zero-frequency mode becomes a
solution of Maxwell’s equations [4]. Consequently, spuri-
ous modes with non-zero frequencies arise in numerical
solutions. Similarly, in the vibration analysis of fluid–solid
systems, it has been found [2] that if the zero-frequency cir-
culation mode is not prevented in displacement formula-
tion, a non-physical sub-space related to the zero-
frequency eigenvalue is appended to the spectrum of dis-
crete matrices.

The most interesting spurious solutions are those that
are directly related to numerical methods, i.e., spurious
solutions induced by algorithm. Spurious solutions induced
by algorithm may also arise from the loss of constraint
during the process of the numerical discretization. For
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Fig. 1. Illustration of the matrix structures of high-order finite difference methods. (a) Central finite difference (CFD); (b) one-sided finite difference type 1
(OFD1); (c) one-sided finite difference type 2 (OFD2).
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example, spurious modes induced by algorithm occur if the
imaginary part is simply dropped to save half of the com-
putational effort in a real-part boundary element method
[6,7]. In this work, we will consider two types of spurious
solutions induced by algorithm. The first type, as discussed
above, is due to the loss of certain constraints in a partic-
ular discretization scheme. Such a loss leads to a larger
eigensolution space. As a result, the discrete matrix pos-
sesses eigenvalues which are unrelated to any spectrum of
the original operator. Such an eigensolution may some-
times be referred to as spectral pollution in the mathemat-
ical literature [8,14]. Denote Spec(A) and Spec(AN),
respectively, to be the spectrum of original operator A

and of the corresponding discrete matrix AN, with N being
the meshsize. A point k is said to be spectral pollution of A,
if there exist kN 2 Spec(AN) such that kN! k as N!1
but k does not belong to Spec(A). It is noted that spurious
solutions induced by mathematical modeling are spectral
pollution too, since they are also due to the loss of con-
straints. The other type of spurious solutions induced by
algorithm is a non-spectral pollution one. Numerically, this
type of spurious modes will not converge. Instead, the dis-
crete matrix has different spurious eigenvalues when using
different grid, because these spurious solutions are not
essential to the discrete operator AN. In the present study,
the non-spectral pollution spurious solutions are found to
be linked to asymmetric approximation to the self-adjoint
operator, even though the necessary constraints are not
missing.

It is noted that the aforementioned examples of spurious
solutions are often only restricted to a particular field, and
are seldom studied in the contexts of different disciplines.
Clearly, there is a lack of systematic and multidisciplinary
studies in the literature, although such studies could have
tremendous impact on various fields in physical, mathe-
matical, and engineering sciences.

The objective of this work is to study the origin of spu-
rious solutions induced by numerical discretizations. In
particular, we investigate spurious solutions generated by
using both central finite difference (CFD) and one-sided
finite difference (OFD) schemes. Some prototype problems
such as eigenvalue problems of the Helmholtz and Beam
equations are considered in this paper, while the findings
of this work should be true for general eigenvalue prob-
lems. It is well known that by employing a large stencil,
high-order CFD schemes encounter difficulties in dealing
with complex boundary conditions, because a translation
invariant CFD differentiation kernel will refer to grid
points outside the domain, see Fig. 1a. One approach to
bypass this difficulty is to use one-sided differentiations
near boundaries such that only grid points inside the
domain will be deployed. Two typical OFD methods will
be investigated in this paper, see Fig. 1b and c, although
it is possible to consider other types of OFD matrix struc-
tures. However, such possibilities will not affect the essen-
tial conclusion of the present study. Another approach is
to maintain the CFD in the whole computational domain
by using fictitious domain outside the boundary. This
approach has not been possible until a recent progress in
high-order methods, the development of matched interface
and boundary (MIB) method [25]. The MIB method is
reformulated from a recently developed interface scheme,
the hierarchical derivative matching [22,23], originally pro-
posed for simulating electromagnetic wave scattering and
propagation in inhomogeneous media. The MIB method
has been generalized for the elliptic equations with curved
interfaces [26] and various boundary conditions [24].

The rest of this paper is organized as follows. In Section
2, several relevant boundary closure methods are reviewed.
In Section 3, we show how to completely or partially avoid
spurious modes. A conclusion is given in Section 4.

2. Mathematical apparatus

To facilitate our discussion of spurious solutions, we
first consider boundary closure techniques in high-order
central finite difference (CFD) and one-sided finite differ-
ence (OFD) schemes. Throughout the paper, we will con-
sider only a uniform grid with a total of N regular grid
points along each dimension, e.g., along the x-direction,
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we have the grid x1 = a < x2 < � � � < xN = b, where [a,b] is
the domain interval. In the present study, one approach
is referred to as a stable scheme if it is free of spurious solu-
tions. When one scheme is less likely to produce spurious
modes than another, the former will be said to be more sta-
ble than the latter. The instability here is not the time-inte-
gration instability of unsteady problems.
2.1. Boundary treatments in one-sided finite different schemes

In the high-order OFD methods, in order to avoid the
boundary closure difficulty of applying a CFD kernel in a
translation invariant manner, progressively more asymmet-
ric finite difference approximations to the governing partial
differential equation (PDE) are employed near the bound-
aries [11,17,24]. Boundary conditions will be implemented
by means of OFD approximations without using nodes
outside the computational domain.
2.1.1. One-sided finite different approximations

The OFD approximation is defined pointwisely

uðnÞðxiÞ ¼
XS2

j¼S1

cðnÞi;j ðxiÞuðxjÞ; ð1Þ

where u(n)(xi) is the nth order derivative of u(xi), and S1 and
S2 are the summation limits. The OFD Lagrange kernels
cðnÞi;j ðxiÞ can be given as

ci;jðxÞ ¼
YS2

k¼S1;k 6¼j

x� xk

xj � xk
; ð2Þ

cðnÞi;j ðxiÞ ¼
dnci;jðxÞ

dxn

����
x¼xi

: ð3Þ

The above differentiation of the Lagrange interpolation ker-
nel can be carried out analytically. In this paper, a fast algo-
rithm which is able to determine weights in high-order finite
difference formulas on arbitrarily spaced grids [10] will be
employed to calculate the OFD coefficients. We note that
if the summation (1) is global, i.e., S1 = 1 and S2 = N, this
actually gives a differential quadrature approximation [16].

Different choice of the summation limits S1 and S2 gives
rise to different OFD matrix structures. Two typical OFD
methods shown in Fig. 1b and c will be considered in this
paper, although others can be similarly studied. For both
OFD methods, symmetric finite difference kernel with fixed
bandwidth 2M + 1 is used for interior nodes, i.e.,
S1 = i �M and S2 = i + M, as long as it is not beyond
the domain. Here, M clearly characterizes the order of
accuracy of the finite difference approximation. Near
boundaries, asymmetric finite difference kernels are
employed. These two methods use different limits S1 and
S2 for summation (1) at xi

• OFD1

S1 ¼ maxði�M ; 1Þ; S2 ¼ minðiþM ;NÞ; ð4Þ
• OFD2

S1 ¼ maxðminði�M ;N � 2MÞ; 1Þ;
S2 ¼ minðmaxð1þ 2M ; iþMÞ;NÞ; ð5Þ

where 1 6 i 6 N and 2M + 1 6 N.
As shown in Fig. 1, the matrix structure of OFD1 is the

same as that of CFD. There seems no reason to consider a
OFD method with even shorter stencil at the boundaries.
The OFD2 method essentially aims to maintain the same
order of accuracy throughout the domain by using one-
sided finite difference kernels with fixed bandwidth
2M + 1 near the boundaries, see Fig. 1c. Even longer
OFD kernels will not improve the order of convergence.
We thus only focus on these two OFD methods in the pres-
ent study. We will show that the OFD2 method is more
accurate than the OFD1 method, while the latter is more
stable than the former.

To facilitate the stability discussion in the next section,
we denote the degree of asymmetry of the OFD1 and
OFD2 as {0:2M} and {0:M}, respectively. Here {M1:M2}
denotes that the most asymmetric approximation in a
high-order finite difference discretization has M1 and M2

nodes, respectively, from the left and right side of the point
of differentiation. If the most asymmetric stencil is for the
right boundary, the values of M1 and M2 will be inter-
changed. Thus, one always has that M2 P M1. The degree
of asymmetry of a central finite difference method is
{M:M}.
2.1.2. Boundary closure methods for the OFD

To impose boundary conditions in both OFD1 and
OFD2, one should first discretize boundary conditions by
means of OFD approximations. This usually gives rise to
two algebraic equations at x1 and xN, i.e., two endpoints.
There are different boundary closure methods to incorpo-
rate these two boundary algebraic equations into the entire
PDE discretization. We will consider the following two
schemes:

• Boundary closure scheme 1

In scheme 1, algebraic equations attained from discret-
ized boundary conditions at x1 and xN are simply cou-
pled with the algebraic equations attained from the
discretized PDE at x2, . . . ,xN�1. This straightforward
boundary method is often assumed in the text books
of numerical analysis for the standard finite difference
method. However, it may yield spurious solution in
higher dimensions as we will demonstrate in the next
section.

• Boundary closure scheme 2

In scheme 2, one first solves two boundary algebraic
equations to determine u1 and uN. In particular, u1 and
uN will be represented as linear combinations
of u2, . . . ,uN�1. Then when u1 and uN is referred in dis-
cretizing the PDE on inner nodes x2, . . . ,xN�1, the
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representations of u1 and uN in terms of u2, . . . ,uN�1 will
be supplied, so that the final finite difference matrix will
not involve u1 and uN. In other words, the resulting dis-
crete matrix thus has a dimension of (N � 2) · (N � 2).
This type boundary treatment is commonly used in the
differential quadrature method [16].

Here we consider an example to illustrate the scheme 2.
More examples of both boundary closure methods are
available in Ref. [24]. We consider the eigenvalue analysis
of double free-edged beams [25]. The dimensionless govern-
ing equation is

d4W
dx4
¼ k2W ; ð6Þ

where W is the displacement and k is the frequency param-
eter. On both ends of the domain, the free edge support is
assumed

d2W
dx2
¼ 0;

d3W
dx3
¼ 0: ð7Þ

It is noted that since there are two boundary conditions to
be imposed on each boundary, the boundary closure
scheme 1 is not applicable. One can only solve this eigen-
value problem via the scheme 2. In the following, we will
discuss the boundary implementation in the context of
the differential quadrature method [16]. The differential
quadrature approximation can be obtained by taking
S1 = 1 and S2 = N in (1)

uðnÞðxiÞ ¼
XN

j¼1

CðnÞi;j uðxjÞ; ð8Þ

here for simplicity we denote CðnÞi;j ¼ cðnÞi;j ðxiÞ. Consequently,
the governing Eq. (6) can be discretized as

XN

j¼1

Cð4Þi;j W j ¼ k2W i; i ¼ 1; 2; . . . ;N ð9Þ

and the free edge boundary conditions can be discretized as

XN

j¼1

Cð2Þ1;j W j ¼ 0; ð10Þ

XN

j¼1

Cð3Þ1;j W j ¼ 0; ð11Þ

XN

j¼1

Cð2ÞN ;jW j ¼ 0; ð12Þ

XN

j¼1

Cð3ÞN ;jW j ¼ 0: ð13Þ

Eqs. (10)–(13) can be expressed in the matrix form such
that

BBW ðSÞ þ BDW ðIÞ ¼ 0; ð14Þ
where W(S) = [W1,W2,WN�1,WN]T, W(I) = [W3,W4, . . . ,
WN�3,WN�2]T. BB and BD are 4 · 4 and 4 · (N � 4) matrix
respectively. Similarly, Eq. (9) can be expressed in the ma-
trix form

DBW ðSÞ þ DDW ðIÞ ¼ k2W ðIÞ; ð15Þ

where DB and DD are (N � 4) · 4 and (N � 4) · (N � 4)
matrix respectively. Eq. (14) can be coupled with Eq. (15)
to give

DDW ðIÞ � DBB�1
B BDW ðIÞ ¼ k2W ðIÞ; ð16Þ

ðDD � DBB�1
B BDÞW ðIÞ ¼ k2W ðIÞ: ð17Þ

Finally, Eq. (17) can be expressed as a problem of eigen-
values and eigenvectors

½A�½W ðIÞ� ¼ k2½W ðIÞ�: ð18Þ

This procedure essentially solves boundary values
W(S) = [W1,W2,WN�1,WN]T from Eqs. (10)–(13) by means
of interior values W(I) = [W3,W4, . . . ,WN�3,WN�2]T. Then
the approximation of the governing equation at inner
nodes (x3,x4, . . . ,xN�3,xN�2) is modified after these bound-
ary value representations are taken into account, to form a
(N � 4) · (N � 4) dimension matrix [A]. This is exactly the
boundary closure scheme 2 discussed above. The same
boundary treatment can be applied to both OFD1 method
and OFD2 method. In such a case, boundary treatments
for the left and right ends can be conducted separately, be-
cause Eqs. (10) and (11) are decoupled with Eqs. (12) and
(13).

Although we focus on only two boundary closure
schemes, we note that there are other boundary closure
methods for the OFD formulation. For example, by admit-
ting the same number of fictitious points as that of the
boundary conditions at an edge, a local adaptive differen-
tial quadrature method has been recently proposed [18].
The boundary method in that work is essentially the clo-
sure scheme 2 discussed above, except that the boundary
points to be dropped are actually fictitious points. Thus,
the final discretization is formed on the entire domain
(x1,x2, . . . ,xN) [18].
2.2. Boundary closure methods for central finite difference

In the standard (2M)th order central finite difference
(CFD) approximation, the derivative of a function is
approximated via a weighted linear sum involving
2M + 1 nodes,

uðnÞðxÞ ¼
XM

j¼�M

cðnÞj ðxÞuðxjÞ; ð19Þ

where the translation invariant finite difference kernel
cðnÞj ðxÞ is the nth order derivative of the Lagrange interpola-
tion kernel

cjðxÞ ¼
YM

k¼�M ;k 6¼j

x� xk

xj � xk
: ð20Þ
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Fig. 2. Illustration of fictitious points near the left boundary.
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Similarly, the fast algorithm [10] will be used to generate
CFD coefficients.

To maintain the use of one CFD kernel in a translation
invariant manner, one must accurately estimate function
values on the fictitious domains outside the domain [a,b],
i.e., (x1�M, . . . ,x0) and (xN+1, . . . ,xN+M) for a (2M)th order
CFD scheme, based on the given boundary conditions, see
Fig. 1a. Once these fictitious values are determined via
certain fictitious domain boundary treatments, a 2M + 1
point CFD approximation can be used for all regular nodes
(x1,x2, . . . ,xN). The essential challenge in high-order CFD
methods is that the number of available boundary condi-
tions is far less than those required for the determining of
M fictitious points outside each boundary [24].
2.2.1. Treatment without one-sided approximations

The fictitious values can be attained in an exact sense for
some simple boundary conditions, such as the periodic
condition [19], the asymptotic Dirichlet condition [21],
the perfect electric and magnetic wall conditions in electro-
magnetic [1], the simply supported, clamped and trans-
versely supported edges in vibration analysis [20], etc. In
these cases, one can simply assume that there is a one-to-
one correspondence between the inner nodes and the outer
fictitious nodes on the boundary [20]. For example, we
assume that for the left boundary

uðx1�jÞ � uðx1Þ ¼ aj½uðx1þjÞ � uðx1Þ� ð21Þ

where aj, for j = 1, 2,. . .,M, is the unknown representation
coefficient to be determined from the boundary conditions.
In the context of the discrete singular convolution algo-
rithm [19], this fictitious domain boundary technique is
usually referred to as a boundary extension. For example,
at a clamped edge, the boundary conditions

uðx1Þ ¼ 0; uð1Þðx1Þ ¼ 0 ð22Þ

will be realized via the symmetric extension aj = 1,
j = 1,2, . . . ,M. At a simply supported edge, boundary
conditions

uðx1Þ ¼ 0; uð2Þðx1Þ ¼ 0 ð23Þ

can be imposed via the anti-symmetric extension aj = � 1,
j = 1,2, . . . ,M. However, the one-to-one assumption (21)
might not be rigorously valid for more complex boundary
conditions [24,25].
2.2.2. Treatment involving one-sided approximations – the

matched interface and boundary (MIB) method
The difficulty of implementing general boundary condi-

tions in the discrete singular convolution algorithm moti-
vates the development of the matched interface and
boundary (MIB) method, for accurately treating various
boundary conditions. To illustrate the idea, we consider
the Neumann boundary condition at the left boundary

ux ¼ / at x ¼ a: ð24Þ
The MIB method introduces a fictitious domain outside the
boundary (see Fig. 2), and repeatedly matches the bound-
ary condition across the boundary. Referring to the
Fig. 2, we denote the fictitious values on the M fictitious
points outside the domain as fi for i = 1,2, . . . ,M, while
the function values of the L + 1 grid points inside the do-
main which are involved in the MIB modeling are denoted
as uj for j = 0,1,2, . . . ,L. Note that index j begins at 0. We
seek for a high-order approach to represent fi in terms of uj

by means of discretizing boundary condition (24).
At the first step, since only one boundary condition is

available, one can only determine one fictitious point, i.e.,
f1. In order to achieve high-order accuracy for the bound-
ary implementation, we employ one-sided finite difference
approximations, which involve L + 1 grid points on the
inner side of the boundary; see Fig. 3. Thus, boundary con-
dition (24) is approximated by using an L + 2 point finite
difference approximation

Cð1Þ2;1f1 þ
XLþ2

i¼2

Cð1Þ2;i ui�2 ¼ /; ð25Þ

where Cð1Þ2;i for i = 1, . . . ,L + 2 are the one-sided finite differ-
ence weights for the first order derivative at point 2. We
note that the degree of asymmetry of this approximation
is {1:L}. The only unknown f1 in Eq. (25) can be solved
in terms of ui for i = 0, . . . ,L and /. Here, we note the flex-
ibility of choosing the total number of terms used by vary-
ing L in the finite difference approximation. While the
length of L determines the level of accuracy, it can be either
larger or smaller than M. To ensure the stability, in prac-
tice, L > 12 is hardly used.

To gain a sufficient number of function values at ficti-
tious points, we use an iterative procedure as introduced
in electromagnetic interface problems. By treating the pre-
vious calculated fictitious point as knowns, we seek for
determining one more fictitious point at one time as shown
in Fig. 3. Numerically, this is accomplished by discretizing
the same boundary condition again, but with one new fic-
titious point

Cð1Þ3;1f2 þ Cð1Þ3;2f1 þ
XLþ3

i¼3

Cð1Þ3;i ui�3 ¼ /; ð26Þ

where Cð1Þ3;i for i = 1, . . . ,L + 3 are the one-sided finite differ-
ence weights for the first order derivative with its differenti-
ation at point 3. The grid partition considered in (26) still
has L + 1 inner nodes, but two fictitious points outside the
boundary. Thus, this partition is independent of the previous
one. Moreover, this approximation is less asymmetric than
that of the first step, with the degree {2:L}. Since f1 has al-
ready been determined from Eq. (25), f2 can be solved from
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u1 u22f

f1f2 u

u0 uLfLfM fL+1

2fLfM fL+1
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1u uL0u
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Step L:
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Step L+1:

Step M:
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x=a

x=a
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2

Fig. 3. Illustration of the iterative procedure.
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(26). Through such an iterative procedure, the required M

fictitious points can be efficiently determined if M 6 L. Then
the degree of asymmetry of the last step will be {M:L}.

To ensure the stability at the first step of the MIB
method, L cannot be very large. Nevertheless, in practice,
M could be quite large. Thus, one need to consider the case
with M > L. Then, more iterative steps are required.
Through the above procedure, at step L, one can determine
fi for i = 1,2, . . . ,L. Now, at step L + 1, a central finite dif-
ference weights will be employed so that boundary condi-
tion (24) is discretized as

XLþ1

i¼1

Cð1ÞLþ2;ifLþ2�i þ
X2Lþ3

i¼Lþ2

Cð1ÞLþ2;iui�L�2 ¼ /: ð27Þ

In other words, from step L + 1 onward, one will add both
one more fictitious points and one more grid point at each
iterative step in the MIB iteration, as shown in Fig. 3. This
is because central finite difference approximations are not
only more accurate but also more stable than one-sided fi-
nite difference approximations. In Eq. (27), one still has
only one unknown, i.e., fL+1, which can be easily solved.
One can repeat this procedure as many times as necessary,
until the desired M fictitious points are all determined, see
Fig. 3. The degree of asymmetry will be {L + 1:L +
1},{L + 2:L + 2}, . . . , {M:M} in successive steps.

In order to apply the MIB method to a boundary value
or eigenvalue problem in which uj is not readily available, a
fundamental representation is essential for an implicit
formulation

fi ¼ Ri �U for i ¼ 1; 2; . . . ;M ; ð28Þ

where vector U = (u0, . . . ,uL,/) and the elements of vector
Ri are the representation coefficients of fi with respect to U.
With this representation, instead of solving fi, one needs to
determine Ri. Representation coefficients Ri will be deter-
mined from essentially the same procedure presented above
for fi. The only difference is that now one boundary condi-
tion is discretized and coupled into L + 2 algebraic equa-
tions, since a fictitious value fi is represented via L + 2
coefficients which are L + 2 elements of Ri.

Since the procedure of implementing boundary condi-
tion is systematic, the MIB method can be of arbitrarily
high order in principle. The MIB method provides a ficti-
tious domain support so that a high-order CFD kernel
can be applied in a translation invariant manner through-
out the domain. Although one-sided approximations are
used in determining fictitious values, CFD schemes are
strictly used for the discretization of the differential equa-
tion. Consequently, the present CFD-MIB method hardly
produces spurious solutions. This feature will be carefully
investigated in the next section.
3. Results and discussions

In this section, we examine the occurrence of spurious
modes in various finite difference schemes. Spectral pollu-
tion and non-spectral pollution spurious solutions will be
studied, respectively, in the following two subsections.
We will show that there are two sources of non-spectral
pollution spurious solutions. The first source is due to the
asymmetric boundary treatment. The other is due to the
asymmetric discretization of the differential equation.

A uniform grid will be employed in all cases, with N

being the meshsize along each Cartesian grid direction.
The bandwidth of the central finite difference (CFD) is
2M + 1, which is the same as that of the one-sided finite
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difference (OFD) for interior nodes. Both boundary closure
schemes discussed in Section 2.1.2 will be considered for
the OFD1 and OFD2 (see Fig. 1). The following five
benchmark problems whose analytical solutions are avail-
able are employed to study the origins of spurious modes.

• Simply supported beam [20],

d4W
dx4
¼ k2W ; x 2 ½0;p�;

W ð0Þ ¼ W ð2Þð0Þ ¼ 0;

W ðpÞ ¼ W ð2ÞðpÞ ¼ 0:

ð29Þ

• Beam with free edges [25]

d4W
dx4
¼ k2W ; x 2 ½0;p�;

W ð2Þð0Þ ¼ W ð3Þð0Þ ¼ 0;

W ð2ÞðpÞ ¼ W ð3ÞðpÞ ¼ 0:

ð30Þ

• 1D Helmholtz equation with Dirichlet boundary
conditions

uxx þ k2u ¼ 0; x 2 ½0; p�;
uð0Þ ¼ 0; uðpÞ ¼ 0:

ð31Þ

• 1D Helmholtz equation with Neumann boundary
conditions

uxx þ k2u ¼ 0; x 2 ½0; p�;
uxð0Þ ¼ 0; uxðpÞ ¼ 0:

ð32Þ

• 2D Helmholtz equation with Neumann boundary
conditions

Duþ k2u ¼ 0; in X ¼ ½0;p� � ½0; p�;
ou
on
¼ 0; on C ¼ oX:

ð33Þ
The physical eigenvalues of these benchmark problems
are all real. In the present study, a numerical eigenvalue
whose imaginary part absolute value is greater than a
threshold value � = 10�4, will be counted as a spurious
mode. In all Tables of this paper, for the purpose of iden-
tifying spurious modes easily, an imaginary part that orig-
inally should be given as 0.0000 to match the real part, will
be simply reported as 0.0. Moreover, all numerical eigen-
values will be sorted according to their magnitudes, so that
we can investigate the first occurrence of spurious mode in
the spectrum of the discrete matrix. This gives an idea how
much the discrete spectrum is polluted. The RG routine
from the EISPACK is employed to computer eigenvalues
in all studies. Other standard eigen-solvers are also tested
to ensure that the reported spurious solutions are not due
to artifacts of a particular eigen-solver.

3.1. Non-spectral pollution spurious modes

We will demonstrate in this subsection that non-spectral
pollution spurious modes occur when a severe one-sided
finite difference approximation is employed, either in the
asymmetric discretization of the differential equation, i.e.,
the OFD methods, or in the asymmetric boundary treat-
ment of the CFD methods.

3.1.1. Spurious modes raised in OFD methods

We first consider two eigenvalue problems, i.e., the 1D
Helmholtz equation with Dirichlet boundary conditions
Eq. (31) and the simply supported beam Eq. (29). In these
two examples, spurious solutions are found in OFD meth-
ods, but not in CFD methods.

The boundary conditions can be imposed analytically in
the CFD method for these examples, because the eigenfunc-
tions of these examples are sine functions. The sine func-
tions with integer wavenumbers satisfy the anti-symmetry
or skew-symmetry property at nodes x = 0 and x = p.
Thus, the fictitious values outside [0,p] can be attained
through the so-called anti-symmetric extension [19,20]. No
approximation error is involved in such an extension.

Therefore, boundary conditions are analytically satisfied
in the present CFD discretizations, so that the PDE discret-
ization scheme, i.e., the CFD here, will be fully responsible
to the possible occurrence of spurious modes, if any.

For OFD methods, an analytical boundary closure is
only feasible to the 1D Helmholtz equation. For example,
the homogeneous Dirichlet boundary condition at u = 0
can be realized by setting non-diagonal elements of the first
row of the discretized matrix as zero, while the diagonal
element as one. Numerically, such an implementation
introduces two trivial modes with their eigenvalues being
one. These two boundary modes are not spurious solutions
in the classical sense, and can be easily identified in prac-
tice. On the other hand, for the simply supported beam,
boundary conditions can only be enforced approximately.
These conditions will be imposed by using the boundary
closure scheme 2, as discussed for free edges in Section
2.1.2. Both OFD1 and OFD2 discretizations will be
considered.

It is found that, by using the same standard eigen-solver,
spurious modes typically appear in OFD methods, but not
in the CFD method. The relationship between the number
of spurious modes and the kernel bandwidth M is studied
in Fig. 4. The CFD method is free of spurious solutions
for any M value, while similar polluted patterns are
observed for the OFD methods in both examples. Note
that in the simply supported beam case, by using the
boundary closure scheme 2, the dimension of discrete
matrix for both OFD1 and OFD2 is (N � 4) · (N � 4).
Thus, when N = 61, there is no spurious mode with 57 real
modes. Therefore, in both examples, both OFD1 and
OFD2 do not deliver spurious modes when M is as small
as 2. For a larger M = 4 with the degree of asymmetry
{0:8}, the OFD2 begins to produce spurious modes, and
the first mode number of the lowest spurious mode is about
20–30. In other words, only the first 20 modes may be reli-
able. As M increases, it is clear from Fig. 4 that the number
of the non-spurious modes of the OFD2 decreases almost
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Fig. 4. Number of spurious modes against the kernel bandwidth M with N = 61. (a) 1D Helmholtz equation with Dirichlet boundary conditions; (b)
Simply supported beam. In both charts, solid line and dashed line show respectively the total number of real eigenmodes and the mode number of the
lowest complex eigenmode.
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linearly to just a few when M = 30. On the other hand,
when M is large, the fundamental mode is polluted too.
Thus, the OFD2 eigenmode analysis becomes unreliable
for M P 24. Similar pattern can be observed for the
OFD1 method in Fig. 4. Spurious solutions appear at
Table 1
Spectral pollution test of the OFD2 method with M = 12 for 1D Helmholtz e

Mode k2 N = 41

Re(k2) Im(k2)

1 1 1.0000 0.0
2 4 4.0000 0.0
3 9 9.0000 0.0
4 16 16.0000 0.0
5 25 25.0000 0.0
6 36 36.0000 0.0
7 49 49.0000 0.0
8 64 64.0000 0.0
9 81 81.0000 0.0

10 100 99.9991 0.0
11 121 120.9924 0.0
12 144 143.9970 0.0
13 169 169.4279 0.0
14 196 200.0808 0.0
15 225 230.7886 0.0
16 256 232.1581 12.3024
17 289 232.1581 �12.3024
18 324 283.8241 0.0
19 361 279.7546 �132.2395
20 400 279.7546 132.2395
21 441 280.0665 �132.3642
22 484 280.0665 132.3642
23 529 364.6390 0.0
24 576 289.2068 356.9520
25 625 289.2068 �356.9520
26 676 289.2073 �356.9522
27 729 289.2073 356.9522
28 784 461.2474 0.0
29 841 568.8530 0.0
30 900 686.7150 0.0
31 961 812.9487 0.0
32 1024 154.5138 �837.0814
33 1089 154.5138 837.0814
34 1156 154.5138 �837.0814
35 1225 154.5138 837.0814
M = 8 with the same degree of asymmetry {0:8}. Conse-
quently, for a fixed M, it can be concluded from Fig. 4 that
the OFD2 is more unstable than the OFD1.

We next show that the spurious modes of the OFD
methods are non-spectral pollution in nature. This is tested
quation with Dirichlet boundary conditions

N = 81 N = 161

Re(k2) Im(k2) Re(k2) Im(k2)

1.0000 0.0 1.0000 0.0
4.0000 0.0 4.0000 0.0
9.0000 0.0 9.0000 0.0

16.0000 0.0 16.0000 0.0
25.0000 0.0 25.0000 0.0
36.0000 0.0 36.0000 0.0
49.0000 0.0 49.0000 0.0
64.0000 0.0 64.0000 0.0
81.0000 0.0 81.0000 0.0

100.0000 0.0 100.0000 0.0
121.0000 0.0 121.0000 0.0
144.0000 0.0 144.0000 0.0
169.0000 0.0 169.0000 0.0
196.0000 0.0 196.0000 0.0
225.0000 0.0 225.0000 0.0
256.0000 0.0 256.0000 0.0
289.0000 0.0 289.0000 0.0
324.0000 0.0 324.0000 0.0
360.9996 0.0 361.0000 0.0
399.9983 0.0 400.0000 0.0
440.9941 0.0 441.0000 0.0
483.9847 0.0 484.0000 0.0
528.9735 0.0 529.0000 0.0
575.9939 0.0 576.0000 0.0
625.1713 0.0 625.0000 0.0
676.8378 0.0 676.0000 0.0
731.6995 0.0 729.0000 0.0
791.1601 0.0 784.0000 0.0
859.8901 0.0 841.0000 0.0
920.5703 �32.4314 900.0000 0.0
920.5703 32.4314 961.0000 0.0
936.1715 0.0 1024.0000 0.0
964.2473 0.0 1089.0000 0.0

1059.7287 0.0 1156.0000 0.0
1149.2771 0.0 1225.0000 0.0
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by varying the meshsize, with a fixed M. Only one OFD
method is reported for each example, i.e., OFD1 with
M = 12 for 1D Helmholtz equation and OFD2 with
M = 12 for simply supported beam. See Tables 1 and 2.
For both examples, the result for the other OFD method
is similar. In both tables, by taking N = 41, 81, and 161,
the first 35 numerical eigenvalues are listed together with
analytical eigenvalues. It can be observed in Table 1 that
by using N = 41, the first ten OFD2 eigenmodes roughly
agree with the true ones. The numerical error becomes very
large at the 15th mode, then spurious modes arrive at the
16th mode. Similarly, by using N = 81, the first 20 modes
of the OFD2 are good, while the accuracy is lost at the
28th mode, with the 29th mode being spurious. In both
cases, the first spurious mode occurs in the place where
the numerical error is substantially large. The numerical
modes after the spurious modes are simply useless as can
be seen from the Table 1. Moreover, the spurious modes
attained by using different meshsizes are clearly different.
In other words, such modes are not possessed by the dis-
crete OFD2 matrix, i.e., they are not spectral pollution.
Table 2
Spectral pollution test of the OFD1 method with M = 12 in beam analysis wi

Mode k2 N = 41

Re(k2) Im(k2)

1 1 1.0000 0.0
2 16 16.0000 0.0
3 81 81.0000 0.0
4 256 256.0000 0.0
5 625 625.0011 0.0
6 1296 1296.0194 0.0
7 2401 2401.1660 0.0
8 4096 4096.8462 0.0
9 6561 6563.7037 0.0

10 10000 10005.2813 0.0
11 14641 14648.5630 0.0
12 20736 20773.4306 0.0
13 28561 28858.6885 0.0
14 38416 40176.5950 0.0
15 50625 59272.1402 11429.9327
16 65536 59272.1402 �11429.9327
17 83521 61381.1026 15881.6611
18 104976 61381.1026 �15881.6611
19 130321 72970.9389 0.0
20 160000 107372.9000 0.0
21 194481 144701.1288 0.0
22 234256 �67369.6886 �165136.4465
23 279841 �67369.6886 165136.4465
24 331776 �67369.6886 �165136.4465
25 390625 �67369.6886 165136.4465
26 456976 190943.5739 0.0
27 531441 248396.3089 0.0
28 614656 319126.2592 0.0
29 707281 405131.7410 0.0
30 810000 508164.4227 0.0
31 923521 629373.0778 0.0
32 1048576 768815.8817 0.0
33 1185921 924562.9945 0.0
34 1336336 1090814.8570 0.0
35 1500625 1255396.7567 0.0
By refining the mesh again to N = 161, the first 35 modes
are then all physical as can be seen from Table 1, although
the OFD2 still produces spurious modes later on. The sim-
ilar non-spectral pollution pattern can also be observed in
Table 2.

It is of great interest to study the origin of spurious
modes in both OFD methods. Spectral pollution is usually
due to the loss of certain constraints. Nevertheless, no nec-
essary constraint is missing in the present OFD discretiza-
tion. Thus, the cause of the non-spectral pollution spurious
modes should be due to the severe asymmetric approxima-
tion. For the present two examples, the symmetric PDE
discretization via the CFD methods is free of spurious solu-
tions. For OFD methods, no matter whether boundary
conditions are satisfied exactly or approximately, non-spec-
tral pollution spurious solutions are generated. Thus,
boundary closure methods are non-essential to non-spec-
tral pollution spurious solutions. Consequently, it is the
asymmetric approximation used in the PDE discretization
that produces spurious modes. This can be further con-
firmed quantitatively. For example, it can be seen in
th simply supported edges

N = 81 N = 161

Re(k2) Im(k2) Re(k2) Im(k2)

1.0000 0.0 1.0000 0.0
16.0000 0.0 16.0000 0.0
81.0000 0.0 81.0000 0.0

256.0000 0.0 256.0000 0.0
625.0000 0.0 625.0000 0.0

1296.0000 0.0 1296.0000 0.0
2401.0000 0.0 2401.0000 0.0
4096.0001 0.0 4096.0000 0.0
6561.0014 0.0 6561.0000 0.0

10000.0090 0.0 10000.0000 0.0
14641.0416 0.0 14641.0000 0.0
20736.1550 0.0 20736.0000 0.0
28561.4876 0.0 28560.9999 0.0
38417.3281 0.0 38416.0000 0.0
50628.1820 0.0 50625.0001 0.0
65542.7681 0.0 65536.0010 0.0
83533.8256 0.0 83521.0038 0.0

104997.6224 0.0 104976.0115 0.0
130353.2364 0.0 130321.0301 0.0
160042.2431 0.0 160000.0720 0.0
194530.6066 0.0 194481.1596 0.0
234316.4814 0.0 234256.3326 0.0
279950.0632 0.0 279841.6575 0.0
332073.7936 0.0 331777.2401 0.0
391492.6247 0.0 390627.2423 0.0
459288.7211 0.0 456979.9007 0.0
537023.7537 0.0 531447.5468 0.0
627203.7524 0.0 614666.6240 0.0
734788.9759 0.0 707297.6984 0.0
873978.1427 0.0 810025.4541 0.0
975532.2594 �223197.1993 923558.6657 0.0
975532.2594 223197.1993 1048630.1383 0.0
979142.0480 226010.3757 1185996.6065 0.0
979142.0480 �226010.3757 1336438.5885 0.0

1075573.4963 0.0 1500760.2002 0.0
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Fig. 4 that spurious solutions appear at the same degree of
asymmetry {0:8} for both the OFD1 and OFD2
approaches. In fact, Fig. 4 illustrates the dependence of
the occurrence of spurious modes on the degree of the
asymmetric approximation associated with M.

3.1.2. Spurious modes raised in CFD and OFD schemes

We next examine spurious modes raised in the CFD
scheme of free-edged beam Eq. (30). The previous studies
suggest that in order to avoid non-spectral pollution spuri-
ous modes, high-order central finite difference methods
should be employed in PDE discretizations. However,
due to complex boundary conditions involved in the free-
edged beams, a fictitious domain boundary method with-
out involving one-sided approximations is unavailable.
Thus, the MIB boundary method which employs a one-
sided approximation in determining fictitious values has
to be utilized. Note that based on the MIB boundary
method, the symmetric CFD is used in the PDE
discretization.

The MIB boundary method presented in the last section
can be easily modified for the present example. In particu-
lar, since there are two boundary conditions in Eq. (30) at
each end, one can solve two fictitious values at first step or
at any iteration step. Thus, we usually take both M and L
to be even integers. To estimate M fictitious values, M/2
steps MIB iteration will be enough [25].

With its degree of asymmetry being {2:L}, the MIB
method may yield spurious modes when L is large, see
Fig. 5a. It can be seen that the CFD-MIB method is free
of spurious solutions when L 6 12. When the degree of
asymmetry is {2:14}, the CFD-MIB method yields spuri-
ous modes for all tested M vales. The spurious solutions
of three different M values are almost the same until L is
as large as 24. When L > 24, a smaller M, such as
M = 10, produce a slightly better results than other M val-
ues. These results suggest that in the MIB method, a spuri-
ous solution is due to the use of a large L, but not M.
Moreover, for a stable computation free of spurious solu-
tions, one should choose L 6 12 in the MIB boundary
method. This is further confirmed in Fig. 5b, in which
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Fig. 5. Spurious mode studies of free-edged beam with N = 61. In both charts
eigenmodes and the mode number of the lowest complex eigenmode. In (a), thr
CFD-MIB method.
the CFD-MIB method with L = 12 does not suffer from
the spurious solutions at all, while both OFD approaches
produce spurious modes. For this example, the critical
degree of asymmetry for OFD approaches is {0:8}, i.e.,
OFD1 with M = 8 and OFD2 with M = 4. We finally note
that although L is restricted to be not greater than 12, the
MIB method is designed in a stable manner to generate
enough fictitious points for M > 12.

The spectral pollution test of the CFD-MIB method
with M = L = 14 is considered in Table 3. For N = 41
and N = 81, first 30 modes and modes No. 25 to No. 54
are shown, respectively. It is clear that as in previous exam-
ples, these spurious solutions are non-spectral pollution
ones. They are due to the severe asymmetric approximation
introduced by a large L in the MIB boundary treatment,
although the symmetric CFD approximation is still used
in the PDE discretization. The spectral pollution tests of
both OFD approaches are similar to those presented in
the previous examples, are thus omitted here.

The present results also indicate that the occurrence fre-
quency of spurious modes in the CFD-MIB discretization
is lower than that in the OFD discretization. For the pres-
ent example, the critical value of the stable OFD1 is M = 8,
while that of the CFD-MIB is L = 12. This actually means
that the CFD-MIB method has a much wider range
of parameters to guarantee the stability than the OFD
approaches. This stability property may be explained based
on two considerations. First, the MIB method involves the
asymmetric approximation only in fictitious values, while
the OFD approaches use asymmetric approximations in
the PDE discretization. Thus, unlike in OFD approaches,
there is only some indirect effect of non-symmetric approx-
imations on the final CFD-MIB discrete matrix. Moreover,
such an effect is further balanced by the symmetric finite
difference approximation to the PDE. Second, the degree
of asymmetry of the MIB and OFD1 is, respectively,
{2:L} and {0:M}. Thus, a completely one-sided approxi-
mation is used in the OFD approaches, while a partially
one-sided approximation is used in the MIB method. As
a consequence, the MIB is stable on a larger parameter
space.
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Table 3
Spectral pollution test of the CFD-MIB method with M = L = 14 in beam analysis with free edges

Mode N = 41 Mode N = 81

k2 Re(k2) Im(k2) k2 Re(k2) Im(k2)

1 5.1388 5.1388 0.0 25 422825.0625 422803.2054 0.0
2 39.0470 39.0470 0.0 26 493155.0625 493090.2614 0.0
3 150.0643 150.0643 0.0 27 571914.0625 571761.3644 0.0
4 410.0623 410.0623 0.0 28 659750.0625 659435.0733 0.0
5 915.0625 915.0625 0.0 29 757335.0625 756745.5164 0.0
6 1785.0625 1785.0626 0.0 30 865365.0625 864347.7892 0.0
7 3164.0625 3164.0640 0.0 31 984560.0625 982930.9521 0.0
8 5220.0625 5220.0759 0.0 32 1115664.0625 1113241.2517 0.0
9 8145.0625 8145.1370 0.0 33 1259445.0625 1256116.1239 0.0

10 12155.0625 12155.3228 0.0 34 1416695.0625 1412525.4623 0.0
11 17490.0625 17490.4728 0.0 35 1588230.0625 1583611.8032 0.0
12 24414.0625 24412.7393 0.0 36 1774890.0625 1770718.7067 0.0
13 33215.0625 33202.3865 0.0 37 1977539.0625 1975400.1143 0.0
14 44205.0625 44150.7470 0.0 38 2197065.0625 2199413.1365 0.0
15 57720.0625 57558.4101 0.0 39 2434380.0625 2444708.3396 0.0
16 74120.0625 73763.2842 0.0 40 2690420.0625 2713439.9401 0.0
17 93789.0625 93231.2941 0.0 41 2966145.0625 3008023.0214 0.0
18 117135.0625 116705.3480 0.0 42 3262539.0625 3331272.9065 0.0
19 144590.0625 145344.3685 0.0 43 3580610.0625 3686686.1384 0.0
20 176610.0625 180833.8300 0.0 44 3921390.0625 4078980.4787 0.0
21 213675.0625 225755.9334 0.0 45 4285935.0625 4515106.7843 0.0
22 256289.0625 285688.6601 0.0 46 4675325.0625 5005865.8925 0.0
23 304980.0625 382328.2239 0.0 47 5090664.0625 5566212.1380 0.0
24 360300.0625 371344.5844 110553.9941 48 5533080.0625 5950670.7882 �1739324.7008
25 422825.0625 371344.5844 �110553.9941 49 6003725.0625 5950670.7882 1739324.7008
26 493155.0625 372600.0093 �106568.6485 50 6503775.0625 5950682.9110 1739573.2638
27 571914.0625 372600.0093 106568.6485 51 7034430.0625 5950682.9110 �1739573.2638
28 659750.0625 506889.2291 0.0 52 7596914.0625 6203210.4564 0.0
29 757335.0625 624060.7981 0.0 53 8192475.0625 6892089.8700 0.0
30 865365.0625 747753.7921 0.0 54 8822385.0625 7602542.4464 0.0
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On the other hand, following the same two consider-
ations, the CFD-MIB method is more accurate than the
OFD approaches. First, the central finite difference
approximations will be more accurate than the one-sided
finite difference approximations in PDE discretization
level. Second, partially symmetric approximations are bet-
ter than completely one-sided approximations. Moreover,
a larger L and arbitrarily large M are allowed in the
CFD-MIB method to deliver higher-order accuracy. There-
fore, the CFD-MIB method can attain higher order of
accuracy than the OFD approaches. In fact, in previous
calculations, orders of accuracy up to 12, sometimes even
16, have been attained by the MIB method [22,23,26,24].

The high accuracy of the CFD-MIB method is demon-
strated in Fig. 6 for the present eigenvalue problem. As
shown in Fig. 6a and b, the CFD-MIB method is more
accurate than both OFD approaches in estimating the first
30 eigenmodes, no matter a small or large bandwidth M is
employed. In terms of estimating the fundamental mode,
the CFD-MIB method still attains the highest accuracy
by varying either meshsize N or bandwidth M, see
Fig. 6c and d. On the other hand, a comparison between
two OFD approaches suggests that the OFD2 is usually
more accurate than the OFD1 when M is small. However,
as shown in Fig. 6b and d, when M is large, the OFD2
accuracy deteriorates quickly due to the instability, so that
the OFD1 becomes more accurate.

3.2. Spectral pollution spurious modes

We next study spectral pollution by considering 1D
Helmholtz equation Eq. (32) and 2D Helmholtz equation
Eq. (33) with Neumann boundary conditions. Spectral pol-
lution is found in OFD methods for the 2D Helmholtz
equation, but not for the 1D one.

3.2.1. Spurious modes in solving the 1D Helmholtz equation

The 1D Helmholtz equation Eq. (32) is studied first. For
the CFD approach, the MIB boundary method is similarly
formulated as in the free-edged beam analysis. Based on
the Neumann boundary condition u 0 = 0, it can be further
derived from the Helmholtz equation that u000 = 0. Two
boundary conditions are employed in the MIB boundary
treatment. By considering L = 10, and M ranging from 4
to 30, the CFD-MIB produces all real eigenvalues, i.e., free
of spurious solutions, see Fig. 7.

The difference between the present problem and the free-
edged beam is that now one can make use of both bound-
ary closure schemes 1 and 2 of Section 2.1.2 for OFD
approaches. We consider both boundary closure schemes
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in Fig. 7. We note that the matrix dimension by using the
OFD2 is (N � 1) · (N � 1) in this case. Thus, with
N = 61 in Fig. 7, by producing 59 real eigenvalues, the
OFD2 is actually stable when M = 4. Except for the differ-
ence in dimension, it can be observed from Fig. 7 that the
spurious mode patterns of OFD methods with closure
scheme 1 or scheme 2 are quite similar.

The spectral pollution tests are considered for both
OFD1 and OFD2 with both closure schemes 1 and 2.
The results of these four tests are similar. For simplicity,
we only present OFD2 results with the closure scheme 1
in Table 4. These spurious modes are clearly non-spectral
pollution ones.

3.2.2. Spurious modes in solving the 2D Helmholtz equation

However, spectral pollution is found in the OFD meth-
ods for the 2D Helmholtz equation with Neumann bound-
ary conditions, Eq. (33). In particular, it is found that lots
of spurious modes occur by using the boundary closure
scheme 1 of Section 2.1.2, while these modes can be



Table 4
Spectral pollution test of the OFD2 method with boundary closure scheme 1 and M = 10 for 1D Helmholtz equation with Neumann boundary conditions

Mode k2 N = 26 N = 51 N = 101

Re(k2) Im(k2) Re(k2) Im(k2) Re(k2) Im(k2)

1 1 1.0000 0.0 1.0000 0.0 1.0000 0.0
2 4 4.0000 0.0 4.0000 0.0 4.0000 0.0
3 9 9.0000 0.0 9.0000 0.0 9.0000 0.0
4 16 16.0000 0.0 16.0000 0.0 16.0000 0.0
5 25 25.0000 0.0 25.0000 0.0 25.0000 0.0
6 36 36.0003 0.0 36.0000 0.0 36.0000 0.0
7 49 48.9880 0.0 49.0000 0.0 49.0000 0.0
8 64 63.7428 0.0 64.0000 0.0 64.0000 0.0
9 81 80.8239 0.0 81.0000 0.0 81.0000 0.0

10 100 98.9910 19.6053 100.0000 0.0 100.0000 0.0
11 121 98.9910 �19.6053 121.0002 0.0 121.0000 0.0
12 144 106.7989 �22.4931 144.0008 0.0 144.0000 0.0
13 169 106.7989 22.4931 168.9996 0.0 169.0000 0.0
14 196 116.5843 103.8043 195.9781 0.0 196.0000 0.0
15 225 116.5843 �103.8043 224.8563 0.0 225.0000 0.0
16 256 124.0506 99.9955 255.4612 0.0 256.0000 0.0
17 289 124.0506 �99.9955 287.8351 0.0 289.0000 0.0
18 324 169.7701 0.0 323.4844 0.0 324.0000 0.0
19 361 295.5964 0.0 367.9723 0.0 361.0000 0.0
20 400 92.0373 �282.5523 407.2723 82.9183 400.0001 0.0
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avoided by using the closure scheme 2. By using the bound-
ary closure scheme 1, the first 40 eigenvalues estimated by
the both OFD approaches are listed in Table 5. It can be
observed from Table 5 that most of the numerical eigen-
modes are unrelated to the true spectrum. Moreover, they
are actually the spectral pollution modes, in the sense that
these modes converge by refining the mesh, and persist no
matter that either OFD1 or OFD2 is used. It is noted that
spectral pollution modes here have zero imaginary parts.
Thus, in practice, it is computationally challenging to dis-
tinguish these spurious modes from the true eigenmodes.
For example, there are only three correct eigenmodes,
i.e., the 8th, 21st and 22nd mode, indistinguishably inter-
spersed among 19 spectral pollution modes in the first 22
numerical modes. On the other hand, it is interesting to
observe that the OFD2 also produces non-spectral pollu-
tion spurious modes which have non-zero imaginary parts
and do not converge after refining the mesh. Furthermore,
besides the co-existence of two types of spurious modes, it
is also found that many true eigenvalues are simply missed
in the numerical spectrum by using the boundary closure
scheme 1. However, by using the boundary closure scheme
2 of Section 2.1.2, the spurious modes of two OFD
approaches will be only the non-spectral pollution ones.
The existence of the spectral pollution modes and the
absence of many true eigenmodes are not observed in
results of the closure scheme 2. The results of the boundary
closure scheme 2 are similar to those in the previous sec-
tions, and are omitted here.

It is of great interest to study the cause of the spectral
pollution modes in the boundary closure scheme 1 of Sec-
tion 2.1.2. According to the literature results, it should be
due to the loss of constraint in the numerical discretization.
For the boundary closure scheme 2 of Section 2.1.2, the
governing PDE is discretized at each point, while the
boundary condition has been naturally incorporated into
such a discretization. In other words, at each grid node
near boundaries, both the PDE and boundary conditions
are properly accounted. However, this is not the case for
the boundary closure scheme 1. In the boundary closure
scheme 1, at boundary nodes, only boundary conditions
are discretized. The information contained in the PDE is
not included. This may not be critical in 1D, but would
cause significant problem in higher dimensions. For exam-
ple, along the boundary C1 = {(x,y)jx = 0}, the algebraic
equations for all boundary nodes are the same, because
they are all discretized from the same Neumann boundary
condition along the x direction. However, in 2D, the true
eigenfunctions are generally not a constant, instead they
may fluctuate along the y direction on C1. Such a fluctua-
tion indicated by the governing PDE is clearly missing in
the boundary closure scheme 1. The loss of such a con-
straint creates eigensolution sub-space. Thus, the discrete
matrix possess the spectral pollution spurious modes. This
perhaps explains why the boundary closure scheme 1 in 2D
has spectral pollution, but it does not in 1D. Nevertheless,
we note finally that the absence of many true eigenmodes in
2D is still unaccountable. More detailed theoretical and
computational studies are needed for this spurious solution
problem.

The spurious mode study of the CFD-MIB method and
the OFD methods with boundary closure scheme 2 of Sec-
tion 2.1.2 is given in Fig. 8. For the MIB method, two
boundary conditions at each end are used as in the 1D case.
The CFD-MIB is found to be free of spurious solutions in
2D, see Fig. 8. By using the boundary closure scheme 2, the
matrix dimension of both OFD approaches is (N � 1)2 ·
(N � 1)2. Thus, by attaining 1521 real modes, both



Table 5
Spectral pollution test of the boundary closure scheme 1 for the 2D Helmholtz equation with Neumann boundary conditions. In both OFD approaches,
we have M = 4

Mode k2 OFD1 OFD2

N = 21 N = 41 N = 21 N = 41

Re(k2) Im(k2) Re(k2) Im(k2) Re(k2) Im(k2) Re(k2) Im(k2)

1 1 �0.5000 0.0 �0.5000 0.0 �0.5000 0.0 �0.5000 0.0
2 1 0.6189 0.0 0.6180 0.0 0.6180 0.0 0.6180 0.0
3 2 0.6189 0.0 0.6180 0.0 0.6180 0.0 0.6180 0.0
4 4 1.5607 0.0 1.5615 0.0 1.5615 0.0 1.5616 0.0
5 4 1.5607 0.0 1.5615 0.0 1.5615 0.0 1.5616 0.0
6 5 �1.6165 0.0 �1.6179 0.0 �1.6180 0.0 �1.6180 0.0
7 5 �1.6165 0.0 �1.6179 0.0 �1.6180 0.0 �1.6180 0.0
8 8 2.0000 0.0 2.0000 0.0 2.0000 0.0 2.0000 0.0
9 9 2.5329 0.0 2.5408 0.0 2.5410 0.0 2.5414 0.0

10 9 2.5329 0.0 2.5408 0.0 2.5410 0.0 2.5414 0.0
11 10 �2.5507 0.0 �2.5607 0.0 �2.5614 0.0 �2.5616 0.0
12 10 �2.5507 0.0 �2.5607 0.0 �2.5614 0.0 �2.5616 0.0
13 13 3.4939 0.0 3.5282 0.0 3.5278 0.0 3.5311 0.0
14 13 3.4939 0.0 3.5282 0.0 3.5278 0.0 3.5311 0.0
15 16 �3.4988 0.0 �3.5376 0.0 �3.5396 0.0 �3.5414 0.0
16 16 �3.4988 0.0 �3.5376 0.0 �3.5396 0.0 �3.5414 0.0
17 17 �4.4161 0.0 4.5155 0.0 4.5126 0.0 4.5248 0.0
18 17 �4.4161 0.0 4.5155 0.0 4.5126 0.0 4.5248 0.0
19 18 4.4174 0.0 �4.5198 0.0 �4.5212 0.0 �4.5310 0.0
20 20 4.4174 0.0 �4.5198 0.0 �4.5212 0.0 �4.5310 0.0
21 20 4.9999 0.0 5.0000 0.0 5.0000 0.0 5.0000 0.0
22 25 4.9999 0.0 5.0000 0.0 5.0000 0.0 5.0000 0.0
23 25 �5.2778 0.0 5.4971 0.0 �5.4915 0.0 5.5201 0.0
24 25 �5.2778 0.0 5.4971 0.0 �5.4915 0.0 5.5201 0.0
25 25 5.2785 0.0 �5.4977 0.0 5.5038 0.0 �5.5244 0.0
26 26 5.2785 0.0 �5.4977 0.0 5.5038 0.0 �5.5244 0.0
27 26 6.0513 0.0 �6.4652 0.0 �6.4511 0.0 6.5156 0.0
28 29 6.0513 0.0 �6.4652 0.0 �6.4511 0.0 6.5156 0.0
29 29 �6.0655 0.0 6.4681 0.0 6.5644 0.0 �6.5189 0.0
30 32 �6.0655 0.0 6.4681 0.0 6.5644 0.0 �6.5189 0.0
31 34 6.7104 0.0 �7.4166 0.0 �7.4497 0.0 7.5097 0.0
32 34 6.7104 0.0 �7.4166 0.0 �7.4497 0.0 7.5097 0.0
33 36 �6.7610 0.0 7.4231 0.0 8.0000 0.0 �7.5126 0.0
34 36 �6.7610 0.0 7.4231 0.0 8.1169 0.0 �7.5126 0.0
35 37 7.2838 0.0 8.0000 0.0 8.1169 0.0 8.0000 0.0
36 37 7.2838 0.0 �8.3468 0.0 8.1809 �0.5217 8.5007 0.0
37 40 �7.3442 0.0 �8.3468 0.0 8.1809 0.5217 8.5007 0.0
38 40 �7.3442 0.0 8.3569 0.0 8.1809 �0.5217 �8.5035 0.0
39 41 �7.8417 0.0 8.3569 0.0 8.1809 0.5217 �8.5035 0.0
40 41 �7.8417 0.0 �9.2509 0.0 8.4651 �2.1190 9.4876 0.0
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Fig. 8. Spurious mode study of the 2D Helmholtz equation with N2 = 412

and L = 10. The solid line and dashed line show respectively the total
number of real eigenmodes and the mode number of the lowest complex
eigenmode.
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approaches are stable when M = 2. We note that the fun-
damental mode is polluted in 2D when M = 10 and
M = 16, respectively, for the OFD2 method and the
OFD1 method. Such M values are less than the counter-
parts in 1D. Thus, the instability issue of the OFD
approaches seems to be more serious in higher dimensions.

The accuracy comparisons of three high-order finite dif-
ference methods are considered in Fig. 9. The OFD2 is
more accurate than the OFD1 when M is small in terms
of both fundamental and high-frequency modes. However,
when M increases, the OFD1 will dominate the OFD2 due
to the instability. In all cases, the CFD-MIB method is the
most accurate finite difference method employing the same
stencil length.
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4. Conclusion

In this work, the occurrence of spurious solutions of
high-order finite difference methods is studied. High-order
finite difference discretization of partial differential equa-
tions (PDEs) can be realized in two ways; One is to adopt
one-sided approximations near the boundaries and the
other maintains the use of a single central finite difference
kernel by constructing fictitious domains outside the
boundaries. For the one-sided finite difference (OFD) case,
two typical matrix structures are considered, albeit the con-
sideration of other matrix structures is possible. For both
OFD approaches, two different boundary closure schemes
are examined. For the central finite difference (CFD) case,
boundary treatments free of one-sided approximations are
only feasible for simple boundary conditions. To accom-
modate general boundary conditions, the matched inter-
face and boundary (MIB) method has to be employed, in
which one-sided approximations are involved in estimating
fictitious domain values. Five prototype eigenvalue prob-
lems governed by different PDEs and boundary conditions
in either one (1D) or two dimensions (2D) are utilized to
study the stability and accuracy of various high-order finite
difference methods. The origins of two types of spurious
solutions, i.e., spectral pollution and non-spectral pollu-
tion, are investigated.

Non-spectral pollution spurious modes are found when
severe asymmetric approximations are involved in the
numerical discretization. For simple boundary conditions,
such as the homogeneous Dirichlet ones in the 1D Helm-
holtz equation and the simply supported beam, analytical
boundary closure method is available to form a translation
invariant CFD discretization. Such a discretization is
found to be free of spurious modes. However, based on a
uniform mesh, OFD discretizations for these two examples
generate spurious solutions, no matter whether the bound-
ary conditions are satisfied analytically or approximately.
These numerical studies suggest that non-spectral pollution
spurious modes are due to the severe asymmetric approxi-
mation of the high-order OFD methods. In fact, such spu-
rious solutions are generated by the OFD methods for all
tested examples. Moreover, these spurious solutions do
not converge when the grid is refined, which means that
they are non-spectral pollution spurious modes. Non-spec-
tral pollution spurious solutions do not appear in the CFD-
MIB method except the asymmetric approximation in the
fictitious value determination of the MIB boundary scheme
is severe, i.e., when L > 12.

Spectral pollution spurious modes are found in the OFD
methods with the boundary closure scheme 1 of Section
2.1.2. Moreover, such spurious modes are generated in
2D but not 1D eigenvalue problems, governed by the same
differential equation and boundary conditions, and discret-
ized in the same way. The co-existence of both spectral pol-
lution and non-spectral pollution has been observed. The
spectral pollution spurious solutions are generally due to
the loss of constraint in the mathematical modeling or
numerical discretization. For the present case, some solu-
tion properties, such as the fluctuation along the tangential
direction at the boundary, are not properly accounted in
the boundary closure scheme 1. However, spectral pollu-
tion is not found in the OFD approaches with the bound-
ary closure scheme 2 of Section 2.1.2 and the CFD-MIB
method.

A comparison of high-order finite difference methods
based on the present studies is in order. For the purpose
of a comparison, when one scheme is less likely to produce
spurious modes than another, the former will be said to be
more stable than the latter. First, a comparison between
two typical OFD approaches considered in this work (see
Fig. 1) shows that the type 2 OFD method is more accu-
rate, but is more unstable than the type 1 OFD method.
Second, the present studies suggest a general rule that a
central approximation instead of an asymmetric one
should always be used if possible. This actually motivates
the development of the matched interface and boundary
(MIB) method to accommodate general boundary condi-
tions for a translation invariant CFD discretization. The
MIB method iteratively enforces the boundary conditions
to generate accurate estimates of function values on a ficti-
tious domain outside the boundary. Although one-sided
interpolations are involved in the MIB iteration, we found
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that the CFD-MIB method is more stable than the OFD
approaches due to its use of CFD discretizations. Due to
the stability, it is possible to design higher-order finite dif-
ference discretizations of PDEs, such as 12th or 16th order
ones, with the CFD-MIB method. Consequently, the CFD-
MIB method is not only more stable but also more accu-
rate and efficient than the conventional OFD approaches.
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