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A Highly Accurate Solver for the Mixed-Boundary Potential Problem and
Singular Problem in Arbitrary Plane Domain

Chein-Shan Liu'

Abstract: A highly accurate new solver is de-
veloped to deal with interior and exterior mixed-
boundary value problems for two-dimensional
Laplace equation, including the singular ones. To
promote the present study, we introduce a circu-
lar artificial boundary which is uniquely deter-
mined by the physical problem domain, and de-
rive a Dirichlet to Robin mapping on that arti-
ficial circle, which is an exact boundary condi-
tion described by the first kind Fredholm integral
equation. As a consequence, we obtain a modi-
fied Trefftz method equipped with a characteristic
length factor, ensuring that the new solver is sta-
ble because the condition number can be greatly
reduced. Then, the collocation method is used to
derive a linear equations system to determine the
Fourier coefficients. We find that the new method
is powerful even for the problem with complex
boundary shape and with adding random noise on
the boundary data. It is also applicable to the sin-
gular problem of Motz type, resulting to a highly
accurate result never seen before.

Keyword: Laplace equation, Artificial circle,
DtR mapping, Modified Trefftz method, Mixed-
boundary value problem, Singular problem

1 Introduction

The most widely used numerical methods for
engineering computations are FDM, FEM and
BEM. Despite its popularity, the BEM has some
inherent drawbacks. To name a few, Lesnic, El-
liott and Ingham (1998) have found that the BEM
is weak to against the boundary data disturbance
producing unstable solution. Chen, Lin and Chen
(2005) have found that the degenerate scale prob-
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lem and rank deficiency problem may occur for
the BEM used in the Laplace equation. The other
drawbacks are the requirement of meshing, evalu-
ation of singular integrals, and slow convergence.

For a complicated shape of the problem domain
the above methods usually require a large num-
ber of nodes and elements to match the geomet-
rical shape. In order to get over these deficien-
cies, various numerical methods for solving the
Laplace equation are rapidly developed in the last
three decades. Recently, Young, Chen and Lee
(2005) have proposed a novel meshless method
for solving the Laplace equation in arbitrary do-
main through a rather complicated desingulariza-
tion technique, and Chen, Shen and Chen (2006)
utilized the null-field method to calculate the tor-
sion problem with many holes. The meshless
numerical methods were also proposed, which
are meshes free and only boundary nodes are
necessary [Atluri, Kim and Cho (1999); Atluri
and Shen (2002)]. Under the same spirit, Liu
(2007a) has developed a meshless regularized in-
tegral equation method for the Laplace equation
in arbitrary plane domain, and then Liu (2007b)
extended these results to the doubly-connected re-
gion.

On the other hand, the method of fundamental so-
lutions (MES), also called the F-Trefftz method,
utilizes the fundamental solutions as basis func-
tions to expand the solution, which is another
popularly used meshless method [Cho, Golberg,
Muleshkov and Li (2004)]. In order to tackle
of the ill-posedness of MFS, Jin (2004) has pro-
posed a new numerical scheme for the solution of
the Laplace and biharmonic equations subjected
to noisy boundary data. A regularized solution
was obtained by using the truncated singular value
decomposition, with the regularization parameter
determined by the L-curve method. Tsai, Lin,
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Young and Atluri (2006) announced a practical
procedure to locate the sources in the use of MFS
for various time independent operators, including
Laplacian operator, Helmholtz operator, modi-
fied Helmholtz operator, and biharmonic operator.
The procedure is developed through some system-
atic numerical experiments for relations among
the accuracy, condition number, and source po-
sitions in different shapes of computational do-
mains. By numerical experiments, they found
that good accuracy can be achieved when the con-
dition number approaches the limit of equation
solver. The MFS has a broad application in en-
gineering computations, for example, Cho, Gol-
berg, Muleshkov and Li (2004), Hong and Wei
(2005), Young and Ruan (2005), Young, Fan, Tsai
and Chen (2006) and Young, Tsai, Lin and Chen
(20006).

It is known that the standard numerical methods
are ineffective to treat the elliptic boundary value
problems with singularities. The singularity of-
ten arises in engineering problems when there is
a sudden change in boundary conditions or the
boundary itself. In general it is difficult to ob-
tain accurate approximation in the neighborhood
of singular point by using the standard meth-
ods. In order to achieve a satisfactory solution
near the singular point, some special techniques
are required as that given by Li, Mathon and
Sermer (1987), Li (1998), Georgiou, Olson and
Smyrlis (1996), Georgiou, Boudouvis and Poul-
likkas (1997), Yosibash, Arad, Yakhot and Ben-
Dor (1998), Arad, Yosibash, Ben-Dor and Yakhot
(1998), Huang and Li (2003, 2006), Dosiyev
(2004), and Lu, Hu and Li (2004).

One of the most efficient method to solve the
singular problems is the boundary approximation
method [Li, Mathon and Sermer (1987)], which
is a special version of the spectral method. In en-
gineering, it is recognized as the collocation Tr-
efftz method (CTM) [Li, Lu, Huang and Cheng
(2007)], which uses the linear combination of the
T-complete functions to approximate the bound-
ary conditions as best as possible, while the solu-
tion exactly satisfies the partial differential equa-
tion itself in the problem domain. This method
is simple in that only the boundary and interface
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conditions need to be fitted. Moreover, it exhibits
an exponential rate of convergence.

Recently, Li, Lu, Huang and Cheng (2007) have
given a fairly comprehensive comparison of the
Trefftz, collocation and other boundary methods.
They concluded that the CTM is the simplest al-
gorithm and provides the most accurate solution
with the best numerical stability. However, the
conventional CTM may have a major drawback
that the resulting linear equations system is ex-
tremely ill-conditioned. In order to obtain an ac-
curate solution of the linear equations some spe-
cial techniques, e.g., preconditioner and truncated
SVD, are required.

In order to overcome these difficulties appeared
in the conventional CTM, we are going to refine
this method by taking the characteristic length of
problem domain into the Trefftz functions, such
that the condition number of the resulting linear
equations system can be greatly reduced. The new
method is essentially stable and has the exponen-
tial rate of convergence. Here we will use, in ad-
dition other examples, the Motz problem as a test-
ing example of our method. The Motz problem is
asserted as a benchmark of singularity problems.
It is a Laplace mixed-boundary value problem
with the mixed Dirichlet-Neumann conditions in
a rectangle. The derivative of its solution has a
strong singularity at the original point [Liu, Chen
and Chang (2007)]. After using the new method
one may appreciate its high accuracy, which is
never seen before.

The other parts of present paper are arranged as
follows. In Section 2 we derive the first kind Fred-
holm integral equation along a given artificial cir-
cle. This derivation naturally leads to a new set
of T-complete functions. In Section 3 we con-
sider a direct collocation method, the comparisons
of which with the conventional CTM are made in
Section 4. In Section 5 we use some examples, in-
cluding the Motz problem, to test the new method,
and then, we give conclusions in Section 6.

2 The Fredholm integral equation

In this paper we consider a new meshless
method to solve the mixed-boundary value prob-
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lem, which consists of the Laplace equation and
a mixed-boundary condition at a non-circular
boundary:

1 1
Au:urr—l—;ur—l—r—zugg =0, r<p (D)
or r>p, 0560 <2m,

Bpou(p,0)+ Byun(p,0) =h(6), 0<6 <2r,
(2)

where h(0) is a given function, and r = p(6) is
a given contour describing the boundary shape
of the interior or exterior domain €. The con-
tour I" in the polar coordinates is described by
I'={(r0)lr=p(0), 0< 6 <2m}. Bp and Py
satisfy B3+ Bg > 0.

If the Dirichlet boundary condition is prescribed
on the whole boundary, then we have Bp = 1
and By = 0 thereon. Conversely, if the Neu-
mann boundary condition is prescribed on the
whole boundary, then we have fp =0 and By =1
thereon. Usually we have a mixed-boundary con-
dition with u prescribed on a partial boundary I';
and with u, prescribed on the other remaining
boundary I', = I'/T";. Therefore, we have fp =1
and By =0 on I'j, while Bp =0 and By =1 on
I.

Through some effort we can derive

n(p,0) = L , 3)

where n is the outward-normal direction of the
boundary.

We replace Eq. (2) by the following boundary
condition:

u(Ro,0) = f(6), 0<6 <2r, “)

where f(0) is an unknown function to be deter-
mined, and Ry is a given positive constant, such
that the disk D = {(r,0)|r <Ry, 0< 6 <2m} can
cover € for the interior problem, or for the exte-
rior problem it is inside in the complement of €,

that is, D € R?/Q. Specifically, we may let

Ry > Pmax = max p(0) (interior problem),

0€[0,27]
)
Ry < Pmin = min p(6) (exterior problem).
0€(0,27]
(6)

The basic idea is to replace the original compli-
cated Robin boundary condition (2) on a com-
plicated contour by a simpler Dirichlet boundary
condition (4) on a specified circle. However, we
require to derive a new equation to solve f(0). If
this task can be finished and if the function f(0)
is available, then the advantage of this formula-
tion is that we have a Fourier series expansion of
u(r, 0) satisfying Eqgs. (1) and (4):

u(r,0) =ap+
oo +k +k
Z ay Ro coskO + by Ro sink@ | ,
k=1 r r
(N
where
1 2
a=5= [ FE)E, (8)
1 2
ac=— [ (&) coskedc, ©)
1 2
b= [ r(E)sinkea (10)

are the Fourier coefficients of f(0). In Eq. (7) the
positive sign before k is used for exterior problem,
and conversely the minus sign before & is used for
interior problem.

From Eqgs. (3) and (7) it follows that

o /
2(p,0) :Z [{ kay k[;kzp }coske

!
+{kak2p q:kb"}smke (11)
P P

7(6) = (&) (12
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By imposing the condition (2) on Eq. (7) and uti-
lizing Eq. (11) we obtain

aobp+ 3 [axE(8) +bFi(0)] —h(6),  (13)
k=1

where
Ek(e) =
!/
e [ﬁp coskO iﬁNgcoskG —I—ﬁN% sinke] ,
(14)
Fk(G) =
!/
' [BD sink@ T BNS sinkf — BN% coske] .
(15)

Substituting Eqgs. (8)-(10) for ay, a; and by into
Eq. (13) leads to the first kind Fredholm integral
equation:

/ T K(9.£)F(E)dE = h(6), (16)
where
K(o.6)= 2
—|—%i[Ek(9)COSk§+Fk(9)5ink§] a7)

k

—_

is a kernel function.

Eq. (16) is an exact boundary condition, providing
a mapping from the Dirichlet boundary condition
on a simple artificial circle to the Robin bound-
ary condition on the original complicated bound-
ary. This mapping is named the Dirichlet to Robin
mapping, abbreviated as the DtR mapping. How-
ever, it is difficult to directly inverse Eq. (16) to
obtain the exact boundary data f(6). Liu (2007a,
2007c, 2007d) has applied the regularization in-
tegral equation method to solve Eq. (16) for the
Dirichlet boundary value problems. But in this
paper, we are going to directly solve Eq. (7) to
obtain the Fourier coefficients a; and by as simple
as possible.
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3 The collocation method

We consider a mixed-boundary condition with
u prescribed on a partial boundary I'y and with
uy, prescribed on the other boundary I, = T'/T.
Therefore, we have Bp = 1 and By = 0 on I'y,
while Bp =0and By =1 on Ty, ie.,

(p,0) €Ty,  (I8)
(p.6)eT2.  (19)

The series expansions in Egs. (7) and (11) are well
suited to the entire solution domain. Hence, the
admissible functions with finite terms can be used
to determine the unknown coefficients a; and by,

p 9 = Z Aray —I—Bkbk (20)
Z Ckak —|—Dkbk (21)
k=1

where

Ap(8) := ¥ cos(k6), (22)

Bi(0) := Y*sin(k6), (23)
k kp’

Cu(6) := T=Ac+ By, (24)
Pt p
k kp'

Di(6) = T=B— A, (25)
P p

Here we consider the collocation method.
Egs. (20) and (21) are imposed at different col-
located points on two different boundaries with
[p(6:),6] €T’y and [p(6;),6,] € I,

ap+ Z Ar(6))ar +Bi(6))br] = hp(6)), (26)
k=1

M=

[Ck(6)ax+Di(0;)bi] = hn(0;). (27)

k=1

When the indices i and j in Egs. (26) and (27)
both run from 1 to m we obtain a linear equations
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system with dimensions n = 2m + 1:

1 Ay(60) Bi(6o) An(60)  Bm(60)
1 A(6:1) Bi(61) ... Au(61) Bu(61)
Ci1(01) Di(61) ... Cu(61) Dn(6;)
1 Al(ém) Bl(ém) Am(gm) Bm(gm)
_O Cl(em) Dl(em) Cm(em) Dm(em)_
[ao] [ hp(60)]
aj hp(61)
b.l _ hN(:el) @8
am hD(em)
_bm_ _hN(am)

In the above 6 is an extra collocated point on the
boundary I'} used to supplement another equation
to determine the n unknowns.

We denote the above equation by
Rc = b] ,

where ¢ = [ag,a,by,- - ,am,b,|T is the vector
of unknown coefficients. The conjugate gradient
method can be used to solve the following normal
equation:

Ac=bh, (29)
where
A :=R'R, b:=R"b,. (30)

Inserting the calculated ¢ into Eq. (7) we thus have
a semi-analytical solution of u(r,0):

u(r,0)=rc+
+k +k
R R
Z Cok (—0> cos kO + copt1 (—0> sinkG] ,
k=1 r r
3D
where (cy,...,con+1) are the components of c.

4 Comments on the new method

It is known that for the Laplace equation in the
two-dimensional domain the set

{1,ﬁ’<coske,ﬁ’<sinke, k= 1,2,...} 32)

forms the T-complete functions, and the solution
can be expanded by these bases [Kita and Kamiya
(1995); Li, Lu, Huang and Cheng (2007)]:

M s

u(r,0) =ap+ Y [arr™ cosk® + byr*sink).

k=1

(33)

It is simply a direct consequence of Eq. (7) by in-
serting Ry = 1. For exterior problem one takes the
minus sign, while for interior problem one takes
the positive sign.

Our starting point in Eq. (7) is quite similar to
the Trefftz method, which is designed to satisfy
the governing equation and leaves the unknown
coefficients determined by satisfying the bound-
ary conditions in some manners as by means of
the collocation, the least square or the Galerkin
method [Kita and Kamiya (1995)].

The present modification is suggested to use a
new set of T-complete bases by

+k +k
{1,<@> cosk6,<&> sink@, k—1,2,...}.
r r

(34)

As seen in Section 2, the above set is a very nat-
ural result from the concept of the artificial circle
with a radius Ry, where an exact boundary condi-
tion can be established by solving Eq. (16). This
factor of Ry indeed plays a major role to stabilize
the conventional Trefftz method.

Liu (2007e) has employed the same idea to
modify the direct Trefftz method for the two-
dimensional potential problem, and Liu (2007f)
used this idea to develop a highly accurate numer-
ical method to calculate the Laplace equation in
the doubly-connected domain.

For the Trefftz method the numerical instability
is an inherent property, which uses the power
functions ¥ in the bases for interior problem and
(1/r)* in the bases for exterior problem. It is a
main reason to cause the numerical instability, be-
cause r may be greater than 1 for interior problem
and r may be smaller than 1 for exterior prob-
lem. When the interior problem domain has a
larger size with its largest distance of the bound-
ary points to the origin being greater than 1, the
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powers 7* are divergent. Similarly, when the ex-

terior problem domain with its complement has
a smaller size with its smallest distance of the
boundary points to the origin being smaller than
1, the powers (1/r) are divergent. They are thus
inevitably led to numerical instability.

But in our modification the situation is drastically
different. For the interior problem the power func-
tions (r/Ro)* in Eq. (34) are always smaller than
1 because of definition (5). Similarly, for the
exterior problem the power functions (Ro/r)* in
Eq. (34) are always smaller than 1 because of def-
inition (6).

It will be clear in the next section that the use of
characteristic length ensures the stability of the
modified Trefftz method. Through this new mod-
ification the condition number of the linear equa-
tions system can be greatly reduced. To our best
knowledge, the new concept does not appear in
the literatue of the Trefftz method; see, e.g., Kita
and Kamiya (1995) and Li, Lu, Huang and Cheng
(2007).

5 Numerical examples

Before embarking numerical study of the new
method, we are concerned with its stability in the
case when the boundary data are contaminated by
random noise, which is investigated by adding the
different levels of random noise on the boundary
data. We use the function RANDOM_NUMBER
given in Fortran to generate the noisy data R(i),
where R(i) are random numbers in [—1, 1]. Hence
we can use the simulated noisy data as the input
on our calculations,

h(6;) = h(6;) + sR(i), (35)

where 6; = 2ir/m, i = 0,1,...,m, and s is the
level of additive noise on the data.
5.1 Example 1 (interior problem)

In this example we consider an epitrochoid
boundary shape

p(0) =/ (a+b)>+1—2(a+b)cos(ad /b).
(36)
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x(6) =pcosB, y(6)=psinb 37)

with a =4 and b = 1; see the inset in Fig. 1. The
analytical solution is supposed to be

u(x,y) = x"—y”. (38)

Exact

— ——-  New method

———  Trefftz method

1E+0 — (b)

1E-2 T~
1E-3
1E-4
1E-5
1E-6
1E-7
1E-8
1E-9
1E-10
1E-11
1E-12
1E-13
1E-14
1E-15

—-—— Trefftz method
New method

Numerical Error

Figure 1: (a) comparing the exact solution and nu-
merical solutions, and (b) plotting the numerical
errors.

The exact boundary data can be easily derived by
inserting Egs. (36) and (37) into the above equa-
tion and Eq. ) with '} ={(1,0) | r=p,0< 06 <
rtand T, ={(r,0)|r=p,mr <6 <2m}.

In the numerical computation we have fixed Ry =
Pmax = 6 and m = 12. In Fig. 1(a) we compare the
numerical solution with exact solution along a cir-
cle with a radius » = 2. It can be seen that the nu-
merical result are almost coincident with the ex-
act one. The accurcay of the numerical solution
is found to be very good with the absolute error
plotted in Fig. 1(b) in the order of 10713
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In Section 4 we have mentioned the similarity be-
tween the present method and the Trefftz method.
However, when we apply the Trefftz method on
this problem by using Ry = 1 and m > 13, we find
that the solution is unstable. Therefore we adjust
the m to m = 12 such that the Trefftz method is
applicable, whose solution is shown in Fig. 1(a)
by the dashed-dotted line.

As one has been convinced by Li, Lu, Huang and
Cheng (2007), that the CTM is the simplest, ac-
curate and stable method, one may surprise that
the Trefftz method is very inaccurate; as can be
seen the numerical solution shown in Fig. 1(a) for
the CTM is far from an accurate solution, where
one may expect that the numerical solution for the
direct problem is always accurate. What happens
for the CTM.

The inaccuracy of CTM may result from its nu-
merical instability. In order to observe this phe-
nomenon we plot the condition number of A with
different number of bases in Fig. 2, which is de-
fined by

Cond(A) = [[A[||A™]. (39)

The norm used for A is the Frobenius norm.
Therefore, we have

1 Amax(A)
—Cond(A) <
RN
where A is the eigenvalue of A. Convention-
ally, Amax(A)/Amin(A) is used to define the con-
dition number of A. For the present study we use
Eq. (39) to define the condition number of A.

As mentioned by Kita and Kamiya (1995) when
one uses the Trefftz boundary type method, the
condition number may increase fast as the nu-
mer of elements increases. It can be seen that
the present method can greatly reduce the con-
dition number about thirty orders under m = 20
as shown in Fig. 2. No matter which m is se-
lected, the condition number of the presently
modified Trefftz method is always much smaller
than that of the original Trefftz method. There-
fore, when the new method is very accurate, the
Trefftz method leads to a bad numerical result
as shown in Fig. 1(a), whose error as shown in
Fig. 1(b) may be large up to 0.1.

< Cond(A). (40)

1E+35
1E+34
1E+33
1E+32
1E+31
1E+30
1E+29
1E+28
1E+27
1E+26
1E+25
1E+24
1E+23
1E+22
1E+21
1E+20
1E+19
1E+18
1E+17
1E+16
1E+15
1E+14
1E+13

Trefftz method

Condition Number

1E+10
1E+9
1E+8
1E+7
1E+6
1E+5
1E+4
1E+3

New method

[T I rrrTr
9 10 11 12 13 14 15 16 17 18 19 20
m.

Figure 2: Comparing the condition numbers with
respect to m for the Trefftz method and new
method for Example 1.

IR
6 7 8

\
5

5.2 Example 2 (Motz problem)

Among the many singular problems, the Motz
problem was first studied by Motz (1946) for the
relaxation method. Since there is a strong singu-
larity O(r%) at the original point, the Motz prob-
lem has become a benchmark of singularity prob-
lems [Li (1998)], which solves the Laplace equa-
tion in a rectangle with width 2 on the horizontal
sides and with height 1 on the vertical sides. The
boundary conditions are given by

u(1,y) =500, 0<y<l, 41)
uy(x,1) =0, —-1<x<1, (42)
ux(—1,y) =0, 0<y<I, (43)
u(x,0)=0, -1<x<0, (44)
uy(x,0) =0, 0<x<1. (45)

To solve this problem, the most researchers [see,
e.g., Lu, Hu and Li (2004) and references therein]
use the following approximation:

N 1
u(r,0) =Y D*~"2cos (k— 5) 6, (46)
k=1

which satisfies the Laplace equation and bound-
ary conditions (44) and (45) automatically. Then,
the coefficients Dy are determined by other
boundary conditions.
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An extremely accurate result is obtained by Li,
Mathon and Sermer (1987), of which the max-
imal absolute error of boundary value on x = 1
is 5.47 x 107°. The least-square method used
by Li, Mathon and Sermer (1987) led to an ill-
conditioned linear equations system with the con-
dition number 3.97 x 107. In order to decrease the
condition number, Li, Mathon and Sermer (1987)
have considered different subdivisions and used
different numbers of particular solutions. How-
ever, even when the best combination is used, the
accuracy is in the order of 107°.

As suggested in Section 3, we can greatly reduce
the condition number by considering the follow-
ing approximation:

N ’ k—1/2 1
)=y~ k—=)6, @47
u(r,0) kg} k<Ro> cos( 2) 47

where R\ can be used as an extra parameter, which
is adjustable to provide the best result. However,
in order to meet Eq. (5) for the interior problem,
we need Ry > V2.

To find the unknown coefficients C, we can use
the following information to construct the linear
equations by the collocation method as that done
in Section 3:

s 0<06<m/4,

p(0)=14 55 m/4<60<3m/4, (48)
= 3m/a<o<m,
g 0<6<m/4,

pl(8) = =% m/4<6<3m/4, (49
S8 3m/a<6<m,
1,00 0<6<mn/4,

(Bp:Bn) = {an 1; %/4<0 </n' (50

In the numerical calculation of this example we
have employed N = 60 and Ry = 1.71, and the
numerical error of the boundary data on x = 1 is
shown in Fig. 3. Here we are imposed N /2 collo-
cated points on x = 1 and N/2 collocated points
on other sides. It can be seen that the maximum
error 1.84 x 1077 is better than that calculated by
Li, Mathon and Sermer (1987). Then, in Table 1
we compare our numerical results at different in-
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ner points (x;,y;) in the rectangle with the numer-
ical results calculated by Li, Mathon and Sermer
(1987) and Dosiyev and Cival (2004). The three
methods provided almost the same results up to
the fifth decimial point.

2E-9 —

1

1E-9 —|

Error of Boundary Data on x

0E+0 \ \ \ \

0.0 02 0.4 06 0.8
0

Figure 3: For Example 2 of the Motz problem the
new method leads to a highly accurate boundary
dataat x = 1.

As pointed out by Liu, Chen and Chang (2007),
the u, may have a large variation from a very
large value to zero, when (x,y) passes the singu-
lar point (0,0). This fact makes the Motz problem
not easy to handle by the conventional numerical
methods. In our approach by applying the collo-
cation method on Eq. (47), we can greatly reduce
the condition number by selecting a suitable Ry.
For example, in Fig. 4 we fix N = 30 and let Ry
vary from 1 to 2. The condition number is plot-
ted with respect to Ry, of which we can see that
there exists a best Ry making the condition num-
ber smallest. However, if one uses Eq. (46) as a
numerical solution of the Motz problem, the con-
dition number may be large up to 10'! as reading
from Fig. 4 with Ry = 1.
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Table 1: The comparison of present method with other methods for the Motz problem

(xi,y:) | Dosiyev and Cival (2004) | Li, Mathon and Sermer (1987) | Present method
(.9 78.559447392 78.559230394 | 78.5591752835
(0, %) 141.559500712 141.559519337 | 141.559480268
(7,7) 243.811877860 243.811824635 | 243.811791504
(0, %) 103.768314085 103.768301476 | 103.768277794
(%) 33.591514936 33.591507894 | 33.591499663
(0, 21—8) 53.186268406 53.186260997 | 53.186250870
(255 35) 83.671280478 83.671271165 | 83.671255073
(21—8, 0) 76.408294083 76.408285701 | 76.408273111
(23—8,0) 134.446993973 134.446980917 | 134.446959522
(%,O) 156.482452033 156.482436984 | 156.482416783
=g We apply the new method on this example by fix-
‘1o ] ing @ =2, Ry =2 and m = 25. In Fig. 5(a) we
§ compare the exact solution with the numerical so-
1849 2 lutions with s = 0,0.01 along a circle with radius
E 1E+8j 3. It can be seen that the numerical solutions
E E are very close to the exact solution. Furthermore,
g 1Es7 o the numerical errors were plotted in Fig. 5(b), of
% & which it can be seen that the present method is
é e E very robust to against the noise, whose level was
1E45 — taken up to 1%, but the numerical error is still
. smaller than 0.01.
1E+4 =
e ] ‘ ‘ ‘ ‘ ‘ 5.4 Example 4 (exterior problem)
1.0 12 1.4 1.6 1.8 2.0

Ro
Figure 4: For Example 2 of the Motz problem we
plotting the condition number of the new method
with respect to Ry.

5.3 Example 3 (exterior problem)

In this example we investigate a mixed-boundary
condition on a circle with a radius equal to a:

_ Ju(a,0)
#o)= {ur<a,e>

%arctan 2;‘;%19) 0<06<m,

—4 _ (a*+1)sin@
T (a2—1)2+4asin® @ m=6<2r

(S

For this example an exact solution is given by

2rsin @
r2—1 )

u(r,0)= %arctan ( (52)

In this example we consider a complex amoeba-
like irregular shape as shown in the inset of Fig. 6.
The boundary conditions are given by

u(r,0) =exp (g) cos <8i1;9> , (53)

u=u(p,0), (rn0)ely, (54)

!
t :up<p,9)—%ue<p,9), (n8) €Ty, (55)

p = exp(sin @) sin*(26) + exp(cos ) cos*(26),
(56)

where ' = {(r,0) | r=p,0< 6 <m}and I, =
{(r,0)|r=p,mr <0 <2m}.

We apply the new method on this example by fix-
ing Ry = Pmin and m = 15. In Fig. 6(a) we com-
pare the exact solution with numerical solutions
along a circle with radius 3. It can be seen that
the numerical solution is almost coincident with
the exact solution, of which the absolute error as
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———- New method under s=0

Numerical Error
m

Figure 5: For Example 3: (a) comparing the exact
solution and numerical solutions calculated by the
new method under s = 0 and 0.01, and (b) plotting
the numerical errors.

plotted in Fig. 6(b) is in the order of 1078, Also
we are imposed a random noise with s = 0.001,
of which the new method as can be seen is robust
to against the disturbance on the boundary data.
When we apply the Trefftz method to this exam-
ple by fixing Ry = 1 and m = 15 and without con-
sidering noise, its solution as shown in Fig. 6(a)
by the dashed-dotted line is different much from
the exact solution. The numerical error as shown
in Fig. 6(a) is in the order of 0.1. When the noise
is added, the Trefftz method produces a fully in-
correct result due to its essential instability.

6 Conclusions

In this paper we have proposed a new colloca-
tion Trefftz method to calculate the solutions of
Laplace equation in arbitrary plane domains un-
der mixed-boundary condition. In order to tackle
of the ill-conditioning of the Trefftz method, we

CMES, vol.20, no.2, pp.111-122, 2007
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Figure 6: For Example 4: (a) comparing the exact
solution and numerical solutions calculated by the
new method under s = 0 and 0.001 and the Trefftz
method under s = 0, and (b) plotting the numeri-
cal errors.

have employed a characteristic length factor into
the basis functions. This type formulation is a
very natural result in terms of the concept of ar-
tificial circle. The numerical examples show that
the effectiveness of the new method and the ac-
curacy is very good. Even under a large noise
polluting on the boundary data, the numerical so-
lutions are also good and stable without need-
ing of extra treatment. The new method pos-
sesses several advantages than the conventional
boundary-type solution methods, which includ-
ing mesh-free, singularity-free, non-illposedness,
semi-analyticity, efficiency, accuracy and stabil-
ity. When the same idea is applied to solve the
Motz problem, we have obtained a highly ac-
curate numerical solution, of which the nonzero
boundary value part can be matched very well
with three times accuracy than before.
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