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Abstract

In this paper a new numerical technique for problems of free vibrations of non-homogeneous membranes: r2wþ k2qðxÞw ¼ 0;
x 2 O � R2; B½w� ¼ 0; x 2 qO is presented. The method is based on mathematically modelling of physical response of a system to

excitation over a range of frequencies. The response amplitudes are then used to determine the resonant frequencies. Two versions of the

method are described. The results of the numerical experiments justifying the method are presented.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The paper presents a new meshless numerical technique
for problems of free vibrations of non-homogeneous
membranes with continuously varying properties. We deal
with the following 2D eigenvalue problem:

r2wþ k2qðxÞw ¼ 0; x 2 O � R2; B½w� ¼ 0; x 2 qO.
(1)

Here, O is a simply or multiply connected domain with
boundary qO; and the density function q40 is smooth
enough in O. The boundary operator B½:::� specifies the
boundary conditions. The problem of free vibration is to
find such real k for which there exist non-null functions w

verifying (1). This problem is important as a component in
the design of many engineering devices: microphones,
loudspeakers, pumps, compressors, pressure regulators,
etc.

A general review of the dynamic aspects of membranes
can be found in the review paper by Mazumdar [1]. It
should be noted that the literature on the vibration of non-
homogeneous membranes is not extensive. Masad [2]
solved the problem mentioned above by the finite
e front matter r 2007 Elsevier Ltd. All rights reserved.
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difference method and the perturbation method. Laura
with co-authors [3] solved the same problem by the
optimized Galerkin–Kantorovitch approach and the dif-
ferential quadrature method. A closed form of exact
solution of non-homogeneous membrane with the density
function which varies linearly with respect to an edge q ¼

cþ dx is found in [4]. An exact solution of non-
homogeneous annular membrane with q ¼ c=r2 is also
reported here. The fundamental frequencies of the circular
membrane with the density which is a sinusoidal function
of the radius are studied in [5]. In [6] four numerical
techniques (1) the differential quadrature method; (2) the
finite element technique; (3) the optimized and/or improved
Rayleigh quotient method and (4) the Stodola Vianello
iterative method are compared in application to the
problem of free vibration of non-homogeneous annular
membrane. The three density functions are considered:
q ¼ 1þ arg,g ¼ 1

2
; 1; 3

2
. However, only the first two axi-

symmetric vibration modes are calculated here. In [7] exact
solutions for both the axisymmetric and antisymmetric
modes of circular and annular membranes with any
polynomial variation of the density are given using a
power series solution. The data placed in this paper are
used as benchmark problems in the paper presented. In [8]
a hybrid method composed of differential transforms and
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dx.doi.org/10.1016/j.enganabound.2007.04.003
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the Kantorovitch method is introduced to solve the above-
referenced problems.

In this paper the method proposed earlier for homo-
geneous membranes [9–12] is extended on to the general
case. The method described here can be interpreted as a
mathematical model of physical measurements when the
resonant frequencies of a system are determined by the
amplitude of response to some excitation.

Let weðxÞ be a smooth enough function defined in the
solution domain below named as the exciting field. If the
response field wr is a solution of the boundary value
problem

r2wr þ k2qðxÞwr ¼ �r
2we � k2qðxÞwe,

B½wr� ¼ �B½we�, ð2Þ

then the sum wðx; kÞ ¼ wr þ we satisfies the initial problem
(1). Let F ðkÞ be some norm of the solution w. This function
of k has extremums at the eigenvalues and, under some
conditions described below, can be used for their determin-
ing.

Generally, we do not impose any conditions on we.
However, when q ¼ const (homogeneous membrane), the
exciting field can be chosen in such a way that the right-
hand side of (2) is equal to zero: r2we þ k2qwe ¼ 0. It can
be taken in a simple analytic form, e.g., in the form of a
travelling wave we ¼ exp½ikq1=2

ðcos yxþ sin yyÞ�. Here
0pyp2p is the angle of incidence i.e., the one between
direction of the wave-propagation and the x-axis. Note
that in this case the response field wr satisfies the
homogeneous equation too. And the PDE has the known
fundamental solutions Fðx� fÞ ¼ H

ð1Þ
0 ðkq1=2

jx� fjÞ, where
H
ð1Þ
0 is the Hankel function. This admits of applying a very

effective meshless numerical technique—the method of the
fundamental solutions (MFS). This version of the method
with an external exciting source is described in [9–12] in
application to problems in homogeneous mediums. How-
ever, this technique loses its attraction when applied to
inhomogeneous problems. As it is shown in Section 2, to
find the exciting field we we have to solve a scattering
problem. A new version of the method with an internal

exciting source is presented in Section 3. Finally, in Section
4, we give the conclusion and some directions for
developing the method suggested.
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Fig. 1. The response curve for � ¼ 0, Dk ¼ 0.
2. External excitation

2.1. Homogeneous problems

To illustrate the method presented in the simplest case let
us consider the wave equation in homogeneous medium

q2u
qt2
¼

q2u

qx2
(3)

with the Dirichlet conditions at the endpoints of the
interval ½0; 1�, i.e., uð0; tÞ ¼ uð1; tÞ ¼ 0. This equation
describes free vibrations of the homogeneous string [13].
Considering the harmonic vibrations uðx; tÞ ¼ eiktwðxÞ, we
get the eigenvalue problem on the interval ½0; 1�

d2w

dx2
þ k2w ¼ 0; wð0Þ ¼ wð1Þ ¼ 0. (4)

The well known solution is kn ¼ np, wn ¼ sinðnpxÞ,
n ¼ 1; 2; . . . ;1.
According to the method presented we consider the

equation for the response field wr,

d2wr

dx2
þ k2wr ¼ �

d2we

dx2
� k2we. (5)

We take the exciting field we in the form

weðxÞ ¼ expðikxÞ, (6)

which satisfies

d2we

dx2
þ k2we ¼ 0.

This exciting field corresponds to a travelling wave which
propagates from þ1 to �1. Another admissible variant is

weðxÞ ¼ expð�ikjx� BsjÞ, (7)

which corresponds to the point source placed at
x ¼ Bse½0; 1�.
Under this condition we get the following BVP for wr:

d2wr

dx2
þ k2wr ¼ 0; wrð0Þ ¼ �weð0Þ,

wrð1Þ ¼ �weð1Þ. ð8Þ

The sum w ¼ we þ wr satisfies the initial BVP (4). Let us
introduce the norm of the solution as

F ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

n¼1

jwðxnÞj
2

vuut , (9)

where the points xn are randomly distributed in ½0; 1�. In all
the calculations presented in this section we use N ¼ 7.
This function characterizes the value of the response of the
system to the outer excitation. We also use the dimension-
less form of this function: F dðkÞ ¼ F ðkÞ=F ð1Þ. The graph of
the function corresponding to (6) is depicted in Fig. 1. It
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demonstrates the quasi-random distribution near zero.
Indeed, looking for the response field in the form

wr ¼ Ar expðikxÞ þ Br expð�ikxÞ,

one gets the linear system

Ar þ Br ¼ �1,

Ar expðikÞ þ Br expð�ikÞ ¼ � expðikÞ. ð10Þ

For kanp the system has the unique solution Ar ¼ �1;
Br ¼ 0. Thus, w � 0 and F ðkÞ ¼ 0 with the precision error.

Now we describe two regularizing procedures which give
a smooth response curve. We substitute BVP (8) by the
following one:

d2wr

dx2
þ ðk2

þ i�kÞwr ¼ 0; wrð0Þ ¼ �weð0Þ,

wrð1Þ ¼ �weð1Þ, ð11Þ

where �40 is a small value. From the mathematical point
of view this means that we shift the spectra of differential
operator from the real axis. On the other hand, from the
physical point of view, this means that the initial equation
(3) is replaced by the equation q2ttu ¼ q2xxu� �qtu which
describes vibrations of a homogeneous string with friction
[13]. As a result, instead of (10) we get the system:

Ar þ Br ¼ �1,

Ar expðik�Þ þ Br expð�ik�Þ ¼ � expðikÞ, ð12Þ

where k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þ i�k

p
and the branch Reðk�Þ40 is taken.

The system has a unique non-zero solution for all real k. In
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Fig. 3. The response curve; �-
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Fig. 2. The response curve; �-
Figs. 2–4 we place the dimensionless function Fd ðkÞ

corresponding to � ¼ 10�15, 10�10 and 10�1.
The value � ¼ 10�15 is too small to regularize the

solution. The response curve FdðkÞ has separate maximums
at the positions of eigenvalues but still it is not smooth as it
is shown in more details in the right part of Fig. 2. The
value � ¼ 10�10 provides a smooth curve with separated
maximums at the positions of eigenvalues (Fig. 3). This
admits of using the following simple algorithm [9–12].
First, we localize these maxima of Fd ðkÞ on the intervals
½ai; bi�. Next, we solve the univariate optimization problem
inside each one. In particular, we apply Brent’s method
based on a combination of parabolic interpolation and
bisection of the function near to the extremum (see [15,14]).
In Table 1 we place the relative errors

er ¼
jki � k

ðexÞ
i j

k
ðexÞ
i

(13)

in the calculation of the first five eigenvalues. The
regularizing parameter � coarsens the system. The peaks
at the positions of the eigenvalues have decreased and
become wider (Fig. 4). This worsens their localization and
increases the errors in calculation of ki. So, from the
practical point of view, one should take the parameter � as
small as possible but large enough to get a smooth response
curve F dðkÞ.
Another regularizing procedure can be described in the

following way. Let us introduce the constant shift Dk

between the wave numbers of the exciting source and the
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procedure with � ¼ 10�15:
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Table 1

One dimensional eigenvalue problem

k
ðexÞ
i

� ¼ 10�1 � ¼ 10�10

p 1:2� 10�4 5:0� 10�11

2p 3:2� 10�5 5:8� 10�11

3p 1:4� 10�5 4:8� 10�11

4p 7:9� 10�6 3:3� 10�11

5p 4:6� 10�6 6:0� 10�11

The relative errors in calculations of the eigenvalues. �-procedure.
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Fig. 4. The response curve; �-procedure with � ¼ 10�1.
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studied mode, i.e., instead of (6), we take the exciting field
in the form

weðxÞ ¼ expðiðk þ DkÞxÞ.

Now the linear system

Ar þ Br ¼ �1,

Ar expðikÞ þ Br expð�ikÞ ¼ � expðiðk þ DkÞÞ

(cf. (10)) provides non-zero solutions w for all k except the
eigenvalues kn when the system becomes degenerate.
However, due to the iterative procedure of Brent’s method
and rounding errors we never solve the system with the
exact kn. We observe degeneration of the system as a
considerable growth of the solution in a neighborhood of
the eigenvalues.

The data corresponding to Dk ¼ 10�15 and 10�10 are
presented in Figs. 5 and 6. The value Dk ¼ 10�15 is too
small to regularize the solution. But the value Dk ¼ 10�10

yields a smooth curve. We call these two regularizing
procedures described above the �-procedure and the
k-procedure.

Comparing these two procedures, it should be noted that
they provide approximately the same precision in the
calculations of eigenvalues. However, dealing with a real
PDE and using the �-procedure, we have to perform the
calculations with complex variables. The use of the
k-procedure provides the calculations with real variables
only.

The same approach of an external excitation can be
combined with an approximate solution of BVP (8) for the
response field wr. Numerous examples of application of this
technique to different homogeneous eigenvalue problems
can be found in [9–12].

2.2. Non-homogeneous problems

For the sake of simplicity we begin with the 1D
eigenvalue problem:

d2w

dx2
þ k2qðxÞw ¼ 0; wð0Þ ¼ wð1Þ ¼ 0, (14)

where qðxÞ40 is smooth enough on ½0; 1�.
Here, to obtain the exciting field we with a source placed

outside ½0; 1�, we have to use a more complex algorithm. To
consider the equation for we we have to extend qðxÞ from
½0; 1� onto a wider interval which contains the source of the
field. In the previous subsection, solving the problem with
the constant density function q ¼ 1, we extend this
constant from ½0; 1� onto ð�1;þ1Þ automatically. And
then we consider we in the form of the travelling wave (6)
defined on the whole infinite interval ð�1;þ1Þ. Dealing
with the inhomogeneous problem, we consider two
different intervals with two different density functions: (i)
the solution domain ½0; 1� with the continuously varying
qðxÞ; (ii) the double connected domain ð�1; 0Þ [ ð1;þ1Þ,
where we take q ¼ 1 in order to have here a simple analytic
solution in the form of a travelling wave.
The initial travelling wave wðiÞe ðxÞ ¼ eikx propagates from
þ1 and falls on the interface x ¼ 1 between the regions
with different density functions. This interface generates
the reflected wave Re�ikx which propagates from the
interface x ¼ 1 back to þ1. Thus, the total exciting field in
the domain x41 is the sum of the incident and reflected
fields wðþÞe ðxÞ ¼ eikx þRe�ikx. The exciting field inside the
solution domain weðxÞ satisfies the equation:

d2we

dx2
þ k2qðxÞwe ¼ 0; x 2 ½0; 1�. (15)

This field, partly passing through the second interface
x ¼ 0, generates the transmitted wave wð�Þe ðxÞ ¼Teikx

which propagates from the second interface x ¼ 0
to �1. The functions wð�Þe ðxÞ, weðxÞ, wðþÞe ðxÞ and their
derivatives should be matched at the interfaces x ¼ 0
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Fig. 5. The response curve; k-procedure with Dk ¼ 10�15.
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and x ¼ 1:

weð0
þÞ ¼ wð�Þe ð0

�Þ ¼T,

dwe

dx
ð0þÞ ¼

dwð�Þe

dx
ð0�Þ ¼ ikT, ð16Þ

weð1
�Þ ¼ wðþÞe ð1

þÞ ¼ eik þRe�ik,

dwe

dx
ð1�Þ ¼

dwðþÞe

dx
ð1þÞ ¼ ikeik � ikRe�ik. ð17Þ

The constant values R and T are the unknowns of the
problem. Note that the coefficients R and T can be
excluded from (16), (17) and the boundary conditions can
be re-written in the form containing we and dwe=dx only

dwe

dx
ð0þÞ ¼ ikweð0

þÞ,

dwe

dx
ð1�Þ ¼ �ikweð1

�Þ þ 2ikeik. ð18Þ

Having we; we get the response field wr as a solution of the
BVP:

d2wr

dx2
þ k2qðxÞwr ¼ 0; wrð0Þ ¼ �weð0

þÞ,

wrð1Þ ¼ �weð1
�Þ. ð19Þ

The sum w ¼ we þ wr satisfies the initial BVP (14). We
introduce the norm F ðkÞ like (9). Varying k, we get the
response curve and calculate the eigenvalues as positions of
maxima. However, without a regularizing procedure the
response curve looks like the one shown in Fig. 1. To get a
smooth response curve one should apply the regularizing
procedures described in the previous subsection.
To solve (16)–(19) we use the asymmetric RBF colloca-
tion method (Kansa’s method) [19,20]. This method is
chosen as a truly meshless technique which can be extended
easily onto the 2D case. According to this approach one
looks for an approximate solution of the BVP

L½w� ¼ f ðxÞ; x 2 O � Rd ; d ¼ 1; 2; 3;

B½w� ¼ gðxÞ; x 2 qO ð20Þ

in the form of the linear combination:

w ¼
XNþNB

j¼1

qjCðkx� njkÞ. (21)

Here, xj , j ¼ 1; . . . ;N are the points distributed inside the
domain O and the points xNþi, i ¼ 1; . . . ;NB are placed on
the boundary qO; qj are the free parameters of the problem.
We use only the multiquadrics basis functions in this paper

Cðkx� nkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ kx� nk2

q
, (22)

where c is the shape parameter.
The collocation with the right-hand side f at the interior

points and with the boundary data at the boundary points
leads to the linear system:PNþNB

j¼1 qjL½Cðkni1
� njkÞ�PNþNB

j¼1 qjB½Cðkni2
� njkÞ�

24 35 ¼ f ðni1
Þ

gðni2
Þ

" #
,

i1 ¼ 1; . . . ;N; i2 ¼ N þ 1; . . . ;N þNB. ð23Þ

It should be noted that Kansa’s method suffers from ill-
conditioning with the growth of the number of the centers.
The method can be optimized by choosing the shape
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parameter of RBFs, by an optimal distribution of the centers
or by using a special preconditioner to solve the linear system.
See, e.g., [21–23] for more details. A complete bibliography
on the subject considered is given in the references of these
papers. However, this is not the topic of this study.

Solving the system (16)–(17) we have NB ¼ 2 endpoints
x ¼ 0 and 1. So, we denote xNþ1 ¼ 0; xNþ2 ¼ 1 and the
whole number of the RBF functions in (21) is N þ 2: The
number of the unknowns qj is the same. Besides, we have
two additional unknowns: the coefficients R and T. So, we
set up N þ 4 equations. Let us denote

Lðx; kÞ½Cðkx� xkÞ� ¼
d2

dx2
þ k2qðxÞ

� �
½Cðkx� xkÞ�.

The collocation at the inner points gives us the following N

equations:XNþ2
j¼1

qjLðxi; kÞ½Cðkxi � xjkÞ� ¼ 0; i ¼ 1; . . . ;N.

The rest four equations follow from the boundary
conditions:XNþ2

j¼1

qjCðkxNþ1 � xjkÞ �T ¼ 0,

XNþ2
j¼1

qj

d

dx
CðkxNþ1 � xjkÞ � ikT ¼ 0,

XNþ2
j¼1

qjCðkxNþ2 � xjkÞ �Re�ik ¼ eik,

XNþ2
j¼1

qj

d

dx
CðxNþ2; xjÞ þ ikRe�ik ¼ ikeik.

The ðN þ 4Þ � ðN þ 4Þ system is solved by a standard
procedure of the Gauss elimination. The response field wr is
found by the similar procedure using the Dirichlet
boundary conditions (see (19)).

Example 1. The results presented in Table 2 and depicted
in Fig. 7 correspond to the density function

qðxÞ ¼ 1
4
ðaþ 2Þ2½ða2 þ 2aÞxþ 1�
Table 2

Relative errors in the solution of the eigenvalue problem

d2
xxwþ k2qðxÞw ¼ 0, wð0Þ ¼ wð1Þ ¼ 0, qðxÞ ¼ 1

4
ðaþ 2Þ2½ða2 þ 2aÞxþ 1�

a ¼ 1 a ¼ 10

k
ðexÞ
i

c ¼ 0:25 k
ðexÞ
i

c ¼ 0:2

3:1965784 2:5� 10�7 2:9725880 5:3� 10�5

6:3123495 2:0� 10�7 6:1629512 2:8� 10�4

9:4444649 8:7� 10�7 9:3320059 7:4� 10�4

12:5812028 2:2� 10�6 12:4911068 1:5� 10�3

15:7198543 2:1� 10�6 15:6448046 2:4� 10�3

Kansa’s method with N ¼ 50. Regularization by the k-procedure with

Dk ¼ 10�1.
with a ¼ 1. The left part of the figure corresponds to the
non-regularized solution. The smooth response curve is
obtained with the help of the k-procedure. In the table we
place the relative errors (13) in the calculation of the first
five eigenvalues. The exact eigenvalues k

ðexÞ
i ¼ awi, where wi

are the roots of the equation [24]:

J1ðwÞY 1½ð1þ aÞw� � Y 1ðwÞJ1½ð1þ aÞw� ¼ 0.

Here J1 and Y 1 stand for the Bessel functions. The
collocation points xi, i ¼ 1; . . . ;N (and at the same time the
centers of the RBF) are uniformly distributed on ½0; 1�.
Here N ¼ 50 and the shape parameter c ¼ 0:2.

We extend the method described above to 2D eigenvalue
problems of the general type (1). Let us assume that the
plane wave

wðincÞ ¼ expðiðkxxþ kyyÞÞ; k2
x þ k2

y ¼ k2

falls from the homogeneous space with q ¼ 1 to the domain
O with the density function qðx; yÞ. The exciting field is the
solution of the problem:

r2wþe þ k2qðxÞwþe ¼ 0; x ¼ ðx; yÞ 2 O � R2, (24)

r2w�e þ k2w�e ¼ 0; ðx; yÞ 2 R2nO. (25)

The boundary conditions are

wþe ¼ wðincÞ þ w�e ;
qwþe
qn
¼

qwðincÞ

qn
þ

qw�e
qn

,

ðx; yÞ 2 qO. ð26Þ

Here, q=qn denotes the derivative in the direction of the
normal vector n ¼ ðnx; nyÞ of qO.
We also suppose that the exciting field w�e is an outgoing

cylindrical wave at a large distance from O:

w�e �
1ffiffiffiffiffiffiffiffi
kxk
p expð�ikkxkÞ; kxk ! 1,

kxk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. ð27Þ

To get the solution w�e in the homogeneous exterior region
R2nO we use the method of fundamental solutions
(MFS)—a very effective technique for problems in homo-
geneous mediums which has been developed recently. The
description of MFS and the other references can be found
in [16–18]. An approximate solution is looked for in the
form of a linear combination of the fundamental solutions
of (25):

w�e ðxÞ ¼
XN�
n¼1

q�n H
ð2Þ
0 ðkkx� 1nkÞ. (28)

Here, H
ð2Þ
0 stands for the Hankel function of the second

kind and zero order. The source points 1n are placed inside
O and q�n are the free parameters. Note that w�e ðxÞ satisfies
the radiation condition in infinity (27) with an arbitrary
choice of q�n .
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Fig. 7. The response curve for qðxÞ ¼ 1
4
ðaþ 2Þ2½ða2 þ 2aÞxþ 1�. Kansa’s method with N ¼ 50. The k-procedure with Dk ¼ 0 (left) and Dk ¼ 10�1 (right).

Table 3

Two-dimensional eigenvalue problem: r2wþ k2qðx; yÞw ¼ 0 in the disk with the radius R ¼ 1

qðx; yÞ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
qðx; yÞ ¼ 1þ x2 þ y2 qðx; yÞ ¼ 1þ ðx2 þ y2Þ3=2

k
ðexÞ
i

ki er k
ðexÞ
i

ki er k
ðexÞ
i

ki er

2:0108 2:0107 2:7� 10�5 2:17358 2:17369 4:9� 10�5 2:2620 2:2621 5:8� 10�5

3:0678 3:0674 1:2� 10�4 3:30525 3:30528 9:2� 10�6 3:4633 3:4633 9:3� 10�6

4:0224 4:0222 4:9� 10�5 4:30647 4:30653 1:2� 10�5 4:5142 4:5141 2:4� 10�5

4:5549 4:5538 2:5� 10�4 4:84162 4:84164 2:1� 10�6 4:9993 4:9978 2:9� 10�4

4:9284 4:9279 9:3� 10�5 5:24699 5:24727 3:2� 10�5 5:4926 5:4927 1:9� 10�5

Dirichlet boundary conditions. Regularization by the �-procedure with � ¼ 10�3.
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To approximate the solution in the non-homogeneous
region O we use the RBF approximation described above

wþe ðx; yÞ ¼
XNþ
j¼1

qþn Cðkx� njkÞ. (29)

Here, Nþ ¼ NI þNB: The centers nj, j ¼ 1; . . . ;NI are
randomly distributed inside O and nj, j ¼ NI þ 1; . . . ;NI þ

NB are placed on the boundary qO.
Let xi, i ¼ 1; . . . ;MI be the collocation points distrib-

uted inside O, and yi, i ¼ 1; . . . ;MB are placed on the
boundary qO. The linear system isXNþ
j¼1

qþn Lðxi; kÞ½Cðkxi � njkÞ� ¼ 0; i ¼ 1; . . . ;MI , (30)

XNþ
j¼1

qþn Cðkyi � njkÞ �
XN�
n¼1

q�n H
ð2Þ
0 ðkkyi � 1nkÞ ¼ wðincÞðyiÞ,

i ¼ 1; . . . ;MB, ð31Þ

XNþ
j¼1

qþn
q
qn

Cðkyi � njkÞ �
XN�
n¼1

q�n
q
qn

H
ð2Þ
0

�ðkkyi � 1nkÞ ¼
q
qn

wðincÞðyiÞ; i ¼ 1; . . . ;MB. ð32Þ

The system has N ¼ Nþ þN� unknowns and M ¼MI þ

2MB equations. We take M approximately twice as large as
N. The overdetermined system is solved by the least
squares procedure.
When the exciting field we is known, we get the response
field wr as a solution of the problem

r2wr þ k2qðxÞwr ¼ 0; x 2 O,

wr ¼ �wþe ; x 2 qO. ð33Þ

We look for wr in the form

wrðxÞ ¼
XNþ
j¼1

qr
nCðkx� njkÞ. (34)

The collocation inside O and on qO gives the following
system for qr

n:XNþ
j¼1

qr
nLðxi; kÞ½Cðkxi � njkÞ� ¼ 0; i ¼ 1; . . . ;MI , (35)

XNþ
j¼1

qr
nCðkyi � njkÞ ¼ �weðyiÞ; i ¼ 1; . . . ;MB. (36)

The sum w ¼ wr þ wþe satisfies (1). It is used to compute the
norm F dðkÞ. We find the eigenvalues ki as extremums of the
response curve.

Example 2. The data presented in Table 3 correspond to
the following density functions:

q1ðx; yÞ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; q2ðx; yÞ ¼ 1þ x2 þ y2,

q3ðx; yÞ ¼ 1þ ðx2 þ y2Þ
3=2. ð37Þ

The solution domain O is the disk with the radius R ¼ 1.
The numbers of the centers and the collocation points
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are: NI ¼ 100, NB ¼ 50, N� ¼ 50, MI ¼ 100, MB ¼ 100.
We compare the results of the calculations ki with the data
published in [6,7] and place the errors (13) in the table.

3. Internal excitation

In this section we consider the general case when r2we þ

k2qwea0 in the solution domain. So, this case can be
treated as the one where the exciting source is placed inside
the domain of the interest.

Let us consider the same simplest eigenproblem (4) on
the interval ½0; 1�. In accordance with the technique
described in Section 1 we take the response field wr as a
solution of the BVP:

d2wr

dx2
þ k2wr ¼ �

d2we

dx2
� k2we; x 2 ½0; 1�,

wrð0Þ ¼ �weð0Þ; wrð1Þ ¼ �weð1Þ. ð38Þ

Note that here we can take any smooth enough function
defined in ½0; 1� as the exciting field weðxÞ. Obviously, the
sum w ¼ we þ wr satisfies the initial BVP (14) with any
choice of weðxÞ.

The rest part of the algorithm is the same as the one
described in the previous section. Varying k, we get the
response curve F ðkÞ (9) and calculate the eigenvalues as the
positions of its maxima.

However, this initial form of the method is unfit for our
goal. Indeed, a particular solution of (38) is ewr ¼ �we.
Looking for the response field in the form

wr ¼ Ar expðikxÞ þ Br expð�ikxÞ þ ewrðxÞ,

we get the linear system for Ar;Br:

Ar þ Br � weð0Þ ¼ �weð0Þ,

Ar expðikÞ þ Br expð�ikÞ � weð1Þ ¼ �weð1Þ. ð39Þ

For kanp the system has the unique solution Ar ¼ 0,
Br ¼ 0. Thus, w � 0 and F ðkÞ ¼ 0 with the precision error.
In Fig. 8 we place the response curve corresponding to the
exciting field

weðxÞ ¼ 1þ xþ x2. (40)
5

2×10−8

4×10−8

6×10−8

8×10−8

1×10−7

F

Fig. 8. The response curve F ðkÞ. Intern
To get a smooth response curve we use the same two
regularizing procedures. Applying the �-procedure, we
replace (38) by the following BVP:

d2wr

dx2
þ ðk2

þ i�kÞwr ¼ �
d2we

dx2
� k2we,

wrð0Þ ¼ �weð0Þ; wrð1Þ ¼ �weð1Þ, ð41Þ

where �40 is a small value. As an example, let us take the
same exciting field weðxÞ (40). The particular solution can
also be taken in the same polynomial form

ewrðx; k; �Þ ¼ �
k2

k2
�

x2 �
k2

k2
�

x�
2þ k2

k2
�

þ
2k2

k4
�

,

k2
� ¼ k2

þ i�k. ð42Þ

Note that ewra� we. As a result, we get the following
system instead of (39):

Ar þ Br � ewrð0Þ ¼ �weð0Þ,

Are
ik� þ Bre

�ik� � ewrð1Þ ¼ �weð1Þ. ð43Þ

The dimensionless response curves Fd ðkÞ depicted in
Fig. 9 correspond to � ¼ 10�15 (left) and � ¼ 10�6

(right).
The value � ¼ 10�15 is too small to regularize the

solution. The response curve FdðkÞ has separate maximums
at the positions of eigenvalues but is not smooth. The value
� ¼ 10�6 provides a smooth curve.
Using the k-procedure, we take the response field as the

solution of the BVP

d2wr

dx2
þ k2wr ¼ �

d2we

dx2
� ðk þ DkÞ2we,

wrð0Þ ¼ �weð0Þ; wrð1Þ ¼ �weð1Þ. ð44Þ

The particular solution is

ewrðx; k;DkÞ ¼ �
ðk þ DkÞ2

k2
x2 �
ðk þ DkÞ2

k2
x

�
2þ ðk þ DkÞ2

k2
þ

2ðk þ DkÞ2

k4
ð45Þ
10 15 20

k

al excitation without regularization.
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Fig. 10. The dimensionless response curve F d ðkÞ. Internal excitation. k-procedure with Dk ¼ 10�15 (left) and Dk ¼ 10�6 (right).
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Fig. 9. The dimensionless response curve Fd ðkÞ. Internal excitation. �-procedure with � ¼ 10�15 (left) and � ¼ 10�6 (right).
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and again ewra� we. The linear system for Ar; Br takes the
form

Ar þ Br � ewrð0Þ ¼ �weð0Þ,

Ar expðikÞ þ Br expð�ikÞ � ewrð1Þ ¼ �weð1Þ

with ewr given in (45). The system has non-zero solutions
for all k except the eigenvalues kn when the system becomes
degenerate. However, due to the iterative procedure of
solution and rounding errors we never solve the system
with the exact kn. We observe degeneration of the system
as a considerable growth of the solution in a neighborhood
of the eigenvalues (Fig. 10).
3.1. Non-homogeneous string

Here we consider eigenvalue problem (14) for non-
homogeneous string. We take particular solution weðxÞ and
get the response field wr as a solution of the BVP

d2wr

dx2
þ k2

�qðxÞwr ¼ �
d2we

dx2
� k2qðxÞwe,

wrð0Þ ¼ �weð0Þ; wrð1Þ ¼ �weð1Þ. ð46Þ

The BVP is solved by Kansa’s method described in the
previous section. Using the sum w ¼ we þ wr; we obtain the
response curve FdðkÞ and calculate the eigenvalues as
positions of extremums.
Example 3. The data presented in Table 4 correspond to
the density functions

q1ðxÞ ¼ 0:25ðaþ 2Þ2½ða2 þ 2aÞxþ 1� and

q2ðxÞ ¼ ½lnð1þ aÞ=a�2ð1þ aÞ2x.

The exact eigenvalues k
ðexÞ
i are the roots of the equations

J1ðwÞY 1½ð1þ aÞw� � Y 1ðwÞJ1½ð1þ aÞw� ¼ 0

and

J0ðwÞY 0½ð1þ aÞw� � Y 0ðwÞJ0½ð1þ aÞw� ¼ 0

correspondingly (see [24]). The collocation points xi, i ¼

1; . . . ;N (and at the same time the centers of the RBF)
are randomly distributed on ½0; 1�. We take N ¼ 100
RBFs with the shape parameter c ¼ 0:4 and the parti-
cular solution weðxÞ ¼ 1� x. It is important to note that in
this example we get a smooth response curve without
regularization, i.e., we use � ¼ 0, Dk ¼ 0. This can be
explained by the fact that the errors introduced by the RBF
approximation play a role of an intrinsic regularizing
procedure.

3.2. Non-homogeneous membrane

The same technique can be applied in the 2D case.
Similar to the 1D problem considered above, we get the
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Table 4

Eigenvalues of the problem: d2
xxwþ k2qðxÞw ¼ 0, wð0Þ ¼ wð1Þ ¼ 0

0:25ðaþ 2Þ2½ða2 þ 2aÞxþ 1� ½lnð1þ aÞ=a�2ð1þ aÞ2x

k
ðexÞ
i

ki k
ðexÞ
i

ki

3:1965784 3:1965708 3:1230309 3:1230303
6:3123495 6:3123495 6:2734357 6:2734366
9:4444649 9:4444647 9:4182075 9:4182103
12:5812028 12:5811999 12:5614232 12:5614245
15:7198543 15:7207882 15:7039979 15:7039696

Solution by Kansa’s method with N ¼ 100. Inner exciting source with the

particular solution weðxÞ ¼ 1� x. a ¼ 1.

Table 5

Eigenvalues of the problem r2wþ k2a½1þ ðx2 þ y2Þ1=2�w ¼ 0 in the circle

with the radius R ¼ 1

a ¼ 1 a ¼ 3

k
ðexÞ
i

ki k
ðexÞ
i

ki

2.0108 2.0097 1.5832 1.5818

3.0678 3.0677 2.3334 2.3333

4.0224 4.0223 3.0129 3.0129

4.5549 4.5531 3.5835 3.5800

4.9284 4.9286 3.6582 3.6585

Dirichlet conditions. Inner exciting source with we ¼ 1þ xy.

Table 6

Eigenvalues of the problem r2wþ k2a½1þ ðx2 þ y2Þ�w ¼ 0 in the circle

with the radius R ¼ 1

a ¼ 1 a ¼ 3

k
ðexÞ
i

ki k
ðexÞ
i

ki

2.173584 2.173587 1.8474 1.8475

3.30525 3.30524 2.6681 2.6681

4.30647 4.30654 3.3870 3.3872

4.84162 4.84153 4.0608 4.0622

5.24698 5.24725 4.0610 4.0611

Dirichlet conditions. Inner exciting source with we ¼ 1þ xy.

Table 7

Eigenvalues of the problem r2wþ k2a½1þ ðx2 þ y2Þ3=2�w ¼ 0 in the circle

with the radius R ¼ 1

a ¼ 1 a ¼ 3

k
ðexÞ
i

ki k
ðexÞ
i

ki

2.2620 2.2620 2.0258 2.0259

3.4633 3.4633 2.9338 2.9337

4.5142 4.5142 3.7023 3.7026

4.9993 4.9992 4.3370 4.3367

5.4926 5.4926 4.4107 4.4109

Dirichlet conditions. Inner exciting source with we ¼ 1þ xy.

S.Y. Reutskiy / Engineering Analysis with Boundary Elements 31 (2007) 906–918 915
response field as a solution of the BVP

r2wr þ k2
�qðxÞwr ¼ �r

2we � ðk þ DkÞ2qðxÞwe,

x 2 O � R2, ð47Þ

B½wr� ¼ �B½we�; x 2 qO. (48)

The BVP is solved by using the asymmetric RBF
collocation method with the multiquadrics described in
the previous section. The response curve is obtained using
the sum w ¼ we þ wr. In all the numerical examples
presented in this subsection we use N ¼ 7 points randomly
distributed in O to calculate the response curve.

Example 4. Let us consider the same eigenvalue problem in
the disk as the one in Example 2. The response field is
looked for in the form of the linear combination of the
multiquadrics

wrðxÞ ¼
XN

j¼1

qnCðkx� njkÞ. (49)

We use N ¼ NI þ 2NB centers. The first NI centers are
randomly distributed inside the disk O; the next NB centers
are taken on the boundary qO; and the last NB centers are
distributed on the auxiliary contour qO0 placed at the
distance dr from qO outside O.

We set NI þNB collocation conditionsXN

j¼1

qnðr
2 þ k2

�qðxiÞÞ½Cðkxi � njkÞ� ¼ �ðr
2 þ k2qðxiÞÞ½weðxiÞ�,

i ¼ 1; . . . ;NI þNB ð50Þ

to approximate (47) and NB conditionsXN

j¼1

qnB½Cðkxi � njkÞ� ¼ �B½weðxiÞ�,

i ¼ NI þNBþ 1; . . . ;NI þ 2NB ð51Þ

to approximate (48). Here the first NI þNB collocation
points xi coincide with the first NI þNB centers and the
last NB collocation points xi are placed on the boundary
qO. So, we get N �N linear system which is solved by the
Gauss elimination procedure.
The data shown in Tables 5–7 are obtained with

NI ¼ NB ¼ 100, dr ¼ 0:05. The shape parameter c ¼ 1.
The density functions are taken in the form

q1ðx; yÞ ¼ 1þ aðx2 þ y2Þ
1=2; q2ðx; yÞ ¼ 1þ aðx2 þ y2Þ,

q3ðx; yÞ ¼ 1þ aðx2 þ y2Þ
3=2,

which admits of exact solutions [7]. The particular solution
is taken in the form we ¼ 1þ xy. It should be stressed that
the algorithm is again self-regularizing and we perform all
the calculations with � ¼ 0, Dk ¼ 0.

Example 5. Here we consider the same circular non-
homogeneous membrane as above with the density
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function qðx; yÞ ¼ 1þ ðx2 þ y2Þ
1=2 and with the different

particular solutions

we;1 ¼ 1; we;2 ¼ 1þ xy; we;3 ¼ ex cos y,

we;4 ¼ x3 � 3xy2.

The other parameters of the problem are the same as in
Example 4. The results of the calculations are placed in
Table 8.

Example 6. We consider an annular domain O between
two circles. The inner and outer radii of an annular domain
Table 10

Square membrane with the density function q ¼ 1þ 0:1x

NI=NB ¼ 50=40 NI=NB ¼ 100=100 NI=NB ¼

4:34249 4:33636 4:33547

6:87344 6:85448 6:85370
8:68489 8:67274 8:67307

Inner excitation with the particular solution we ¼ 1þ xy.

Table 11

Square membrane with the density function q ¼ 1þ 0:1 sinðpxÞ

NI=NB ¼ 50=40 NI=NB ¼ 100=100 NI=NB ¼

4:27252 4:26643 4:26546
6:75445 6.74428 6.74370

6.81122 6.79707 6.79769

Inner excitation with the particular solution we ¼ 1þ xy.

Table 9

Two-dimensional eigenvalue problem: r2wþ k2qðx; yÞw ¼ 0 in the annu-

lar domain between the two circles R1 ¼ 1, R2 ¼ 0:5

qðx; yÞ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
qðx; yÞ ¼ 1þ x2 þ y2 qðx; yÞ ¼ 1þ ðx2 þ y2Þ3=2

k
ðexÞ
i

ki k
ðexÞ
i

ki k
ðexÞ
i

ki

4.7198 4.7189 4.9782 4.9772 5.1953 5.1939

4.8298 4.8294 5.0934 5.0925 5.3150 5.3133

5.1443 5.1517 5.4224 5.4282 5.6564 5.6622

Dirichlet boundary conditions. Inner exciting source with we ¼ 1þ xy.

Table 8

Eigenvalues of the problem r2wþ k2
½1þ ðx2 þ y2Þ1=2�w ¼ 0 in the circle

with the radius R ¼ 1

1 1þ xy ex cos y x3 � 3xy2

2.00987 2.00987 2.00987 2.00987

3.06760 3.06758 3.06758 3.06757

4.02232 4.02232 4.02235 4.02232

4.55457 4.55457 4.55457 4.55456

4.92806 4.92830 4.92806 4.92806

Dirichlet conditions. Inner exciting source with different particular

solutions.
are r1 ¼ 0:5 and r2 ¼ 1 correspondingly [6,7]. We use N ¼

NI þ 2NB centers. The first NI centers are randomly
distributed inside the disk O; the next NB ¼ NB1 þNB2

centers are taken on the boundaries qO1 and qO2; and the
rest NB centers are distributed on the auxiliary contours
qO01 and qO2 placed at the distance dr from qO1 and qO2

correspondingly outside O. Other details are the same as in
Example 4.The data placed in Table 9 are obtained with:
NB ¼ 150, NB1 ¼ 100, NB2 ¼ 50, dr ¼ 0:05, c ¼ 0:5,
we ¼ 1þ xy.

Example 7. We consider the case when O is the unit square.
The density functions of two kinds are considered:

q1 ¼ 1þ 0:1x; q2 ¼ 1þ 0:1 sinðpxÞ.

The results of the calculations are compared with the data
taken from [8] where the lowest eigenvalues are computed
by the a hybrid method composed of differential trans-
forms and the Kantorovitch method. The results are placed
in Tables 10 and 11.

Example 8. Through the paper we use Kansa’s method
only. However, any appropriate method, e.g., FE, FD, can
be used as a BVPs solver in the framework of this
technique. As an example, let us consider again the
problem of Example 7 The simple square geometry of the
solution domain allows to use the FD method. To
approximate (47) we apply the following FD scheme

20wi;j ¼ 4ðwiþ1;j þ wi;jþ1 þ wi;j�1 þ wi�1;jÞ

þ wiþ1;jþ1 þ wiþ1;j�1 þ wi�1;jþ1 þ wi�1;j�1 � 6h2gi;j

� 0:5h2
ðgiþ1;j þ gi;jþ1 þ gi;j�1 þ gi�1;j � 4gi;jÞ

which approximates the equation r2w ¼ gðx; yÞ with the
fourth order [25]. Here we write (47) in the form: r2wr ¼

�k2qðxÞwe � r
2we � k2

�qðxÞwr and denote the right-hand
side as gðx; yÞ. h ¼ 1=N is the mesh step; wi;j ¼ wðxi; yjÞ;
xi ¼ hði � 1Þ; yj ¼ hðj � 1Þ, i; j ¼ 1; . . . ;N þ 1.
150=100 NI=NB ¼ 200=100 Ho&Chen

4:33538 4:33538

6:85369 –

8:67253 –

150=100 NI=NB ¼ 200=100 Ho&Chen

4:26540 4:26541
6.74373 –

6.79737 –
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Table 12

Square membrane with the density function q ¼ 1þ 0:1 sinðpxÞ

i N ¼ 20 N ¼ 30 N ¼ 40 N ¼ 50

1 4.2654 4.26540 4.265404 4.265404

2 6.7438 6.74388 6.743886 6.743888

3 6.7972 6.79732 6.797324 6.797326

4 8.5977 8.59768 8.597665 8.597662

5 9.5359 9.53645 9.536548 9.536574

6 9.6241 9.62472 9.624822 9.624849

7 10.9591 10.95915 10.95915 10.95915

8 12.4295 12.43227 12.43273 12.43285

9 12.5509 12.55375 12.55423 12.55436

10 12.9143 12.91364 12.91352 12.91349

Inner excitation with the particular solution we ¼ 1þ xy. FD solution.
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As a result, we write the system in the block tridiagonal
form:bAjWjþ1 þ bBjWj þ bCjWj�1 ¼ Fj,

where Wj ¼ ðw1;j ;w2;j ; . . . ;wNþ1;jÞ
T are the vectors of the

unknowns; Fj ¼ ðf 1;j ; f 2;j ; . . . ; f Nþ1;jÞ
T are the vectors of the

right-hand side; bAj ; bBj ; bCj are ðN þ 1Þ � ðN þ 1Þ matrices.

The system is solved by the sweep method.
In Table 12 we test a convergence of the eigenvalues

of the membrane with the density function q ¼ 1þ
0:1 sinðpxÞ. The number of mesh nodes varies from N ¼

20 to 50.

4. Concluding remarks

In this paper, a new numerical technique for the problem
of free vibrations of inhomogeneous membranes with
continuously varying properties is proposed. This is a
mathematical model of physical measurements, when a
mechanical or acoustic system is excited by some source,
and resonant frequencies can be determined using the
growth of the amplitude of oscillations near these
frequencies. It is convenient for determining some first
eigenvalues of the system which are often of the most
interest from the point of view of engineering applications.

This technique is presented in two versions. The first one
assumes that the exciting source is placed outside the
solution domain. It is more convenient for homogeneous
problems. In this case the exciting field we can be obtained
in an analytic way. Besides, here it is natural to use some
boundary technique for solving BVP for the response field
wr. As it is shown in [9–12], the resulting technique
provides a high accuracy in determining natural frequen-
cies of the homogeneous membranes and plates. However,
applying this version of the method in non-homogeneous
cases, one faces the scattering problem which should be
solved to get we. It rather complicates the algorithm
because one should solve the problem in an unbounded
domain with some kind of radiation conditions in infinity.

The second version uses a given exciting field we and one
should solve the BVP for wr inside the solution domain
only. This version is found more convenient for non-
homogeneous problems.
The both versions of the method presented lead to a

sequence of BVPs and can be combined with different
solvers. In the paper we apply mainly the MFS and
Kansa’s method. Application of the FD method is shown
in Example 8 of the previous section. However, it can be
combined with any appropriate BVP solver. It seems
possible to extend the same approach to eigenvalue
problems with other differential equations, e.g., to pro-
blems of plates and shells vibration. This will be the subject
of further investigations.
References

[1] Mazumdar J. A review of approximate methods for determining the

vibrational modes of membranes. Shock Vib Dig 1975;7:75–88.

[2] Masad JA. Free vibrations of a non-homogeneous rectangular

membrane. J Sound Vib 1996;195:674–8.

[3] Laura PAA, Rossi RE, Gutierrez RH. The fundamental frequency of

non-homogeneous rectangular membrane. J Sound Vib 1997;204:

229–306.

[4] Wang CY. Some exact solutions of the vibration of non-homo-

geneous membranes. J Sound Vib 1998;210:555–8.

[5] Wang CY. Fundamental frequency of a wavy non-homogeneous

circular membrane. J Sound Vib 1999;227:682–4.

[6] Gutierrez RH, Laura PAA, Bambil DV, Jederlinic VA, Hodges DS.

Axisymmetric vibrations of solid circular and annular membranes

with continuously varying density. J Sound Vib 1998;212:611–22.

[7] Jabareen M, Eisenberge M. Free vibrations of non-homogeneous

circular and annular membranes. J Sound Vib 2001;240:409–29.

[8] Ho CH, Chen CK. Free vibration analysis of non-homogeneous

rectangular membranes using a hybrid method. J Sound Vib 2000;

233:547–55.

[9] Reutskiy SY. The method of fundamental solutions for Helmholtz

eigenvalue problems in simply and multiply connected domains. Eng

Anal Boundary Elem 2006;30:150–9.

[10] Reutskiy SY. The method of fundamental solutions for eigenpro-

blems with Laplace and biharmonic operators. Comput Mater

Continua 2005;2:177–88.

[11] Reutskiy SY. The method of external sources (MES) for eigenvalue

problems with Helmholtz equation. Comput Modeling Eng Sci

2006;12:27–39.

[12] Reutskiy SY. The method of fundamental solutions for problems of

free vibrations of plates. Eng Anal Boundary Elem 2007;31:10–21.

[13] Morse PM, Feshbach H. Methods of theoretical physics (two

volumes). New York: McGraw-Hill; 1953.

[14] Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical

recipes in Cþþ. 2nd ed. Cambridge: Cambridge University Press;

2002.

[15] Brent RP. Algorithms for minimization without derivatives. Engle-

wood Cliffs, NJ: Prentice-Hall; 1973.

[16] Fairweather G, Karageorghis A. The method of fundamental

solutions for elliptic boundary value problems. Adv Comput Math

1998;9:69–95.

[17] Golberg MA, Chen CS. The method of fundamental solutions for

potential helmholtz and diffusion problems. In: Golberg MA, editor,

Boundary integral methods—numerical and mathematical aspects.

Computational Mechanics Publications, 1998. p. 103–76.

[18] Chen JT, Chen IL, Lee YT. Eigensolutions of multiply connected

membranes using the method of fundamental solutions. Eng Anal

Boundary Elem 2005;29:166–74.

[19] Kansa EJ. Multiquadrics—a scattered data approximation scheme

with applications to computational fluid-dynamics—I. Surface



ARTICLE IN PRESS
S.Y. Reutskiy / Engineering Analysis with Boundary Elements 31 (2007) 906–918918
approximations and partial derivative estimates. Comput Math Appl

1990;19(8/9):127–45.

[20] Kansa EJ. Multiquadrics—a scattered data approximation scheme

with applications to computational fluid-dynamics—II. Solutions to

parabolic, hyperbolic and elliptic partial differential equations.

Comput Math Appl 1990;19(8/9):147–61.

[21] Kansa EJ, Hon YC. Circumventing the ill-conditioning pro-

blem with multiquadric radial basis functions: applications to

elliptic partial differential equations. Comput Math Appl 2000;39:

123–37.
[22] Li J, Cheng AH-D, Chen CS. A comparison of efficiency and error

convergence of multiquadric collocation method and finite element

method. Eng Anal Boundary Elem 2003;27:251–7.

[23] Ling L, Hon YC. Improved numerical solver for Kansa’s method

based on affine space decomposition. Eng Anal Boundary Elem

2005;29:1077–85.

[24] Horgan CO, Chan AM. Vibration of inhomogeneous strings, rods

and membranes. J Sound Vib 1999;225:503–13.

[25] Thom A, Apelt CJ. Field computations in engineering and physics.

London: D. Van Nostrand Company, Ltd.; 1961.


	The methods of external and internal excitation for problems of free vibrations of non-homogeneous membranes
	Introduction
	External excitation
	Homogeneous problems
	Non-homogeneous problems

	Internal excitation
	Non-homogeneous string
	Non-homogeneous membrane

	Concluding remarks
	References


