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Analysis of circular torsion bar with circular holes using null-field approach
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Abstract

The degenerate kernels and Fourier series expansions are adopted in the null-field integral
equation to solve torsion problems of a circular bar with circular holes. The main gain of
using degenerate kernels is free of calculating the principal values. An adaptive observer
system is addressed to fully employ the property of degenerate kernels in the polar coordinate.
After moving the null-field point to the boundary and matching the boundary conditions, a
linear algebraic system is obtained without boundary discretization. The unknown coefficients
in the algebraic system can be easily determined. The present method is treated as a
“semi-analytical” solution since error only attributes to the truncation of Fourier series.
Finally, several examples are given to demonstrate the validity of the proposed method.
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1 Introduction

Boundary value problem always involve
several holes or more than one important
point. It is convenient to be able to expand
the solutions in alternative ways, each way
referring to different specific coordinate set
describing the same solution. According to
the idea, we develop the adaptive observer
system and expanded form of fundamental
solution which is called “degenerate kernel”
in the polar coordinate and employ Fourier
series to approximate the boundary data.

In the past, multiply connected problems
have been carried out either by conformal
mapping or by special technique approach.
Muskhelishvili  [1] has formulated the
solution of composite torsion bar in the form
of integral equations. He solved the problem
of a circular bar reinforced by an eccentric
inclusion by using conformal mapping.
Chen and Weng [2] have also introduced
conformal mapping with a Laurent series
expansion to analyze the Saint-Venant
torsion problem. They concerned with a
nonconcentric circular bar of different
materials with an imperfect interface under
torque. Because the conformal mapping is
limited to the doubly connected region, an
increasing number of researchers have paid
more attentions on special solutions.
However, the extension of above special
solution to multiple circular holes may
encounter difficulty. It is not trivial to
develop a systematic method for solving the
torsion problems with several holes.

In this paper, the null-field integral equation
is utilized to solve the Saint-Venant torsion
problem of a circular shaft weakened by

circular holes. The mathematical formula-
tion is derived by using degenerate kernel
for fundamental solution and Fourier series
for boundary density in the null-field
integral equation. Then, it reduces to a linear
algebraic equation. After determining the
unknown coefficients, series solutions for
the warping function and torsional rigidity
are obtained. Numerical examples are given
to show the validity and efficiency of our
formulation.

2 Solution procedures
2.1 Dual boundary integral equations
and dual null-field integral equations

What is given shown in Figure 1 is a circular
bar weakened by N circular holes placed
on a concentric ring of radius b. The radii
of the outer circle and the inner holes are R
and a , respectively. The circular bar
twisted by couples applied at the ends is
taken into consideration.

Figure 1 Cross section of bar weakened by N
(N = 3) equal circular holes
The classical Saint-Venant torsion problem
is formulated as Laplace equation Vo =0
subject to the Neumann boundary condition
0
3_i =x,sinf_—y, cosé,, (1)
where ¢ is the warping function, (X, Y,)
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denotes the center of the kth inner circular
hole defined as

27k

27k
X, :bcosl, Y, :bsinW,

)
k=12--,N.
We apply the Fourier series expansions to
approximate the potential u and its normal
derivative t on the boundary
ug,) =a +§:(a: cosnd, +b sinng,),

©)

t(s,) = pi + > (p; cosnd, +q'sinnd,),

s, €B, k=12,---,N,
where t(s,) =0u(s,)/on, in which n,
and denotes the outward normal vector at
oo byyopyoand q
(n=0,1,2,---) are the Fourier coefficients
and 6, is the polar angle. The integral
equation for the domain point can be derived

from the third Green’s identity [3], we have
27U(X) = f T (s, X)u(s)dB(s)

ifU(s, X)t(s)dB(s), x € D,

the source point s, a

(%)

where s and x are the source and field
points, respectively, B is the boundary, D
is the domain of interest, and the kernel
function U(s,x)=Inr, (rz|x—s|), is the
fundamental solution which satisfies

VU (s, X) = 276(X—S) , (6)
in which §(x—s) denotes the Dirac-delta

function. The T (s, x) kernel is defined by

TEx) = oU (s, Xx)
" on ' (7)

s

By collocating x outside the domain
(xeD®), we obtain the dual null-field
integral equations as shown below

O:j;T(s,x)u(s)dB(s)

c (8)
ffBU(s,x)t(s)dB(s), x € D",

where D° is the complementary domain.
Based on the separable property, the kernel
function U(s,x) can be expanded into
degenerate form by separating the source

points and field points in the polar
coordinate [4]:

[U'(R,0; p.0) =

InR _ii(g)m cosm(@—¢), R>p

U@ x) =1 | i v (9)
U'(R,0;p,9) =
=1 R,

Inp—>Y —(—)"cosm(d—¢), p>R

L mt M p
where the superscripts “i” and “e” denote

the interior (R> p) and exterior (p>R)
cases, respectively. After taking the normal
derivative with respect to Eq. (9), the
T(s,x) kernel function can be derived as
T'(R,0;p,¢) =

1 ~ m
PRI

P

o —)cosm(@—¢), R>p

Tex=1 . " . (10)

T°(R,0;p,¢) =

Rm—l
—)cosm(d —¢), p>R

_Z(

1 P

Since the potential resulted from T(s,x) is
discontinuous cross the boundary, the
potentials of T(s,x) for R—p*" and
R— p  are different. This is the reason
why R = p is not included in expressional
degenerate kernels of T (s, x) in Eq. (10).

2.2 Adaptive observer system

After moving the point of Eq. (8) to the
boundary, the boundary integrals through all
the circular contours are required. Since the
boundary integral equations are frame



A b R SR ot R

indifferent, i.e. objectivity rule, the observer
system is adaptively to locate the origin at
the center of circle in the boundary integrals.
Adaptive observer system is chosen to fully
employ the property of degenerate kernels.
Figures 2 (a) and 2 (b) show the boundary
integration for the circular boundaries in the
adaptive observer system. It is worthy noted
that the origin of the observer system is
located on the center of the corresponding
circle under integration to entirely utilize the
geometry of circular boundary for the
expansion of degenerate kernels and

boundary densities.

Figure 2 (b) Boundary

Figure 2 (a) Null-field . )
] ) integral equation for
integral equation ) )
domain points

2.3 Linear algebraic system

By moving the null-field point x, on the
kth circular boundary in the sense of limit
for Eq. (8) in Figure 2 (a), we have

0=§NC:fB T(s,.X,)u(s,)dB, (5)
o (12)
_Zfa U (s, x,)t(s,)dB,(s), x € D°,

where N, is the number of circles
including the outer boundary and the inner
circular holes. If the domain is unbounded,
the outer boundary B, is a null set and
N. = N . By collocating the null-field point

on the boundary, a linear algebraic system is
obtained

(UKt} =[T{u}, (12)
where [U] and [T| are the influence
matrices with a dimension of N.(2M +1)
by N.(2M +1), {u} and {t} denote the
column vectors of Fourier coefficients with
a dimension of N.(2M +1) by 1 in which
[U], [T], {u} and {t} can be defined as
follows:

V] U U‘JN '|:7D T T
u, Y, - Y, T T
[u]l = _ o _ Tl = _ o B (13)
U U U TNO T T
(u, ] t,
ul tl
{ub=qu, ¢t {th=1t, ¢, (14)
uN ~tN

where the vectors {u,} and {t.} are in
the form of {ag a‘ b‘ - a
bi " and {pt pf gt - pl gyl
respectively; the first subscript “ j
(j=012-,N) in [U,] and [T;]
denotes the index of the jth circle where
the collocation point is located and the
second subscript “k” (k=0,1,2,---,N)
denotes the index of the kth circle where
boundary data {u,} or {t,} are specified,
M indicates the truncated terms of Fourier
series. By rearranging the known and
unknown sets, the unknown Fourier coeffi-
cients are determined. Equation (8) can be
calculated by employing the relations of
trigonometric function and the orthogonal
property in the real computation. Only the
finite M terms are used in the summation
of Egs. (3) and (4).
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3 Hlustrative examples and 3 (b) show the results using the present
method and those from the first-order
approximation solution (solid lines) and the
boundary integral equation solution (dashed
lines) derived by Caulk [5]. Twenty-one
collocating points are selected on all the

Case 1: A circular bar with single eccentric
hole

A circular bar of radius R with two equal

circular holes removed is under torque T

at the end. The torsional rigidity G of

Ccross section can be expressed by
G

circular boundaries in the numerical imple-
. mentation. After being compared with the
Drsz_Zﬁsz_idBk : (15)  results of Figure 3 (b), the numerical results
N match well with other solutions.

u
where 4 is the elastic shear modulus. The
results of torsional rigidity for each case are
shown in Table 1. The exact solution derived
by Muskhelishvili [1] is shown in Table 1
for comparison. For the eccentric hole near
the outer boundary, our solution is better
than that of Caulk obtained by BIE [5].

. L . ) Figure 3 (a) Contour plot _
Table 1 Torsional rigidity of a circular cylinder Figure 3 (b) Caulk’s data
of present method

with a single eccentric hole (a/R =1/3)

2G| umR* . . .
b Case 3: A circular bar with three circular
Present Exact
R—a BIE [5] holes
method solution [1 . .
[1] Unlike Case 2, a circular bar weakened by
0.20 0.97872 0.97872 0.97872 . -
three circular holes of equal radii is regarded
0.40 0.95137 0.95137 0.95137 _ .
as the third example. In a similar way, the
0.60 0.90312 0.90312 0.90316 | f S— _
0.80 0.82473 0.82473 0.82497 contour' po't of the axial displacement !s
0.90 0.76168 0.76168 0.76252 shown in Figure 4 @). .Good agreement is
0.92 0.74455 0.74454 074569  Made after comparing with the Caulk’s data
0.94 0.72451 0.72446 0.72605 N Figure 4 (b).
0.96 0.69991 0.69968 0.70178
0.98 0.66705 0.66555 0.66732

Case 2: A circular bar with two circular
holes

What is brought out is the problem subject

to zero traction on the outer boundary and

Neumann boundary condition defined in Figure 4 (a) Contour plot

Eq.(1) on all the inner circles. Figures 3 (3)  ©f the present method

Figure 4 (b) Caulk’s data
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Case 4: A circular bar with four circular

holes
The fourth problem
weakened by four equal circular holes under
torque. In Figure 5 (a), our results of axial
displacement agree well with the values in
the dashed line of Figure 5 (b) which are
solved by using the boundary integral
equation.

is a circular bar

Figure 5 (a) Contour plot

Figure 5 (b) Caulk’s data

of the present method

The torsional rigidities obtained by using the
present method for N =2,3,4 are listed in
Table 2. Our results are consistent with
Caulk’s data obtained by BIE formulation
after comparison.

Table 2 Torsional rigidity of a circular cylinder
witharingof N holes(a/R=1/4,b/R=1/2)

2G / uwR’
Numbers of Present First-order
BIE [5]
holes method solution [5]
2 0.8657 0.8657 0.8661
3 0.8214 0.8214 0.8224
4 0.7893 0.7893 0.7934

4 Concluding remarks

The torsion problems of circular shaft
weakened by several holes have been
successfully solved by using the present
formulation. Our solutions are consistent

with the results by using the boundary
integral equation for the three cases of
Caulk’s. After being compared with the
exact solution in the case of an eccentric
hole and Caulk’s data, our results show the
better efficiency and accuracy.
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