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Null-field integral equation approach for Helmholtz (interior and exterior acoustic)
problems with circular boundaries

Chia-Tsung Chen*, I-Lin Chen?, Jeng-Tzong chen®
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Abstract

The Helmholtz (interior and exterior acoustics) problems with circular boundaries are
studied by using the null-field integral equations in conjunction with degenerate kernels and
Fourier series to avoid calculating the Cauchy and Hadamard principal values. Adaptive
observer system of polar coordinate is considered to fully employ the property of
degenerate kernels. For the hypersingular equation, vector decomposition for the radial and
tangential gradient of potential is carefully considered. In interior acoustic problems,
direct-searching scheme is employed to detect the eigenvalues by using the singular value
decomposition (SVD) technique. Two approaches to overcome spurious eigenvalus, SVD
updating technique and Burton & Miller methods are employed to suppress the appearance
of spurious eigenvalue. Several examples are demonstrated to see the validity of the present
formulation and numerical results indicate the better accuracy than BEM in predicting the
spurious eigenvalues. In exterior acoustic problems, the radiation and scattering problems
with multiple circular cylinders are also examined successfully.
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1. Introduction

For acoustic problem, it is well known that
the boundary integral equation method
(BIEM) in solving the exterior and interior
problems results in fictitious frequency and
spurious eigenvalue, respectively. The
nonuniqueness problem is numerically
manifested in a rank deficiency of the
matrix in BEM. Spurious
eigenvalues appear when the influence
matrix is rank deficient in the case where
physical response does not occur. Fictitious

coefficient

frequency results in numerical resonance but
physical resonance never occurs for exterior

problems. In order to obtain the unique
solution,  various integral  equation
formulations  that provide additional
constraints to the original system of

equations have been proposed. Burton &
Miller proposed an integral equation that
was valid for all wavenumbers; however, the
calculation for the hypersingular integration
is required. To avoid the computation of
hypersingularity, an alternative method,
CHIEF, was proposed by Schenck [5].
Recently, the SVD technique was developed
as an important tool in linear algebra. In the
eigenproblem with a
domain, the dual

interior
simply-connected

reciprocity method (DRM) by Partridge et al.

[4] and the multiple reciprocity method
(MRM) by Kamiya & Andoh [3] have been
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widely used recently. In exterior acoustics,
many researchers applied the CHIEF
method to deal with the problem of fictitious
frequencies. Schenck wused the CHIEF
method which employed the boundary
integral equations by collocating the interior
point as an auxiliary condition to make up
deficient constraint condition. The constraint
is one of the null-field integral equations. In
this paper, we employ the null-field integral
equation (NFIE) as well as the boundary
integral equation method (BIEM) in
conjunction with degenerate kernels and
Fourier series to solve the vibration of
multiply-domain  membrane and  the
radiation and scattering problems with
circular boundaries. To fully utilize the
geometry of circular boundary, Fourier
series for boundary densities and degenerate
kernel for fundamental solutions are
incorporated into the null-field integral
equation in the polar coordinate system.

2. Problem Statement and Integral
Formulation

2.1 Problem statement
The governing equation of the acoustic
problem is the Helmholtz equation

(V' +k)u(x) =0, xeD, (1)

where v?, k and D are the Laplacian

operator, the wave number, and the domain
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of interest, respectively. Consider the
problems  containing N randomly
distributed circular holes centered at the

position vector ¢; ( j=1, 2, .., N) as

shown in Figure 1.
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Figure 1 Problem statement
2.2 Dual boundary integral formulation
Based on the dual boundary integral
formulation of the domain point [1], we
have

2nmu(x) = fT(s, X)u(s)dB(s) — fU(s, X)t(s)dB(s), x € D', (2)

27t(x) :fM(s, x)u(s)dB(s) 7fL(s,x)t(s)dB(s), xeD, (3)

where s and x are the source and field

points, respectively, D' is the domain of

the interests, t(s) is the directional derivative

of u(s) along the outer normal direction at s.

The U(s,x) , T(s,x) , L(s,x) and

M (s, x) represent the four kernel functions

[1].

2.3 Null-field integral formulation in
conjunction the degenerate kernel and
Fourier series

By collocating x outside the domain

(x € D), we obtain the null-field integral

equations as shown below [1]:

0= fT(s,x)u(s)dB(s) ffu(s,x)t(s)dB(s), xeD, (4)

0= fM(s, x)u(s)dB(s) — fL(s, X)t(s)dB(s), x € D. (5)

In the real computation, we select the
null-field point xon the boundary. By using
the polar coordinate, we can express
x=(p,¢) and s=(R,0). The four kernels, U,
T, L and M can be expressed in terms of
degenerate kernels as shown below [1]:

-z &

U0 = =2, 3 (kp)H (R) cos(m(6 - p).R = p
2
UG = » (6)
. -7 & o
U (5.0 = = D2 H (kp)3_ (kR) cos(m(0 - ¢). p >R
2 s
—rki &
T (s,%) = 2.3 (kp)H " (R) cos(m(o - ). R > p
2
T(s,x) = v (1)
. —rki &
T (s,x) =

2 H (k)3 (R) cos(m(@ - ), p >R
2 e

—rki &

L (s, %) = 2.3 kp)H " (kR) cos(m(6 - ¢)). R > p
2
L(s.x) = o (8)
E _”ki - (1)
L(s.0 = =2 1" (kp)3_(R) cos(m(@ - $)), p >R
2 me=
ki
L (s, x) = > 3 (kp)H'” (R) cos(m(8 - p.R = p
2
M(s, x) = ’ (9)
E _”kZi N (1) '
L (s, x) = ZHW (kp)J (kR)cos(m(6 — ¢)), p >R

2

where i°=-1, | and E denote the
interior and exterior cases for the
expressions of kernel, respectively. It is
noted that the degenerate kernels for T and L
expression for p=R are not given since
they are not continuous across the boundary.
In order to fully utilize the geometry of
circular boundary, the potential u and its
normal flux t can be approximated by
employing the Fourier series. Therefore, we
obtain
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u(s):a0+i:(an cosnd + b, sinnd), s € B, (10)

t(s) = p, + »_(p, cosnd +q, sinnd), s € B, (11)
n=1

where a,, a,, b,, p,, p, and q, are

the Fourier coefficients and 6 is the polar
angle which is equally discretized. Egs. (4)
and (5) can be easily calculated by
employing the orthogonal property of
Fourier series. In the real computation, only
the finite M terms are used in the
summation of Egs. (10) and (11).

2.4 Adaptive observer system

Since the boundary integral equations are
frame indifferent, i.e. rule of objectivity is
obeyed. Adaptive observer system is chosen
to fully employ the property of degenerate
kernels. Figure 2 shows the boundary
integration for the circular boundaries. It is
worthy noted that the origin of the observer
system can be adaptively located on the
center of the corresponding circle under
integration to fully utilize the geometry of
circular boundary. The dummy variable in
the integration on the circular boundary is
just the angle (¢ ) instead of the radial
coordinate (R). By using the adaptive system,
all the boundary integrals can be determined
analytically free of principal value.

Figure 2 Adaptive observer system

2.5 Vector decomposition technique for
the potential gradient in the
hypersingular formulaion

Since the hypersingular equation is a key

ingredient to deal with fictitious frequency,

potential gradient on the boundary is
required to calculate. For the encentric case,
special treatment for the potential gradient
should be taken care as the source point and
field point locate on different circular
boundaries. Special treatment for the normal
derivative should be taken care. As shown in
Figure 3 where the origins of observer

system are different, the true normal
direction € with respect to the collocation

point x on the B; boundary should be
superimposed by using the radial direction
€, and angular direction &,. We call this
treatment “vector decomposition technique”.
According to the concept, Egs. (8) and (9)
can be modified as

—rki Z

: —
L (s = = 203 (kp)H. () costm(@ — 99 o6, 4,)
2 me—
" [&9)
- Jm (kp)Hm (kR) sin(m(@ - ¢)) Siﬂ(¢c - 46‘ )L R>p
v 12
L(s, x) = 3 ( )
—rki =
E (1)
L === 2. (k)3 () cas(m(@ ~ g costg, ~ 9,)
2 me
m 1)
ST (ko) H ] (RSO - $) S, ~ ). >R
kp
—rki =
M50 = == 203 ko () costm(o — gy costy, ~ 9,
2 me
m (1)
-3 (ke)H (R)sin(m(0 - g sing - 6 )R = p
" 13
M(s, x) = . ( )
—rki &=
E (1) '
M (0 = = 21" () (R costm(0 - g costs, - 4,)
m (1)
-3 keoH KR Snm(@ — ) sinGs, 4, p >R

kp
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Figure 3 Vector composition

2.6 Linear Algebraic Equation

In order to calculate the 2M+1 unknown
Fourier coefficients and 2M+1 boundary
points on each circular boundary are needed
to be collocated. By moving the null-field
point to the kth circular boundary for Egs.
(4) and (5) as shown in Figure 4, we have

0:2 [ CESTOL-TOR

(14)
Z fB U (s, )t(s)dB, (s), x, € D,
0= [ M(sx)u(s)B,(5)
o (15)

>, LX), 5 €D,

where N_ is the number of circles. It is

noted that the path is anticlockwise for the
outer circle. Otherwise, it is clockwise. For

the B, integral of the circular boundary,

the kernels of U(s,x), T(s,x) L(s,x)
and M(s, x) are respectively expressed in
terms of degenerate kernels of Egs. (6), (7),

(12) and (13) with respect to the observer
origin at the center of B;. The boundary

densities of u(s) and t(s) are substituted
by using the Fourier series of Egs. (10) and

(11), respectively. Inthe B, integration, we

set the origin of the observer system to

collocate at the center c; of B, to fully

utilize the degenerate kernel and Fourier
series. By moving the null-field point which
can be much close to the boundary B,

from outside of the domain, a linear

algebraic system is obtained
Vit =[T][{u}, (16)
[L[{t}=[M]{u}, (17)

where [U], [T], [L] and [M] are the

influence matrices with a dimension of
N.(2M +1) by N.2M+1) and {t} and
{u} denote the vectors for t(s) and
u(s) of the Fourier coefficients with a

dimension of N (2M +1) by 1. where, [U],

], L] M, {u}

defined as follows:

and {t} can be

Uoo U01 UON

U, U, - U
[U]:[Uaﬂ]: E1o E11 1N , (18)

UNO UNl UNN

To Tu Ton

T, T, - T
L L e O R T

TNO TNl TNN

Loo L01 : LON

Lo L L,
[(H=ltal=| 2 7 N (20)

I-No LNl LNN
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Moo M01 MON
[M]:[MaﬁJ: N!lo N!n MElN , (21)
MNO MNl MNN
uo to
ul t1
{up=1u . {t}=1t 1, (22)
uN tN

where the vectors {u | and {t} are in the

form of f{a¥ a* b - af bi] and

T -
{ps i o - py oay) 5 the first

subscript “a” («=012.,N) in the [U,,]

denotes the index of the ath circle where
the collocation point is located and the
second subscript “ g (#=0,1,2..,N ) denotes
the index of the pth circle where the

boundary data {u} or {t} are specified.

N is the number of circular holes in the
domain and M indicates the highest
harmonic of truncated terms in Fourier
series. The coefficient matrix of the linear
algebraic system is partitioned into blocks,
and each diagonal block (U, p is no sum)
corresponds to the influence matrices due to
the same circle of collocation and Fourier
expansion.
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Figure 4 Null-field integral equation (x
move to B from DF)
3. Hlustrative Example

Examplel Membrane vibration for a circular
domain with an eccentric circular hole

An eccentric case with radii r, and r,
(r,=0.5,r,=2.0) is considered as shown in
Figure 5. The boundary condition is subject
to the Dirichlet type. Special treatment for
vector decompositions in potential gradient
should be taken care here. Figure 6(a) shows
the minimum singular value versus k where
the drop indicates the possible eigenvalues
by using the singular formulation. Figure 6
(b) shows the minimum singular value
versus k where the drop indicates the
possible  eigenvalues by using the
hypersingular  formulation. Figure 6(c)
shows the minimum singular value versus k
where the drop indicates all the true
eigenvalues by using the Burton & Miller
approach. The present method by using the
singular formulation agree with the
analytical results better than BEM [1] does
where a spurious eigenvalue appears at
k=481 (J,(4.81)=0) instead of 4.83
in BEM. The present method by using the
hypersingular formulation agree with the
analytical solution better than BEM [1] does
where a spurious eigenvalue appears at
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k=00 and3.68 ( J/}(0r)=0 and

J/?(3.68r,) =0) instead of 0.35 and 3.77 in

BEM. The present method is superior to
BEM especially in the low frequency range
and it is more accurate than BEM under the
same number of degree of freedoms. The
spurious eigenvalue was filtered out by
using the Burton and Miller approach [1].
By adopting the truncated Fourier series
(M=10), the first five mode shapes are
compared well with those by FEM and BEM
also shown in Table 1.

(V+EDu(x)=0. xeD

Figure 5 Eigenproblem with an eccentric

domain
(a)
(b)
VA /A\"yg"//\"\(/ \V’\‘l".’\.“ﬁ:/\.\’*
(c) . i”v“ﬁ ~\p{

(€) (5T + £) kernel (Durton & Miller approach)

Figure 6 The minimim singular value o,
versus k f by using the present method
and BEM

Mode | Present method (M=10) BEM[27] FEM[27]

k=295

Table 1 The first five eigenmodes by using
the present method, FEM and BEM.
Example 2 Scattering problem for five
scatters (Dirichlet boundary condition)

Plane wave scattering by five soft circular
cylinders (Dirichlet boundary condition) is
considered in Figure 7. This problem was
solved by using the multiple DtN approach
[2]. Figure 8 shows the contour plots of the
real part of potential for k=~. In Figure 9,
there are no irregular frequencies by using
present method but irregular frequencies
occur by using BEM.
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Figure 7 The palne wave scattering by five
circular cylinders
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Figure 9 The positions of irregular values
using different methods of center circle.
4. Concluding remark

This paper emphasized on interior
eigenproblems  of  multiply-connected
problems and multiple radiators and scatters
by using the null-field integral equation
approach in which degenerate kernels and
Fourier series are employed. A systematic
way to solve the Helmholtz problems with
proposed

successfully in this paper by using the

circular boundaries was

e S EENTIER:Y EP-)

null-field integral equation in conjunction
with degenerate kernels and Fourier series.
Problems were examined to check the
accuracy of the present formulation for
engineering applications including free
vibration of membrane and scattering of
circular obstacles. All the numerical results
were compared with BEM and FEM
solutions. Good agreements were made.
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