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Abstract 

The scattering of water waves by an array of vertical circular cylinders is solved by using the null-field 
integral equations in conjunction with degenerate kernels and Fourier series to avoid calculating the Cauchy 
and Hadamard principal values. In the implementation, the null-field point can be exactly located on the real 
boundary owing to the introduction of degenerate kernels for fundamental solutions. An adaptive observer 
system of polar coordinate is considered to fully employ the property of degenerate kernels. For the 
hypersingular equation, vector decomposition for the radial and tangential gradients is carefully considered. 
This method can be seen as a semi-analytical approach since errors attribute from the truncation of Fourier 
series. Neither hypersingularity in the Burton and Miller approach nor the CHIEF concepts were required to 
deal with the problem of irregular frequencies. Four gains, well-posed model, singularity free, 
boundary-layer effect free and exponential convergence are achieved using the present approach. Numerical 
results are given for the forces and free-surface elevation around the circular boundaries. A general-purpose 
program for water wave impinging several circular cylinders with arbitrary number, radius, and position was 
developed. One example of water wave-structure interaction by an array of four bottom-mounted cylinders 
was demonstrated to see the validity of the present formulation and was compared with those of Linton and 
Evans, and Perrey-Debain et al. 
Keywords: null-field integral equation, degenerate kernel, Fourier series, Helmholtz, radiation, scattering 
 

1. Introduction 
Over the past forty years, several numerical 
methods including finite difference, finite element 
and boundary element methods, were employed to 
solve a wide range of problems in ocean 
engineering. There is considerable interest for 
countries with long coasts, e.g., USA, Japan and 
Taiwan. It is well known that boundary integral 
equation methods have been used to solve 
radiation and scattering problems for many years. 
The importance of the integral equation in the 
solution, both theoretical and practical, for certain 
types of boundary value problems is universally 
recognized. One of the problems frequently 
addressed in BIEM/BEM is the problem of 
irregular frequencies in boundary integral 
formulations for exterior acoustics and water wave 
problems. These frequencies do not represent any 
kind of physical resonance but are due to the 
numerical method, which has non-unique solutions 
at characteristic frequencies associated with the 
eigenfrequency of the interior problem. Burton and 

Miller approach [1] as well as CHIEF technique [2] 
have been employed to deal with these problems.  
  Regarding to the irregular frequency, a large 
amount of papers on acoustics have been published. 
For example, numerical examples for non-uniform 
radiation and scattering problems by using the dual 
BEM were provided and the irregular frequencies 
were easily found [3]. The non-uniqueness of 
radiation and scattering problems are numerically 
manifested in a rank deficiency of the influence 
coefficient matrix in BEM [1]. In order to obtain 
the unique solution, several integral equation 
formulations that provide additional constraints to 
the original system of equations have been 
proposed. Burton and Miller [1] proposed an 
integral equation that was valid for all wave 
numbers by forming a linear combination of the 
singular integral equation and its normal derivative. 
However, the calculation for the hypersingular 
integration is required. To avoid the computation 
of hypersingularity, an alternative method, 
Schenck [2] used the CHIEF method, which 
employs the boundary integral equations by 
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collocating the interior point as an auxiliary 
condition to make up deficient constraint condition. 
Many researchers [4-6] applied the CHIEF method 
to deal with the problem of fictitious frequencies. 
If the chosen point locates on the nodal line of the 
associated interior eigenproblem, then this method 
fails. To overcome this difficulty, Wu and Seybert 
[4, 5] employed a CHIEF-block method using the 
weighted residual formulation for acoustic 
problems. On the contrary, only a few papers on 
water wave can be found. For water wave 
problems, Ohmatsu [7] presented a combined 
integral equation method (CIEM), it was similar to 
the CHIEF-block method for acoustics proposed 
by Wu and Seybert. In the CIEM, two additional 
constraints for one interior point result in an 
overdetermined system to insure the removal of 
irregular frequencies. An enhanced CHIEF method 
was also proposed by Lee and Wu [6]. The main 
concern of the CHIEF method is how many 
numbers of interior points are selected and where 
the positions should be located. Recently, the 
appearance of irregular frequency in the method of 
fundamental solutions was theoretically proved 
and numerically implemented [8]. However, as far 
as the present authors are aware, only a few papers 
have been published to date reporting on the 
efficacy of these methods in radiation and 
scattering problems involving more than one 
vibrating body. For example, Dokumaci and 
Sarigül [9] discussed the fictitious frequency of 
radiation problem of two spheres. They used the 
surface Helmholtz integral equation (SHIE) and 
the CHIEF method to find the position of fictitious 
frequency. In our formulation, we are also 
concerned with the fictitious frequency especially 
for the multiple cylinders of scatters and radiators. 
We may wonder if there is one approach free of 
both Burton and Miller approach and CHIEF 
technique to deal with irregular frequencies. 
  For the problems with circular boundaries, the 
Fourier series expansion method is specially 
suitable to obtain the analytical solution. The 
interaction of water waves with arrays of vertical 
circular cylinders was studied using the dispersion 
relation by Linton and Evans [10]. If the depth 
dependence is removed, it also becomes 
two-dimensional Helmholtz problem in a similar 
way of acoustics. For membrane and plate 
problems, analytical treatments of integral 
equations for circular and annular domains were 
proposed in closed-form expressions for the 
integral in terms of Fourier coefficients by 

Kitahara [11]. Elsherbeni and Hamid [12] used the 
method of moments to solve the scattering problem 
by parallel conducting circular cylinders. They also 
divided the total scattered field into two 
components, namely a noninteraction term and a 
term due to all interactions between the cylinders. 
Chen et al. [3] employed the dual BEM to solve 
the exterior acoustic problems with circular 
boundary. Grote and Kirsch [13] utilized multiple 
Dirichlet to Neumann (DtN) method to solve 
multiple scattering problems of cylinders. DtN 
solution was obtained by combining contributions 
from multiple outgoing wave fields. Degenerate 
kernels were given in the book of Kress [14]. The 
mathematical proof of exponential convergence for 
Helmholtz problems using the Fourier expansion 
was derived in [15]. According to the literature 
review, it is observed that exact solutions for 
boundary value problems are only limited for 
simple cases, e.g. a cylinder radiator and scatter, 
half-plane with a semi-circular canyon, a hole 
under half-plane, two holes in an infinite plate. 
Therefore, proposing a systematic approach for 
solving BVP with circular boundaries of various 
numbers, positions and radii is our goal in this 
article. 
Following the success of our experiences on 
Laplace and biharmonic problems, we extend the 
null-field boundary integral equation method 
(BIEM) to solve the scattering problems of water 
wave across an array of circular cylinders. To fully 
utilize the geometry of circular boundary, not only 
Fourier series for boundary densities as previously 
used by many researchers but also the degenerate 
kernel for fundamental solutions in the present 
formulation is incorporated into the null-field 
integral equation. All the improper boundary 
integrals are free of calculating the principal values 
(Cauchy and Hadamard) in place of series sum. In 
analytically integrating each circular boundary for 
the null-field equation, the adaptive observer 
system of polar coordinate is considered to fully 
employ the property of degenerate kernel. To avoid 
double integration in the Galerkin sense, point 
collocation approach is considered. Free of 
worrying how to choose the collocation points, 
uniform collocation along the circular boundary 
yields a well-posed matrix. For the hypersingular 
equation, vector decomposition for the radial and 
tangential gradients is carefully considered, 
especially for the eccentric case. Finally, problem 
of water wave-structure interaction by an array of 
four bottom-mounted cylinders was solved to 
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demonstrate the validity of the present method. 
The results are compared with those of the 
analytical solution derived by Linton and Evan 
[10], and numerical solution of plane wave BEM 
by Perrey-Debain et al. [16]. 
 

2. Problem statement and integral 
formulation 

2.1 Problem statement 
Based on the linear water wave theory, there exists 
a velocity potential ),,,( tzyxΦ  where ),( yx  
in plane and z is the vertical direction. Now we 
assume N vertical cylinders mounted at hz −=  
upward to the free surface as shown in Figure 1. 
The governing equation of the water 

 
Figure 1 Problem statement of water waves with 

an array of vertical cylinders 
 
wave problem is the Laplace equation 

Dzyxtzyx ∈=Φ∇ ),,(,0);,,(2 . (1)
Using the technique of separation variable for 
space and time, we have 

})(),(Re{),,,( tiezfyxtzyx ωφ −=Φ , (2)
where 
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to satisfy boundary conditions of seabed and 
free-surface conditions as shown below:  
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Substituting Eq.(2) into Eq.(1), we have 
Dyxyxk ∈=+∇ ),(,0),()( 22 φ , (6)

where 2∇ , k and D are the Laplacian operator, the 
wave number, and the domain of interest, 
respectively. Rigid cylinders yield the Neumann 
boundary conditions as shown below: 
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The dispersion relation is shown below: 
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The free surface elevation is defined by 
}),(Re{),,( tieyxtyxH ωη −=  (9)

where 
),(),( yxAyx φη =  (10)

in which A represents the amplitude of incident 
wave of angle β  as shown below: 
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The dynamic pressure can be obtained by 
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The two components of the first-order force jX  
on the jth cylinder is given by integrating the 
pressure over the circular boundary as shown 
below: 
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where aj denotes the radius of the jth cylinder. 
 
2.2 Dual boundary integral formulation 
Based on the dual boundary integral formulation of 
the domain point [17], we have 
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where s and x are the source and field points, 
respectively, B is the boundary. Equations (14) and 
(15) are quite different from the conventional 
formulation since they are valid not only for the 
point in the domain D  but also for the boundary 
points if the kernels are properly expressed as the 
interior (superscript I) degenerate kernels. The set 
of x in Eqs.(14) and (15) is closed since 

BDx ∪∈ . The flux t(s) is the directional 
derivative of u(s) along the outer normal direction 
at s. For the interior point, t(x) is artificially 
defined. For example, 1)()( xut ∂∂= xx , if 

)0,1(=n  and 2)()( xut ∂∂= xx , if )1,0(=n  
where ),( 21 xx  is the coordinate of the field point 
x. The U(s,x), T(s,x), L(s,x) and M(s,x) represent 
the four kernel functions [3] 
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where )()()()1( kriYkrJkrH nnn +=  is the n-th 
order Hankel function of the first kind, nJ  is the 
Bessel function, nY  is the modified Bessel 

function, sx −=r , iii xsy −= , 12 −=i , in  

and in  are the i-th components of the outer 
normal vectors at s and x, respectively. Equations 
(14) and (15) are referred to singular and 
hypersingular boundary integral equations (BIEs), 
respectively. 
 

2.3 Null-field integral formulation in 
conjunction with the degenerate kernel and 
Fourier series 

 
By collocating x outside the domain ( cD∈x , 
complementary domain), we obtain the null-field 
integral equations as shown below [18]: 
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where the collocation point x can locate on the 
outside of the domain as well as B if kernels are 
substituted into proper exterior (superscript, E) 
degenerate kernels. Since degenerate kernels can 
describe the fundamental solutions in two regions 
(interior and exterior domains), the BIE for the 
domain point of Eqs.(14) and (15) and null-field 
BIE of Eqs.(20) and (21) can include the boundary 
point. In real implementation, the null-field point 
can be pushed on the real boundary since we 
introduce the expression of degenerate kernel for 
fundamental solutions. By using the polar 
coordinate, we can express ),( φρ=x and 

),( θR=s . The four kernels U, T, L and M can be 
expressed in terms of degenerate kernels as shown 
below [3]: 
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where mε  is the Neumann factor 
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Mathematically speaking, the expressions of 
fundamental solutions in Eqs.(22)-(26) are termed 
degenerate kernels (or separable kernels) which can 
expand to sums of products of function of the field 
point x alone by functions of the source point s 
alone. If the finite sum of series is considered, the 
kernel is finite rank. As we shall see in the later 
sections, the theory of boundary integral equations 
with degenerate kernel is nothing more than the 
linear algebra. Since the potentials resulted from 
T(s,x) and L(s,x) are discontinuous across the 
boundary, the potentials of T(s,x) and L(s,x) for 

+→ ρR  and −→ ρR  are different. This is the 
reason why ρ=R  is not included in the 
expression for the degenerate kernels of T(s,x) and 
L(s,x). The degenerate kernels simply serve as the 
means to evaluate regular integrals analytically and 
take the limits analytically. The reason is that 
Eqs.(14) and (20) yield the same algebraic equation 
when the limit is taken from the inside or from the 
outside of the region. Both limits represent the same 
algebraic equation that is an approximate 
counterpart of the boundary integral equation, that 
for the case of a smooth boundary has in the 
left-hand side term πu(x) or πt(x) rather than 2πu(x) 
or 2πt(x) for the domain point or 0 for the point 
outside the domain. Besides, the limiting case to the 
boundary is also addressed. The continuous and 
jump behavior across the boundary is well captured 
by the Wronskian property of Bessel function mJ  
and mY  bases 

kR
kRJkRYkRJkRY

kRYkRJW

mmmm

mm

π
2)()()()(

))(),((

=′−′=
 (27)

as shown below 
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where TI and TE are the interior and exterior 
expressions for the T kernel in the degenerate form. 
After employing Eqs.(28) and (29), Eq.(14) and 
Eq.(20) yield the same linear algebraic equation 

when x is exactly pushed on the boundary from the 
domain or the complementing domain. A proof for 
the Laplace case can be found [18]. 
  In order to fully utilize the geometry of circular 
boundary, the potential u(s) and its normal flux t(s) 
can be approximated by employing the Fourier 
series. Therefore, we obtain 
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where 0a , na , nb , 0p , np  and nq  are the 
Fourier coefficients and θ  is the polar angle 
which is equally discretized. Equations (20) and (21) 
can be easily calculated by employing the 
orthogonal property of Fourier series. In the real 
computation, only the finite P terms are used in the 
summation of Eqs.(30) and (31). 
 
2.4 Adaptive observer system 
  Since the boundary integral equations are frame 
indifferent, i.e. rule of objectivity is obeyed. 
Adaptive observer system is chosen to fully employ 
the property of degenerate kernels. Figure 2 shows 
the boundary integration for the circular boundaries. 
It is worthy noted that the origin of the observer 
system can be adaptively located on the center of 
the corresponding circle under integration to fully 
utilize the geometry of circular boundary. The 
dummy variable in the integration on the circular 
boundary is just the angle (θ ) instead of the radial 
coordinate (R). By using the adaptive system, all 
 

 
Figure 2 The adaptive observer system 

the boundary integrals can be determined 
analytically free of principal value. 
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2.5 Vector decomposition technique for the 
potential gradient in the hypersingular 
formulation 

Since hypersingular equation plays an important 
role for dealing with fictitious frequencies, potential 
gradient of the field quantity is required to calculate. 
For the eccentric case, the field point and source 
point may not locate on the circular boundaries with 
the same center except the two points on the same 
circular boundary or on the annular cases. Special 
treatment for the normal derivative should be taken 
care. As shown in Figure 3 where the origins of 
observer system are different, 
 

 
Figure 3 Vector decomposition technique for the 
potential gradient in the hypersingular equation 
 
the true normal direction 1̂e  with respect to the 
collocation point x on the Bj boundary should be 
superimposed by using the radial direction 3ê  and 
angular direction 4ê . We call this treatment “vector 
decomposition technique”. According to the 
concept, Eqs.(24) and (25) can be modified as 
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2.6 Linear Algebraic Equation 
  In order to calculate the 2P+1 unknown Fourier 
coefficients, 2P+1 boundary points on each circular 
boundary are needed to be collocated. By 
collocating the null-field point exactly on the kth 
circular boundary for Eqs.(20) and (21) as shown in 
Figure 2, we have 
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where N is the number of circles. It is noted 
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that the path is anticlockwise for the outer 
circle. Otherwise, it is clockwise. For the Bj 
integral of the circular boundary, the kernels of 
U(s,x), T(s,x), L(s,x) and M(s,x) are 
respectively expressed in terms of degenerate 
kernels of Eqs. (22), (23), (32) and (33) with 
respect to the observer origin at the center of Bj. 
The boundary densities of u(s) and t(s) are 
substituted by using the Fourier series of Eqs. 
(30) and (31), respectively. In the Bj integration, 
we set the origin of the observer system to 
collocate at the center cj of Bj to fully utilize the 
degenerate kernel and Fourier series. By 
locating the null-field point on the real 
boundary Bk from outside of the domain DE in 
numerical implementation, a linear algebraic 
system is obtained 

}]{[}]{[ uTtU = , (36)
}]{[}]{[ uMtL = , (37)

where [U], [T], [L] and [M] are the influence 
matrices with a dimension of )12( +× PN  by 

)12( +× PN , and {t} and {u} denote the vectors 
for t(s) and u(s) of the Fourier coefficients with 
a dimension of )12( +× PN  by 1, in which, [U], 
[T], [L], [M], {u} and {t} can be defined as 
follows: 
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where the vectors {uk} and {tk} are in the form of 
Tk

p
k
p

kkk babaa }{ 110 Λ and Tk
p

k
p

kkk qpqpp }{ 110 Λ ; 
the first subscript “α ” (α =1, 2, …, N ) in the 

][ αβU denotes the index of the thα  circle  where 
the collocation point is located and the second 
subscript “β ” (β =1, 2, …, N ) denotes the index 
of the thβ  circle where the boundary data {uk} or 
{tk} are specified. The number of circular holes is N 
and the highest harmonic of truncated terms is P. 
The coefficient matrix of the linear algebraic 
system is partitioned into blocks, and each diagonal 
block (Upp) corresponds to the influence matrices 
due to the same circle of collocation and Fourier 
expansion. After uniformly collocating the point 
along the thα  circular boundary, the sub-matrix 
can be written as 
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It is noted that the superscript “0s” in Eq.(29) 
disappears since 0)0sin( =θ , and the element of 

][ αβU , ][ αβT , ][ αβL  and ][ αβM  are defined 
as 

∫=
kB kkkmk

nc dRnxsUU θθαβ )cos(),( , (47)

∫=
kB kkkmk

ns dRnxsUU θθαβ )sin(),( , (48)

∫=
kB kkkmk

nc dRnxsTT θθαβ )cos(),( , (49)

∫=
kB kkkmk

ns dRnxsTT θθαβ )sin(),( , (50)

∫=
kB kkkmk

nc dRnxsLL θθαβ )cos(),( , (51)

∫=
kB kkkmk

ns dRnxsLL θθαβ )sin(),( , (52)

∫=
kB kkkmk

nc dRnxsMM θθαβ )cos(),( , (53)

∫=
kB kkkmk

ns dRnxsMM θθαβ )sin(),( , (54)

where Pn ,,2,1 Λ= , mφ ( 12,,2,1 += Pn Λ ) 
is the polar angle of the collocating points xm along 
the boundary. After obtaining the unknown Fourier 
coefficients, the origin of observer system is set to 
cj in the Bj integration as shown in Figure 4 to 
obtain the interior potential by employing Eq.(14). 

The flowchart of the present method is shown in 
Figure 5. 

 
Figure 4 Sketch of the boundary integral 

equation for the domain point 
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Figure 5 Flowchart of the present method 
3. An example: water wave impinging four 
cylinders 

In this example, we consider water wave structure 
problem by an array of four bottom-mounted 
vertical rigid circular cylinders with the same radius 
a located at the vertices of a square (-b,-b), (-b,b), 
(b,-b), (b,b), respectively, as shown in Figure 6. 
Consider the incident wave in the direction of 45 
degrees. The first-order force for four cylinders in 
the direction of the incident wave 
 

 
Figure 6 Interaction of an incident water wave 

with four cylinders 
 

 
Figure 7 The first-order force for four cylinders 

in the direction of the incident wave [16] 

0 2 4 6 8 10
ka

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f(j)

Cylinder 1
Cylinder 2
Cylinder 3
Cylinder 4

 
Figure 8 The first-order force for four cylinders 

using the proposed method 
 

determined by Perrey-Debain et al. is shown in 
Figure 7 and the result of the present method is 

shown in Figure 8. It is found that the force effect 
on cylinder 2 and cylinder 4 is identical as expected 
due to symmetry. After comparing with the result of 
Perrey-Debain et al., good agreement is made. The 

maximum free-surface elevation amplitude is 
plotted in Figure 9. It agrees well with that of the 
plane wave BEM by Perrey-Debain et al. [16].  
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Table 1 Potential (φ ) at the north pole of each cylinder (ka = 1.7) 
 Present method Perrey-Debain et al. [16] Linton and Evan [10] 
Cylinder 1 -2.418395851 + i 0.753719467 -2.418395682 + i 0.753719398 -2.418395683 + i 0.753719398
Cylinder 2 2.328927362 – i 0.310367580 2.328927403 – i 0.310367705 2.328927400 – i 0.310367707 
Cylinder 3 0.350612027 – i 0.198852116i 0.350611956 – i 0.198852086 0.350611956 – i 0.198852086 
Cylinder 4 -0.383803194 + i 1.292792513i -0.383803273 + i 1.292792457 -0.383803272 + i 1.292792455
 

 
Figure 9 Contour of the maximum free-surface 

elevation amplitude 
 
Also, the results of potentials at the north pole of 
each cylinder are also compared well with the 
approximate series given by Linton and Evans [10] 
and the BEM data by Perrey-Debain et al. [16] as 
shown in Table 1. The existence of the irregular 
frequencies is also examined. Figure 10 is shown 
the absolute value of the potential at the north pole 
on the Cylinder 4 versus the parameter ka. It is 
found that the irregular frequency does not occur. In 
the present approach, neither the Burton and Miller 
approach nor the CHIEF concepts were required to 
deal with the problem of irregular frequencies. 
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(1.7, 1.348561)

Figure 10 Absolute value of potential at the 
north pole versus the parameter ka 

 
4. Conclusions 

For the water wave scattering problems with 
circular cylinders, we have proposed a BIEM 
formulation by using degenerate kernels, null-field 
integral equation and Fourier series in companion 
with adaptive observer systems and vector 
decomposition. This method is a semi-analytical 
approach for Helmholtz problems with circular 
boundaries since only truncation error in the Fourier 
series is involved. The method shows great 
generality and versatility for the problems with 
multiple cylinders of arbitrary radii and positions. 
Fictitious frequencies do not appear in the 
formulation. Not only the maximum free-surface 
elevation amplitude but also the first order force 
was calculated. A general-purpose program for 
solving water wave problem by arbitrary number, 
size and various locations of cylinders was 
developed. The results were compared well with the 
approximate series solution of Linton and Evans 
and the plane wave BEM data by Perrey-Debain et 
al. 
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