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 Abstract 

In this thesis, we derive the Green’s function for Laplace and Helmholtz problems 

with circular apertures and/or inclusions subjected to the Dirichlet, Neumann, mixed 

and imperfect-interface boundary conditions by using the null-field integral equation 

approach in conjunction with degenerate kernels, Fourier series and the adaptive 

observer system. After exactly collocating points on each real circular boundary to 

satisfy the boundary conditions, a linear algebraic system is obtained. Then unknown 

coefficients can be easily determined. Five advantages: (1) mesh-free generation (2) 

well-posed model, (3) principal value free (4) elimination of boundary-layer effect (5) 

exponential convergence, are achieved. Finally, several examples, including the 

eccentric case, half-plane Laplace problems with circular apertures and inclusions, 

and anti-plane dynamic Green’s function for several circular inclusions problems, 

were demonstrated to see the validity of the present formulation and match well with 

available solutions in the literature. Besides, parameter study of wave number and 

interface constant is done. Special cases of cavity and ideal bonding are also 

examined. A general-purpose program for deriving the Green’s function of Laplace or 

Helmholtz problems with arbitrary number of circular apertures and/or inclusions of 

arbitrary radii and various positions involving the Dirichlet or the Neumann or mixed 

boundary condition was developed. 

 

Keyword: degenerate kernel, Fourier series, null-field approach, inclusion, anti-plane, 

Green’s function, imperfect, Laplace or Helmholtz problems, imperfect-interface 
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中文摘要 

本文係使用零場積分方程搭配分離核函數、傅立葉級數與自適性座標系統推導含

圓孔洞和/或置入物 Dirichlet、Neumann、混合型或非理想界面邊界條件之格林

函數。然後經由佈點於每個真實圓邊界上，在滿足邊界條件後可由所得的線性代

數系統輕易地解出未知係數。此方法有五大優勢 (1) 無需網格；(2) 良態模式；

(3) 無需主值計算；(4) 無邊界層效應；(5) 指數收歛。 最後，偏心圓、半平

面含多個置入物之靜、動力格林函數被用來驗證此方法的正確性。靜力格林函數

與單置入物之動力格林函數分別和 Melnikov 與 Wang 及 Sudak 結果比較，獲得

滿意的結果。除此之外，界面常數與波數的參數也進行探討。其中圓孔洞和理想

界面亦可視為本文的特例。我們並發展一套程式可求解含任意數目、不同大小與

位置的圓孔洞和/或置入物 Dirichlet、Neumann、混合型邊界條件之拉普拉斯或

赫姆茲方程的格林函數。 

 

關鍵字：分離核函數、傅立葉級數、零場積分方程、置入物、反平面、格林函數、

拉普拉斯或赫姆茲問題、非理想界面。 
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Chapter 1 Introduction 

1.1 Overview of BEM and motivation 

For many problems involving complicated geometry shape, initial condition or 

boundary condition, numerical solutions are generally required in engineering 

applications. Researchers and scholars mainly proposed several numerical methods as 

shown in the Table 1-1, e.g., boundary element method (BEM), finite element method 

(FEM), finite difference method (FDM). FDM approximates the derivatives in the 

differential equations which govern each problem using some types of truncated 

Taylor expansion and thus express them in terms of the values at a number of discrete 

mesh points. FDM has main difficulties of the technique in the consideration of 

curved geometries and the application of boundary condition. For the case of general 

boundaries, the regular finite difference grid is unable to accurately reproduce the 

geometry of the problem. In the past decade, FEM has been widely applied to carry 

out many engineering problems. FEM utilizes a weighted residual method of the 

minimum potential energy theorem. The disadvantages of FEM are inconvenient in 

modeling infinite regions, moving boundary problems, concentrated load and dealing 

with quantities of data, especially for three-dimensional problems. BEM was 

developed as a response to the above difficulties. The method requires only 

discretization of the boundary thus reducing the quantity of data in numerical 

implementation. BEM is suitable for the general boundaries regardless of the 

dimensionality of the problem. Because of the problem formulation in terms of 

fundamental solutions, discontinuities and singularities can be modeled without 

special difficulties. There are also no difficulty for free and moving boundaries. 

Another important advantage of the method is that it can deal with problems 

extending to infinity without having to truncate the domain at a finite distance. The 

integral equation was introduced by Fredholm in 1903. The origin of the boundary 

element method can be traced to the work carried out by some groups of researchers 

in the 1960’s on the applications of boundary integral equations to potential flow and 

stress analysis problems. In the 1960 period, the BEM was utilized to solve 2-D 

elasticity by Rizzo [Rizzo (1967)] and 2-D elastodynamics problem by Cruse and 
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Rizzo [Cruse and Rizzo (1968)], respectively. In 1978, the first book on boundary 

elements in its title was published [Brebbia (1978)], and the first international 

conference on the topic was organized. From 1978 to 1986, the mathematical 

foundation of BEM is the singular integral equation with Cauchy kernel. In order to 

solve the boundary value problem with degenerate boundaries, Hong and Chen [Hong 

and Chen (1988)] introduced the dual BEM with hypersingularity. Another break 

through of BEM is the introduction of degenerate kernels which makes fast multipole 

BEM possible. A brief history of BEM is shown in Figure 1-1. Although the study of 

BEM has been popular for solving engineering problems, five critical issues are of 

concern. 

(1) Treatment of weak, strong and hypersingular singularity 

Singularity of BEM appears when the source and response points coincide. One 

way is to face the singularity. First, Guiggiani [Guiggiani (1995)] has derived the 

free terms for Laplace and Navier equations using differential geometry and bump 

contour approach in Figure 1-2(a). Second, Gray and Manne [Gray and Manne 

(1993)] have employed a limiting process to ensure a finite value from an interior 

point to boundary by using a symbolic software in Figure 1-2(b). On the other 

hand, many scholars proposed several skills to regularize singularity. Achenbach 

et al. [Achenbach, Kechter and Xu (1988)] proposed the off-boundary approach 

in order to overcome the fictitious frequencies free of singularity and Waterman 

used null-field approach to deal with the singularity. Although, fictitious BEM or 

null-field approach can avoid the singularity, but they result in an ill-posed matrix 

which will be elaborated on later. 

(2) Ill-posed model 

In order to avoid directly calculating the singular and hypersingular integrals, two 

approaches, null-field approach or fictitious BEM [Achenbach, Kechter and Xu 

(1988)], have been used. However, they result in an ill-conditioned matrix. The 

influence matrix is not diagonally dominated and needs preconditioning. To 

approach the fictitious boundary to the real boundary or to move the null-field 

point to the real boundary can make the system well-posed. However, singularity 

occurs. In the thesis, we may wonder whether it is possible to push the null-field 
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point on the real boundary but free of calculating singularity and hypersingularity. 

The answer is yes. Instead of determining the singular (hypersingular) integrals 

using the definition of CPV (HPV), the kernel function is described in an 

analytical form for interior and exterior potentials by employing the separable 

technique since the double-layer potential is discontinuous behavior when across 

the boundary. Therefore, degenerate kernels, namely separable kernels, are 

employed to represent the potential of the perforated domain which satisfies the 

governing equation. 

(3) Boundary-layer effect 

Boundary-layer effect in BEM occurs when the collocation point approaches near 

the boundary. Kisu and Kawahara [Kisu and Kawahara (1988)] proposed a 

concept of relative quantity to eliminate the boundary-layer effect. Chen and 

Hong in Taiwan [Chen and Hong (1994)] as well as Chen et al. in China [Chen, 

Lu and Schnack (2001)] independently extended the idea of relative quantity to 

two regularization techniques which the boundary densities are subtracted by 

constant and linear terms. For the stress calculation, Sladek et al. [Sladek and 

Sladek (1991)] used a regularized version of the stress boundary integral equation 

(σ BEM) to compute the correct values of stresses close to the boundary. Others 

proposed a regularization of the integrand by using variable transformations. For 

example, Telles [Telles (1987)] used a cubic transformation such that its Jacobian 

is minimum at the point on the boundary close to the collocation point and can 

smooth the integrand. Similarly, Huang and Cruse [Huang and Cruse (1993)] 

proposed rational transformations which regularized the nearly singular integrals. 

We concern how to develop a BIEM formulation free of boundaries-layer effect.  

(4) Convergence rate 

How to speed up the convergence rate is an important issue for numerical 

methods. The different boundary shape has different interpolation function for 

boundary densities. Fourier series for circular boundary, spherical harmonic 

function for surface of sphere, Methieu function for the boundary densities of 

elliptic boundaries and Legendre polynomials for the boundary densities on the 

regular and degenerate straight boundaries were incorporated into BEM, 
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respectively. Regarding to constant, linear and quadratic elements, the 

discretization scheme does not take the special geometry into consideration.  It 

results in the slow convergence rate about these geometry. Figure 1-3 shows 

randomly distributed apertures and/or inclusions with square, elliptic and circular 

shapes, etc. Bird and Steele [Bird (1992); Bird and Steele (1991); Bird and Steele 

(1992)] presented a Fourier series procedure to solve circular plate problems 

containing multiple circular apertures in a similar way of Trefftz method by 

adopting the interior and exterior T-complete sets. The T-complete function can 

be found in the degenerate kernels of fundamental solution [Chen, Wu, Lee and 

Chen (2007)]. Barone and Caulk [Barone and Caulk (1981, 1982, 1985, 2000); 

Caulk (1983, 1983, 1983, 1984)] have solved the boundary potential and its 

normal derivative of Laplace problem by using Fourier series on each aperture in 

two-dimensional region with circular apertures by using the special boundary 

integral equations. Crouch and Mogilevskaya [Crouch and Mogilevskaya (2003)] 

utilized Somigliana's formula and Fourier series for elasticity problems with 

circular boundaries. Mogilevskaya and Crouch [Mogilevskaya and Crouch (2001)] 

have solved the problem of an infinite plane containing arbitrary number of 

circular inclusions based on the complex singular integral equation. In their 

analysis procedure, the unknown tractions are approximated by using complex 

Fourier series. However, for calculating an integral over a circular boundary, they 

didn’t express the fundamental solution using the local polar coordinate. However, 

they didn’t employ the null-field integral equation and degenerate kernels to fully 

capture the circular boundary, although they all employed Fourier series 

expansion. Kress has proved that the exponential convergence instead of the 

algebraic convergence in the BEM can be achieved by using the degenerate 

kernels and Fourier expansion [Kress (1989)]. This thesis will take advantage of 

this higher rate of exponential convergence to derive the Green’s function for 

problems with circular boundaries by using Fourier series in conjunction with 

degenerate kernels. 

(5) Mesh generation 

Although BEM is free of domain discretization, boundary mesh generation is also 
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required since collocation point is on the boundary. We introduce the generalized 

Fourier coefficients for problems with circular boundaries. In Figure 1-4, domain 

type methods, FEM and FDM, have been widely used to solve the engineering 

problem. Boundary type methods, BEM, MFS and Trefftz method have received 

more attention in the recent years. In analogy of clinical medicine, FEM behaves 

like operation, BEM is similar to diagnosis by feeling the pulse and boundary 

collocation method behaves like acupuncture and moxibustion [Chen and Lee 

(2007)]. 

In this thesis, we focus on the Green’s function for problems with circular apertures 

and/or inclusions since the fundamental solutions can be expanded into separable 

forms in the polar coordinate. Chen and Weng [Chen and Weng (2001)] have 

introduced the conformal mapping with a Laurent series expansion to analyze the 

Saint-Venant torsion of a circular compound bar with an imperfect interface. Lebedev 

et al. [Lebedev, Skalskaya and Uflyand (1979)] solved the problem by using the 

bipolar coordinate. Recently, Honein et al. [Honein, Honein and Herrmann (1992)] 

have investigated the harmonic problem with two circular inclusions by using the 

Mobius transformation. To fully capture the geometry of circular boundary, the 

fundamental solution and boundary densities are expanded into the degenerate form 

and Fourier series in the polar coordinate, respectively. Five advantages are obtained, 

(1) singularity free, (2) boundary-layer effect free, (3) exponential convergence, (4) 

well-posed model, (5) mesh-free generation. In the recent three years, Chen [Chen 

(2005)] and his coworkers applied the null-field integral formulation, Fourier series 

and degenerate kernels to solve Laplace [Chen, Shen and Wu (2005); Chen, Shen and 

Chen (2006); Chen and Wu (2006); Chen and Wu (2007); Shen, Chen and Chen 

(2005)], Helmholtz [Chen (2005); Chen, Chen and Chen (2005); Chen, Chen and 

Chen (2005)], biHelmholtz and biharmonic [Chen, Hsiao and Leu (2006)] problems 

with circular apertures. Exponential convergence by using their methods was 

achieved as demonstrated by Hsiao [Hsiao (2005)] in Figure 1-5. Then, Chen and Wu 

have developed this approach to solve inclusion problems in their theses. The 

boundary-layer effect is eliminated by using the null-field integral equation. A 

demonstration to eliminate the boundary-layer effect is shown in Figure 1-6 which 
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was done by Wu [Wu (2006)]. In mathematics, Green’s function is important to solve 

the ordinary and partial differential equations [Kellogg (1953); Bergman and Schiffer 

(1953); Morse and Fechbach (1953); Courant and Hilbert (1962); Melnikov (1977); 

Roach (1982)]. Analytical Green’s function have been presented for only a few simple 

configurations, Boley [Boley (1956)] analytically constructed the Green’s function by 

using the successive approximation. Adewale [Adewale (2006)] proposed an 

analytical solution for an annular plate subjected to a concentrated load. Numerical 

Green’s function has received attention by many researchers [Telles, Castor and 

Guimaraes (1995); Guimaraes and Telles (2000); Ang and Telles (2004)]. Melnikov 

[Melnikov (1982, 1995); Melnikov and Melnikov (2001)] utilized the method of 

modified potentials (MMP) to solve boundary value problems from various areas of 

computational mechanics. Later, Melnikov [Melnikov and Melnikov (2006)] studied 

in computing Green’s functions and matrices of Green’s type for mixed boundary 

value problems stated on 2-D regions of irregular configuration. For the different field 

problems, dynamic Green’s functions for time-harmonic problems [Kitahara (1985); 

Denda, Wang and Yong (2003); Denda, Araki and Yong (2004)], piezoelectricity 

problems [Wang and Zhong (2003); Chen and Wu (2006)], and scattering problems in 

elastodynamics [Willis (1980a, b); Talbot and Willis (1983)] have been solved by 

using BEM. Following the experiences of previous investigators and the success of 

Chen’s group using null field integral formulation, the null-field approach will be 

extended to derive Green’s function for Laplace and Helmholtz equations with 

multiple circular apertures and/or inclusions subjected to the Dirichlet, Neumann, 

mixed and imperfect interface boundary conditions, respectively. We will revisit the 

dynamic Green’s function for the imperfect interface by Wang and Sudak [Wang and 

Sudak (2007)]. 

1.2 Organization of the thesis 

The frame of the thesis is shown in Figure 1-7. In this thesis, the null-field integral 

equations in conjunction with degenerate kernels and Fourier series, namely the 

null-filed integral equation approach, are utilized to derive the Green’s function with 

circular apertures and/or inclusions. The organization of each chapter is summarized 
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below: 

In the chapter 2, we introduce the formulation of null-filed integral equation and 

construct the Green’s function of Laplace problems. To fully utilize the geometry of 

circular boundary, Fourier series for boundary densities, degenerate kernels for 

fundamental solutions and the adaptive observer system will be incorporated into the 

null-field integral equation. A linear algebraic system is obtained after collocating 

points on each circular boundary and satisfying the boundary conditions. The 

unknown coefficients in the algebraic system can be determined easily. It is 

straightforward to obtain the field solution by substituting the unknown coefficients to 

integral equation for domain point. For solving the potential gradient by using the 

hypersingular equation, vector decomposition should be considered. Furthermore, the 

derivation of Green’s function for 2-D Laplace problem containing circular apertures 

or inclusions is the main concern. Green’s functions for eccentric or half-plane 

problems with a circular hole as well as an aperture and a semi-circular inclusion are 

found. The results of eccentric case and half-plane problems with a circular aperture 

or an aperture and a semi-circular inclusion are compared with those by Melnikov. 

In the chapter 3, we focus on the applications in deriving the anti-plane dynamic 

Green’s function of the Helmholtz equation for several circular inclusions with 

imperfect interfaces. Not only special cases of cavity and ideal bonding but also 

parameter study of wave number and interface constant are considered. Numerical 

examples were given to test our programs and some results were compared with those 

of Wang and Sudak to verify the validity of our formulation. 

In the chapter 4, we draw out some conclusions item by item and reveal some further 

topics. 
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Chapter 2 Construction of Green’s function using the 
null-field integral approach for Laplace problems 

with circular boundaries 

Summary 

A null-field integral approach is employed to derive the Green’s function for boundary 

value problems stated for the Laplace equation with circular boundaries. The kernel 

function and boundary density are expanded by using the degenerate kernel and 

Fourier series, respectively. Not only an eccentric ring but also a half-plane problems 

with a circular aperture subject to Dirichlet or Robin boundary condition are 

demonstrated to verify the validity of the present approach. Besides, a half-plane 

problem with a circular aperture as well as a semi-circular inclusion is solved. Good 

agreement is made after comparing with the Melnikov’s results. 

2.1 Introduction 

Mathematicians as well as engineers have studied Green’s function in many fields 

[Jaswon and Symm (1977); Melnikov (1977)]. But, only a few of simple regions 

allow a closed-form Green’s function for Laplace equation. For example, one aperture 

or circular sector in half-plane, infinite strip, semi-strip or infinite wedge are mapped 

by elementary analytic functions, making their Green’s function expressed in a closed 

form. A closed-form Green’s function of Laplace equation by using the mapping 

function becomes impossible for complicated domain except for the annular case. 

Numerical Green’s function has received attention from BEM researchers by Telles et 

al. [Telles, Castor and Guimaraes (1995); Guimaraes and Telles (2000); Ang and 

Telles (2004)]. Melnikov [Melnikov (1982), (1995); Melnikov and Melnikov (2001)] 

utilized the method of modified potentials (MMP) to solve boundary value problems 

from various areas of computational mechanics. Later, Melnikov [Melnikov and 

Melnikov (2006)] studied in computing Green’s functions and matrices of Green’s 

type for mixed boundary value problems stated on 2-D regions of irregular 

configuration. For the image method, Thompson [Thomson (1848)] proposed the 

concept of reciprocal radii to find the image source to satisfy the homogeneous 
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Dirichlet boundary condition. Chen and Wu [Chen and Wu (2006)] proposed an 

alternative way to find the location of image through the degenerate kernel. In this 

chapter, we will construct the Green’s function of multiply connected domain by 

using the null-field integral equation. Green’s function for eccentric case and 

half-plane problems with a circular hole or an aperture as well as a semi-circular 

inclusion are solved semi-analytically and match well with Melnikov’ results. 

2.2 Formulation of null-field integral equation 

The null-field integral equation combining degenerate kernels of the fundamental 

solution and Fourier series of boundary densities is utilized to solve problems with 

circular apertures and/or inclusions. An adaptive observer system is addressed to fully 

employ the property of degenerate kernels for circular boundaries. After exactly 

collocating points on each real circular boundary to satisfy the boundary conditions, a 

linear algebraic system is obtained. How to use the hypersingular equation and match 

of interface conditions is also introduced for multiply-connected problems in this 

formulation. 

2.2.1 Dual boundary integral equations and dual null-field integral equations 

Considering the problem with N  randomly distributed circular cavities and/or 

inclusions bounded in the domain D  and enclosed with the boundaries, kB  

( 0,1, 2, ,k N= " ) as shown in Figure 2-1. We define 

0

N

k
k

B B
=

=∪  (2-1) 

In mathematical physics, many engineering problems subjected to the concentrated 

source satisfy 
2 ( , ) ( ),G x x x Dξ δ ξ∇ = − ∈  (2-2) 

where ( , )G x ξ  is the Green’s function and can be seen as the potential, 2∇  

indicates the Laplacian operator, ( )xδ ξ−  denotes the Dirac-delta function of source 

at ξ  and D  is the domain of interest. Based on the dual boundary integral 

formulation for the domain point, we have 
( , )2 ( , ) ( , ) ( , ) ( ) ( , ) ( ) ( , )

sB B

G sG x T s x G s dB s U s x dB s U x
n
ξπ ξ ξ ξ∂= − +

∂∫ ∫  

                                                                                                        , x D∈  
(2-3) 
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x

( , ) ( , )2 (s, x) ( , ) (s) (s, x) (s) ( , )
n B B

s

G x G sM G s dB L dB L x
n

ξ ξπ ξ ξ∂= − +
∂ ∂∫ ∫  

                                                                                                      , x D∈  
(2-4) 

where s  and x  are the source and field points, respectively, B  is the boundary, 

xn  and sn  denote the outward normal vector at field point x  and source point s  

and the kernel function ( , ) lnU s x r=  is the fundamental solution which satisfies 
2 (s, x) 2 (x s)U πδ∇ = − , (2-5) 

The other kernel functions, (s, x)T , (s, x)L  and (s, x)M , are defined by 

s

(s,x)(s,x)
n

UT ∂≡
∂

, 
x

(s, x)(s,x)
n

UL ∂≡
∂

, 
2

s x

(s, x)(s,x)
n n
UM ∂≡

∂ ∂
 (2-6) 

By collocating the field point x  outside the domain (including boundary), the 

null-field integral equations yield 
( , )0 (s, x) ( , ) (s) (s, x) (s) ( , ), x c

B B
s

G sT G s dB U dB U x D
n
ξξ ξ∂= − + ∈

∂∫ ∫  (2-7) 

( , )0 (s, x) ( , ) (s) (s, x) (s) ( , )
B B

s

G sM G s dB L dB L x
n
ξξ ξ∂= − +

∂∫ ∫ , x cD∈  (2-8) 

where cD  is the complementary domain. By using the degenerate kernels, the BIE 

for the “boundary point” can be easily derived through the null-field integral equation 

by exactly collocating x  on B  in Eq. (2-7) [Chen, Shen and Chen (2006)]. All the 

singular integrals disappear in the present formulation since that the potential across 

the boundary can be explicitly determined in both sides by using degenerate kernels 

as shown in the Table 2-1. Mathematically speaking, our domain is a closed set 

( )D B∪ , instead of the open set ( )D only  of the conventional method. 

2.2.2 Expansion of kernel function and boundary density 

Based on the separable property, the kernel function (s, x)U  can be expanded into 
series form by separating the field point ( , )x ρ φ and source point ( , )s R θ  in the polar 
coordinate: 

( )
( )

( )

1

1

1( , ; , ) ln cos ,
,

1( , ; , ) ln cos , >

m
i

m
m

e

m

U R R m R
m R

U s x
RU R m R

m

ρθ ρ φ θ φ ρ

θ ρ φ ρ θ φ ρ
ρ

∞

=

∞

=

⎧⎪ ⎛ ⎞⎪ ⎟⎜= − − ≥⎪ ⎟⎜⎪ ⎟⎟⎜⎝ ⎠⎪⎪⎪=⎨⎪ ⎛ ⎞⎪ ⎟⎜⎪ ⎟= − −⎜⎪ ⎟⎜ ⎟⎜⎪ ⎝ ⎠⎪⎪⎩

∑

∑
 (2-9) 

It is noted that the leading term and the numerator in the above expansion involve the 

larger argument to ensure the log singularity and the series convergence, respectively. 
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According to the definition of ( , )T s x in Eq. (2-6), we have  

1
1

1

1

1( , ; , ) ( ) cos ( ),
(s, x)

( , ; , ) ( ) cos ( ),

m
i

m
m

m
e

m
m

T R m R
R R

T
RT R m R

ρθ ρ φ θ φ ρ

θ ρ φ θ φ ρ
ρ

∞

+
=

−∞

=

⎧⎪⎪ = + − >⎪⎪⎪⎪=⎨⎪⎪ =− − >⎪⎪⎪⎪⎩

∑

∑
 (2-10)

For the higher-order kernel functions, ( , )L s x  and ( , )M s x  in Eq. (2-6), are shown 

below: 

1

1

1
1

( , ; , ) ( ) cos ( ),
(s, x)

1( , ; , ) ( ) cos ( ),

m
i

m
m

m
e

m
m

L R m R
R

L
RL R m R

ρθ ρ φ θ φ ρ

θ ρ φ θ φ ρ
ρ ρ

−∞

=

∞

+
=

⎧⎪⎪ =− − >⎪⎪⎪⎪=⎨⎪⎪ = + − >⎪⎪⎪⎪⎩

∑

∑
 (2-11)

1

1
1

1

1
1

( , ; , ) ( ) cos ( ),
(s, x)

( , ; , ) ( ) cos ( ),

m
i

m
m

m
e

m
m

mM R m R
R

M
mRM R m R

ρθ ρ φ θ φ ρ

θ ρ φ θ φ ρ
ρ

−∞

+
=

−∞

+
=

⎧⎪⎪ = − ≥⎪⎪⎪⎪=⎨⎪⎪ = − >⎪⎪⎪⎪⎩

∑

∑
 (2-12)

The unknown boundary densities can be represented by using the Fouries series as 

shown below: 

0
1

( , ) ( cos sin )j j j
j n j n j

n

G s a a n b nξ θ θ
∞

=

= + +∑ , j js B∈ , 1, 2, ,j N= "  (2-13)

  0
1

( , )
( cos sin )j j j j

n j n j
ns

G s
p p n q n

n
ξ

θ θ
∞

=

∂
= + +

∂ ∑ , j js B∈ , 1, 2, ,j N= "  (2-14)

where N  is the number of circular boundaries. In real computation, the finite M  

terms for expansion of kernel and boundary density are adopted. 

2.2.3 Adaptive observer system 

An adaptive observer system is addressed to fully employ the property of degenerate 

kernels for circular boundaries as shown in Figures 2-2 (a) and (b). For the integration, 

the origin of the observer system can be adaptively located on the center of the 

corresponding boundary contour. The dummy variable in the circular boundary 

integration is the angle θ  instead of radial coordinate R . By using the adaptive 

system, all the integrations can be easily calculated for multiply connected problems. 

 



 - 12 -

2.2.4 Vector decomposition technique for the potential gradient in the 
hypersingular equation 

Considering the Green’s function problem for the nonconcentric case, we solved the 

potential gradient by employing the hypersingular integral equation in Eq. (2-4). 

When we collocate the domain point x  on the iB  circular boundary, but integrate 

the jB  circular boundary, the normal derivative of potential for the domain point x  

need special treatment. In Figure 2-3 the true normal direction with respect to the 

collocation point x  on the iB  boundary can be superimposed by using the radial 

direction and angular direction on the jB  boundary. According to the concept of 

decomposition technique, the degenerate kernels for the higher-order singular 

equation of Eq. (2-6) are changed as : 

( , ; , )( , ; , ) cos( )

1 ( , ; , ) cos( ),
2

(s, x)
( , ; , )( , ; , ) cos( )

1 ( , ; , ) cos( ),
2

i
i

i j

i

i j

e
e

i j

e

i j

U RL R

U R R
L

U RL R

U R R

θ ρ φθ ρ φ φ φ
ρ
θ ρ φ π φ φ ρ

ρ φ
θ ρ φθ ρ φ φ φ
ρ
θ ρ φ π φ φ ρ

ρ φ

⎧⎪ ∂⎪ = −⎪⎪ ∂⎪⎪⎪⎪ ∂⎪ + − − >⎪⎪ ∂⎪⎪⎪=⎨⎪ ∂⎪ = −⎪⎪ ∂⎪⎪⎪⎪ ∂⎪⎪ + − − >⎪ ∂⎪⎪⎩⎪

 (2-15)

( , ; , )( , ; , ) cos( )

1 ( , ; , ) cos( ),
2

(s, x)
( , ; , )( , ; , ) cos( )

1 ( , ; , ) cos( ),
2

i
i

i j

i

i j

e
e

e

i j

T RM R

T R R
M

T RM R

T R R

θ ρ φθ ρ φ φ φ
ρ
θ ρ φ π φ φ ρ

ρ φ
θ ρ φθ ρ φ ζ ξ
ρ
θ ρ φ π φ φ ρ

ρ φ

⎧⎪ ∂⎪ = −⎪⎪ ∂⎪⎪⎪⎪ ∂⎪ + − − >⎪⎪ ∂⎪⎪⎪=⎨⎪ ∂⎪ = −⎪⎪ ∂⎪⎪⎪⎪ ∂⎪⎪ + − − >⎪ ∂⎪⎪⎩⎪

 (2-16)

where iφ  and jφ  shows the angle of the domain point x  for the ith   and jth  

circles, respectively, in the polar coordinate. 

2.2.5 Linear algebraic equation  

By moving the null-field point xi  to the ith  circular boundary in the limit sense for 

Eq. (2-7), we have the linear algebraic equation 
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[ ]{ } [ ]{ } { }= +U t T u b  (2-17)

where { }b  is the vector due to the source of Green’s function, [ ]U  and [ ]T  are 

the influence matrices with a dimension of ( 1)(2 1)N M+ +  by ( 1)(2 1)N M+ + , 

{ }u  and { }t  denote the column vectors of Fourier coefficients with a dimension of 

( 1)(2 1)N M+ +  by 1 in which  [ ]U , [ ]T , { }u , { }t  and {b}  can be defined as 

follows: 

[ ]

00 01 0

10 11 1

0 1

N

N

N N NN

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

U U U
U U U

U

U U U

"
"

# # % #
"

, [ ]

00 01 0

10 11 1

0 1

N

N

N N NN

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

T T T
T T T

T

T T T

"
"

# # % #
"

 (2-18)

{ }

0

1

2

N

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪=⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

u
u

u u

u
#

, { }

0

1

2

N

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪=⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

t
t

t t

t
#

,{ }

0

1

2

N

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪=⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

b
b

b b

b
#

 (2-19)

where the vectors { }ju  and { }jt  are in the form of 0 1 1{ }j j j j j T
M Ma a b a b"  

and 0 1 1{ }j j j j j T
M Mp p q p q" respectively; the first subscript “ i ” 

( 0,1, 2, ,i N= " ) in [ ]ijU  and [ ]ijT  denotes the index of the ith  circle where the 

collocation point is located and the second subscript “ j ” ( 0,1, 2, ,j N= " ) denotes 

the index of the jth  circle where boundary data { }ju  or { }jt  are specified, N  is 

the number of circular apertures in the domain and M  indicates the truncated terms 

of Fourier series. The coefficient matrix of the linear algebraic system is partitioned 

into blocks, and each off-diagonal block corresponds to the influence matrices 

between two different circular cavities. The diagonal blocks are the influence matrices 

due to itself in each individual hole. After uniformly collocating the point along the 

jth  circular boundary, the submatrix can be written as 
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0 1 1
1 1 1 1 1

0 1 1
2 2 2 2 2

0 1 1
3 3 3 3 3

0 1 1
2 2 2 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

c c s Mc Ms
ij ij ij ij ij

c c s Mc Ms
ij ij ij ij ij

c c s Mc Ms
ij ij ij ij ij

ij

c c s Mc Ms
ij M ij M ij M ij M ij

U U U U U
U U U U U
U U U U U

U U U U U

U

φ φ φ φ φ
φ φ φ φ φ
φ φ φ φ φ

φ φ φ φ

⎡ ⎤=⎢ ⎥⎣ ⎦

"
"
"

# # # % # #
" 2

0 1 1
2 1 2 1 2 1 2 1 2 1

( )
( ) ( ) ( ) ( ) ( )

M
c c s Mc Ms

ij M ij M ij M ij M ij MU U U U U
φ

φ φ φ φ φ+ + + + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦"

 (2-20)

0 1 1
1 1 1 1 1

0 1 1
2 2 2 2 2

0 1 1
3 3 3 3 3

0 1 1
2 2 2 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

c c s Mc Ms
ij ij ij ij ij

c c s Mc Ms
ij ij ij ij ij

c c s Mc Ms
ij ij ij ij ij

ij

c c s Mc Ms
ij M ij M ij M ij M ij

T T T T T
T T T T T
T T T T T

T T T T T

T

φ φ φ φ φ
φ φ φ φ φ
φ φ φ φ φ

φ φ φ φ

⎡ ⎤=⎢ ⎥⎣ ⎦

"
"
"

# # # % # #
" 2

0 1 1
2 1 2 1 2 1 2 1 2 1

( )
( ) ( ) ( ) ( ) ( )

M
c c s Mc Ms

ij M ij M ij M ij M ij MT T T T T
φ

φ φ φ φ φ+ + + + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦"

 (2-21)

{ }

1

2

3

2 1

ln ( , )
ln ( , )
ln ( , )

ln ( , )

i

i

ii

i M

ρ φ ξ
ρ φ ξ
ρ φ ξ

ρ φ ξ+

⎧ ⎫−⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪−⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪−=⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪−⎪ ⎪⎪ ⎪⎩ ⎭

x
x
xb

x
#

 (2-22)

where iφ , 1, 2, , 2 1i M= +" , are the angles of collocation along the circular 

boundary. Although both the matrices in Eqs. (2-20) and (2-21) are not sparse, it is 

found that the higher order harmonics is considered, the lower influence coefficients 

in numerical experiments is obtained. It is noted that the superscript “ 0c ” in Eqs. 

(2-20) and (2-21) indicates the first term of Fourier series. The element of [ ]ijU  and 

[ ]ijT  are defined respectively as  
( ) (s , x ) cos( )

j

nc
ij m j m j j jB

U U n R dφ θ θ= ∫ , 

                                           0,1, 2, ,n M= " , 1, 2, , 2 1m M= +"  
(2-23)

( ) (s , x ) sin( )
j

ns
ij m j m j j jB

U U n R dφ θ θ= ∫ ,  

1, 2, ,n M= " , 1, 2, , 2 1m M= +"  
(2-24)

( ) (s , x ) cos( )
j

nc
ij m j m j j jB

T T n R dφ θ θ= ∫ ,  

0,1, 2, ,n M= " , 1, 2, , 2 1m M= +"  
(2-25)

( ) (s , x ) sin( )
j

ns
ij m j m j j jB

T T n R dφ θ θ= ∫ , 

1, 2, ,n M= " , 1, 2, , 2 1m M= +"  
(2-26)

where j  is no sum, s ( , )j j jR θ= , and mφ  is the polar angle of the collocation 
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point xm . The influence coefficient of ( )nc
ij mU φ  in Eq. (2-23) denotes the response at 

mx  due to cos nθ  distribution. The direction of contour integration should be taken 

care, i.e., counterclockwise and clockwise directions are for the interior and exterior 

problems, respectively. By rearranging the known and unknown sets, the Fourier 

coefficients can be obtained easily. 

2.2.6 Matching of interface conditions for problems of apertures and 
inclusions 

Before extending the formulation from aperture to inclusion, subdomain approach by 

taking free body needs to be used. By decomposing the inclusion problem into two 

problems, we have two subsystems. One is the problem with apertures and the other is 

for each single inclusion problem. Figure (2-4) represents the decomposition of the 

inclusion problem. According to the continuity of displacement and equilibrium of 

traction along the ideal interface for the subdomain approach, we have the constraints 

{ } { }M I
j ju u= , on jB  (2-27)

        [ ]{ } [ ]{ }M I
M j I jt tμ μ=− , on jB  (2-28)

where [ ]Iμ  and [ ]Mμ  can be defined as follows: 

[ ]

0 0
0 0

0 0

I

I
I

I

μ
μ
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⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

"
"

# # % #
"

, 

0 0
0 0

[ ]

0 0

M

M
M

M

μ
μ

μ

μ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

"
"

# # % #
"

, (2-29)

in which Iμ  and Mμ  denote the shear modulus of the matrix and the inclusion, 
respectively. After assembling the null-field integral equations and the interface 
conditions (displacement continuity and force equilibrium), a global algebraic system 
can be obtained. 

( , )0 0
00 0
00 0
00 0

MM M
j jj j

MI I
jj j
I
j
I
jM I

u U xT U
tT U
uI I
t

ξ

μ μ

⎡ ⎤⎡ ⎤ ⎡ ⎤− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (2-30)
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2.2.7 Image technique for solving half-plane problems 

The half-plane problem is imbedded to a full-plane problem through the image 

method. By employing the anti-symmetric property, the boundary condition of 

half-plane can be satisfied through the image approach. In the real implementation, 

the full-plane problem is solved, first. 

2.3 Illustrative examples and discussions 

Case 1: eccentric ring (semi-analytical solution)  

Figure 2-5(a) depicts the Green’s function of the eccentric ring. The source point is 

located at (0,0.75)ξ= . Figures 2-5(b) and 2-5(c) show the potential distribution by 

using the present method and Melnikov's approach [Melnikov and Melnikov (2001)], 

respectively. The two radii of inner and outer circles are 0.4a=  and 1.0b= . The 

two centers of the inner and outer circles are (-0.4, 0) and (0,0), respectively. It is 

noted that outer radius of one is a degenerate scale and needs special treatment as 

described in detail by Chen and Shen [Chen and Shen (2007)]. Comparison of the 

present results with MCP and MMP methods [Melnikov and Melnikov (2001)] is 

shown in the Table 2-2. We can also obtain good data by our method instead of 

dealing with Green’s function ( , )G x ξ  by MMP method, beforehand. Good 

agreement is made. 

Case 2: a half plane with an aperture (semi-analytical solution) 

Figure 2-6(a) depicts the Green’s function for the half plane with a hole. The source 

point is located at (2,1)ξ = . The center and radius of the aperture are (0,3)  and 

1.0a= . Figures 2-6(b) and 2-6(c) show the potential distribution by using the present 

method and Melnikov's approach, respectively. Good agreement is made. 

Case 3: a half-plane problem with a circular boundary subject to the Robin boundary 

condition. 

A half-plane problem with an aperture is considered. The governing equation and 

boundary condition are shown in Fig. 2-7(a). The center and radius of the aperture are 

(2,2)  and 1.0,a= respectively. The concentrated source is located at (0,3.5) . The 

Robin boundary condition is 2t u=−  imposed on the aperture. Figures 2-7(b) and 

2-7(c) show the potential distribution by using the present method and Melnikov's 
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approach, respectively. Good agreement is obtained. 

Case 4: a half plane problem with a aperture and an inclusion 

A half-plane problem with a circular hole and a half-circular inclusion are considered 

as composed of two regions 1 {0 1, 0 }D r ϕ π= < < < <  and 2 {1 ,D r= < <∞  

0 }ϕ π< <  filled in with different materials 2 1( /λ λ λ= = 0.1) . The governing 

equation and boundary condition are shown in Fig. 2-8(a). The center and radius of 

the aperture are ( , ;1.4, / 3)r ϕ π and 2 0.4a = , respectively. The concentrated source is 

located at ( , ;0.5, / 3)r ϕ π . Figures 2-8(b) and 2-8(c) show the potential distributions 

by using the present method and Melnikov's approach, respectively. Good agreement 

is also made. 

2.4 Concluding remarks 

For the Green’s function with circular boundaries, we have proposed a semi-analytical 

approach to construct the Green’s function by using degenerate kernels and Fourier 

series. Several examples, including the eccentric case and half plane problems with 

circular apertures and inclusions, were demonstrated to check the validity of the 

present formulation. Our advantages are five folds: (1) mesh-free generation (2) 

well-posed model (3) principal value free (4) elimination of boundary-layer effect (5) 

exponential convergence. A general-purpose program to construct the Green’s fuction 

for Laplace problems with circular boundaries of arbitrary number, various radius and 

location was developed. Following the success of Laplace case, we will extend to the 

Helmholtz equation in the next chapter. 
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Chapter 3 Derivation of anti-plane dynamic Green’s 
function for several circular inclusions with imperfect 

interfaces 

Abstract 

A null-field integral equation is employed to derive the two-dimensional antiplane 

dynamic Green’s functions for a circular inclusion with an imperfect interface. We 

employ the linear spring model with vanishing thickness to characterize the imperfect 

interface. Analytical expressions of displacement and stress fields due to 

time-harmonic antiplane line forces located either in the unbounded matrix or in the 

circular inclusion are presented. To fully capture the circular geometries, degenerate- 

kernel expressions of fundamental solutions in the polar coordinate and Fourier series 

for boundary densities are adopted. Good agreement is made after comparing with the 

analytical solution derived by Wang and Sudak’s results. Parameter study of wave 

number and interface constant is done. In this chapter, we employ the null-field BIE 

to derive the analytical Green’s function instead of choosing the Trefftz bases by 

using the Wang and Sudak’s approach. Special cases of cavity and ideal bonding as 

well as static solutions are also examined. 

3.1 Introduction 

Analytical as well as numerical Green’s functions have received many BEM 

researchers’ attention [Ang and Telles (2004)]. Boundary element method (BEM) was 

employed to solve time-harmonic Green’s function [Kitahara (1985); Denda, Wang 

and Yong (2003); Denda, Araki and Yong (2004)]. Also, dynamic Eshelby problems 

[Mikata and Nemat-Nasser (1990); Cheng and Batra (1999); Michelitsch, Levin and 

Gao (2002)], piezoelectricity problems [Chen and Wu (2006); Wang and Zhong 

(2003)] and scattering problems in elastodynamics [Willis (1980a, b); Talbot and 

Willis (1983)] were solved. Although a lot of papers on homogenous case were 

published, only a few of the time-harmonic dynamic Green’s functions of a circular 

cylindrical inclusion can be found [Mura (1988); Mura, Shodja and Hirose (1996)]. 

Recently, Wang and Sudak [Wang and Sudak (2007)] derived an analytical solution 

for antiplane time-harmonic Green’s functions of a circular inhomogeneity with an 
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imperfect interface. The interface between the inclusion and the matrix is modeled to 

the linear springs with vanishing thickness. Interface boundary conditions are 

tractions equilibrium but the displacements across the interface are discontinuous. In 

addition, the stress response is proportional to the linear springs interface with 

vanishing thickness. The key concept of Wang and Sudak’s method is that they 

introduced the Trefftz bases for the solution representation of inclusion and matrix, 

respectively. However, the completeness of Trefftz bases needs special case. Our main 

concern is to revisit the problem solved by Wang and Sudak and derive the analytical 

solution in an alternative way by using the null-field integral equation. Based on the 

null-field integral formulation, the analytical solution will be derived in a more 

systematic and straightforward way. Besides, special cases of cavity and ideal 

bonding as well as static solutions will be examined. 

3.2 Derivation of anti-plane dynamic Green’s function for Helmholtz 
problems with an imperfect interface 

3.2.1 Problem statement and null-field integral formulation 

For a two-dimensional problem with an imperfect interface, we consider a unbounded 

matrix containing a circular inclusion of radius a  with its centre at the origin. A 

time-harmonic antiplane line force of strength i tpe ω−  is located at ( ,0)e  on the x  

axis either in the inclusion (0 )e a< <  or in the matrix ( )a e<  as shown in Figs. 

1(a) and 1(b). The Mμ  and Iμ  represent the shear moduli of matrix and inclusion, 

respectively. The anti-plane displacement field subject to the concentrated load in the 

matrix is shown below 
2 2( ) ( , ) ( )I

I

pk G x xξ δ ξ
μ

∇ + =− − , Ix D if e a∈ <  (3-1) 

For the infinite matrix with a single inclusion subject to a concentrated load, we have 
2 2( ) ( , ) ( )M

M

pk G x xξ δ ξ
μ

∇ + =− − , Mx D if e a∈ >  (3-2) 

where 2∇  is the Laplacian operator, Ik  and Mk  are the wave numbers for the 

inclusion and matrix, ( )xδ ξ−  denotes the Dirac-delta function, ID  and MD  are 

domains of the inclusion and matrix, respectively. The time factor i te ω−  has been 

omitted due to the frequency-domain approach after employing the separable property. 
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For a linear elastic body, the stress components are 

,I II I I
zr I z

u u
r rθ

μσ μ σ
θ

∂ ∂= =
∂ ∂

, Ix D∈  (3-3) 

 ,M MM M M
zr M z

u u
r rθ

μσ μ σ
θ

∂ ∂= =
∂ ∂

, Mx D∈  (3-4) 

Moreover, we presume that the circular boundary interface is imperfect and 

homogeneous in the angular direction. The interface boundary conditions are given by 

[Hashin (1991); Ru and Schiavone (1997); Wang and Meguid (1999)]. 

( )I M
zr zr M Iu uσ σ β= = − , on the interface r a=  (3-5) 

where the non-negative constant β  is the parameter of imperfect interface. The 

circular inclusion is perfectly bonded to the matrix if β  approaches infinity. On the 

other hand, the circular inclusion is fully debonded from the matrix if β  approaches 

zero. In order to employ the Green’s third identity as follows 
2 2 ( ) ( )[ ( ) ( ) ( ) ( )] ( ) [( ( ) ( ) ] ( )

D B

v x u xu x v x v x u x dD x u x v x dB x
n n

∂ ∂∇ − ∇ = −
∂ ∂∫∫ ∫  (3-6) 

we need two systems, ( )u x  and ( )v x . We choose ( )u x  as ( , )G x ξ  and set ( )v x  

as the fundamental solution ( , )U x s  such that 
2 ( , ) 2 ( )U x s x sπδ∇ = −  (3-7) 

Then, we can obtain the fundamental solution as follows 
(1)
0 ( )( , )
2

i H krU s x π−=  (3-8) 

where (1)
0 ( )H kr  is the zeroth Hankel function of the first kind and s-xr ≡ . In the 

present method, we adopt the mathematical tools, degenerate kernels, for the purpose 

of analytical study. The combination of degenerate kernels and Fourier series plays 

the major role in handling problems with circular boundaries. Based on the separable 

property, the kernel function (s, x)U  and (s, x)T  can be expanded into separable 

form by dividing the source point s ( , )R θ=  and field point x ( , )ρ φ=  in the polar 

coordinate [Chen, Liu and Hong (2003)]. After exchanging with the variables x  and 

s , we have 
( , )2 ( , ) ( , ) ( , ) ( ) ( , ) ( ) ( , )

sB B

G sG x T s x G s dB s U s x dB s U x
n
ξπ ξ ξ ξ∂= − +

∂∫ ∫  

, x D∈  
(3-9) 

where ( , )T s x  is defined by 
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s

( , )( , )
n

U s xT s x ∂≡
∂

 (3-10)

where sn  denotes the outward normal vector at the source point s . To solve the 

unknown boundary densities ( , )G s ξ  and / ( , )sG n s ξ∂ ∂ , the field point x  is 

located outside the domain to yield the null-field integral equation as shown below: 
( , )0 (s, x) ( , ) ( ) (s, x) (s) ( , )

sB B

G sT G s dB s U dB U x
n
ξξ ξ∂= − +

∂∫ ∫ , cx D∈  (3-11)

where cD  is the complementary domain. By using the degenerate kernels, the BIE 
for the “boundary point” can be easily derived through either the null-field integral 
equation in Eq. (3-11) or the BIE for the domain point of Eq. (3-9) by exactly 
collocating x  on B  [Chen, Shen and Chen (2006)]. 

3.2.2 Expansions of kernel function and boundary density 

Based on the separable property, the kernel function (s, x)U  can be expanded into 

series form by separating the field point ( , )x ρ φ and source point ( , )s R θ  in the polar 

coordinate: 

(1)

0

(1)

0

( , ) ( ) ( ) cos( ( )),   
2

( , )
( , ) ( ) ( ) cos( ( )),  > 

2

i
m m m

m

e
m m m

m

iU s x J k H kR m R
U s x

iU s x H k J kR m R

π ε ρ θ φ ρ

π ε ρ θ φ ρ

∞

=
∞

=

⎧⎪ −⎪ = − ≥⎪⎪⎪⎪=⎨⎪ −⎪ = −⎪⎪⎪⎪⎩

∑

∑
 (3-12)

where the superscripts “ i ” and “e ” denote the interior and exterior cases for the 

expressions of kernel, respectively, and mε  is the Neumann factor 
1, 0
2, 1,2,m

m
m

ε
⎧ =⎪⎪=⎨⎪ = ∞⎪⎩

 (3-13)

It is noted that the larger argument is contained in the complex Hankel function to 

ensure the series convergence and log singularity. According to the definition of 

( , )T s x  in Eq. (3-10), we have 

(1)

0

(1)

0

( , ) ( ) ( ) cos( ( )),  > 
2

( , )
( , ) ( ) ( ) cos( ( )),  > 

2

i
m m m

m

e
m m m

m

kiT s x J k H kR m R
T s x

kiT s x H k J kR m R

π ε ρ θ φ ρ

π ε ρ θ φ ρ

∞

=
∞

=

⎧⎪ −⎪ ′= −⎪⎪⎪⎪=⎨⎪ −⎪ ′= −⎪⎪⎪⎪⎩

∑

∑
 (3-14)

The unknown boundary densities can be represented by using the Fourier series as 

shown below: 

0
1

( , ) ( cos sin )n n
n

G s a a n b nξ θ θ
∞

=

= + +∑ , s B∈  (3-15)
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0
1

( , ) ( cos sin ),n n
ns

G s p p n q n
n
ξ θ θ

∞

=

∂ = + +
∂ ∑  s B∈  (3-16)

where 0a , na , nb , 0p , np  and nq  are the Fourier coefficients. In the real 

computation, the boundary integrations can be easily calculated by employing the 

orthogonal property of Fourier series, and only the finite M  terms are used in the 

summation. 

3.3 Series representation for the Green’s function of an inclusion 
case 

For the problems with inclusion, we can decompose into subsystems of matrix and 

inclusion after taking the free body on the interface as shown in Fig. 3-1(c). By 

collocating x  on ( , )a φ−  and ( , )a φ+  for matrix and inclusion, respectively, the 

null-field equations yield  

2 ' '
0 0 0 0

1

2 ' ' 2
0 0 0 0

2

1

0

0 ( )[ ( ) ( )] [ cos( ) sin( )]

( )[ ( ) ( )] ( )[ ( ) ( )]

[ cos( ) sin( )] ( )[ ( ) ( )]

{ (
2

e e e
M M M M m m

m

e
M m M m M m M M M M

e e
m m m M m M m M

m

M
M

a k aJ k a Y k a iJ k a a m b m

k aJ k a Y k a iJ k a p aJ k a Y k a iJ k a

p m q m aJ k a Y k a iJ k a

p J k

π φ φ

π π

φ φ π

π
μ

∞

=

∞

=

=− − − +

− − −

− + −

−

∑

∑

0 0

1

)[ ( ) ( )]

( )[ ( ) ( )]cos( )}

, ( , )

M M

m M m M m M
m

a Y k e iJ k e

J k a Y k e iJ k e m

x a

π φ

φ

∞

=
−

−

+ −

→

∑

 (3-17)

2 '
0 0 0 0

1

2 ' 2
0 0 0 0

2

1

0 ( )[ ( ) ( )] [ cos( ) sin( )]

( )[ ( ) ( )] ( )[ ( ) ( )]

[ cos( ) sin( )] ( )[ ( ) ( )]

, ( , )

i i i
I I I I m m

m

i
I m I m I m I I I I

i i
m m m I m I m I

m

a k aJ k a Y k a iJ k a a m b m

k aJ k a Y k a iJ k a p aJ k a Y k a iJ k a

p m q m aJ k a Y k a iJ k a

x a

π φ φ

π π

φ φ π

φ

∞

=

∞

=
+

= − + +

− − −

− + −

→

∑

∑
 (3-18)

Interface conditions of Eq. (3-5) can be rewritten as 

( )I M I

I

t u uβ
μ

= − , on the interface (3-19)

M I
M It tμ μ− = , on the interface (3-20)

By assembling the matrices in Eqs. (3-17), (3-18), (3-19) and (3-20), we have 
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11 11 1

11 11 1

1

1

( , )0 0
0 0

0
0 0

0
0

0

M M M

MI I M

I
M I

I
M

p U xT U u
T U t

u
t

ξ
μ

μ μ
β μ β

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

 (3-21)

After rearranging Eq. (3-21), we have 

11 11
1

11 11 11 1

( , )

0

M M
M

MI I IM M M

I

pT U U xu
T T U t

ξ
μμ μ

β μ

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

 (3-22)

The unknown coefficients in the algebraic system can be analytically determined as 

shown below 
'

0 0 0 0 0
'
0 0 0

' '
0 0 0

' '
0 0

[ ( ) ( )][ ( ) ( )]

/ 2 { ( )[ [ ( ) ( )]

[ ( ) ( )]] ( )

[ ( ) ( )]}

e
M M I I I I

I I I M M

M M M M M M I

M M

a p J k e iY k e J k a k J k a

a k J k a J k a iY k a

k J k a iY k a k J k a

J k a iY k a

β μ
π μ β
μ β μ

=− + +
− +

+ + +
+

 (3-23)

'
0 0 0 0

'
0 0 0

' '
0 0 0

' '
0 0

[ ( ) ( )] ( )

/ 2 { ( )[ [ ( ) ( )]

[ ( ) ( )]] ( )

[ ( ) ( )]}

e
I I M M I

M I I I M M

M M M M M M I

M M

p p k J k e iY k e J k a

a k J k a J k a iY k a

k J k a iY k a k J k a

J k a iY k a

β μ
π μ μ β
μ β μ

= +
− +

+ + +
+

 (3-24)

'

'

' '

' '

[ ( ) ( )][ ( ) ( )]

/ { ( )[ [ ( ) ( )]

[ ( ) ( )]] ( )

[ ( ) ( )]}

e
m m M m M m I I I m I

I I m I m M m M

M M m M m M M M m I

m M m M

a p J k e iY k e J k a k J k a

a k J k a J k a iY k a

k J k a iY k a k J k a

J k a iY k a

β μ
π μ β

μ β μ

=− + +
− +

+ + +
+

 (3-25)

'

'

' '

' '

[ ( ) ( )] ( )

/ { ( )[ [ ( ) ( )]

[ ( ) ( )]] ( )

[ ( ) ( )]}

e
m I I m M m M m I

M I I m I m M m M

M M m M m M M M m I

m M m M

p p k J k e iY k e J k a

a k J k a J k a iY k a

k J k a iY k a k J k a

J k a iY k a

β μ
π μ μ β

μ β μ

= +
− +

+ + +
+

 (3-26)

where 0 0, ,  and ,e e e e
m ma p a p 1,2,3,m=  are the Fourier coefficients of boundary 

densities for the matrix. According to interface boundary condition of Eqs. (3-19) and 

(3-20), we obtain the Fourier coefficient of the inclusion as shown below: 
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0 00

0 0

e eMi

i

p aa
p

μ
β

⎡ ⎤⎡ ⎤ ⎢ ⎥+⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
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e eM
m mi

m
i

eMm
m

I

p a
a
p p

μ
β

μ
μ

⎡ ⎤
⎢ ⎥+⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥−⎢ ⎥⎣ ⎦

 (3-28)

where 0 0, ,  andi i i i
m ma p a p  are the Fourier coefficients of boundary densities for the 

inclusion. Then, we can obtain the series-form Green’s function for the matrix by 

applying Eq. (3-9) as shown below: 

( )

'
0 0 0 0 0 0

'

1

0 0

( , ) [ ( ) ( )][ ( ) ( )]
2

[ ( ) ( )][ ( ) ( )]cos
2

[ ( ) ( )],
4

e e
M M M M M

e e
m M m M m m M m M m M

m

M M
M

aG x a k J k a p J k a Y k iJ k

a a k J k a p J k a Y k iJ k m

p Y k r iJ k r a

πξ ρ ρ

π ρ ρ φ

ρ
μ

∞

=

=− + −

− + −

− − ≤ <∞

∑  (3-29)

If we expand the fundamental function, we have 
'

0 0 0 0 0 0

'

1

0 0 0

1

( , ) [ ( ) ( )][ ( ) ( )]
2
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2
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e e
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e e
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m
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M
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p J k e Y k iJ k

J k e Y k iJ k m

e

πξ ρ ρ

π ρ ρ φ

ρ ρ
μ

ρ ρ φ

ρ

∞

=

∞

=

=− + −

− + −
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 (3-31)
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3.4 Illustrative examples and discussions 

Case 1: one inclusion in the matrix with a concentrated force 

Following the same example of Wang and Sudak [Wang and Sudak (2007)], we 

suppose that 4I Mμ μ= , 2I Mc c= , and e  is located at 1.1a  on the x  axis as 

shown Fig. 3-1(a). For the static case ( 0)k = , we can replace the 0 ( )H kr  by ln r  

and redo the procedure. The formulation can be found in the Appendix A. On the 

other hand, the static solution by using the limiting process ( 0)k →  is also derived 

in the Appendix B. The stress *
zrσ  along the circular boundary is shown in Fig. 3-2(a). 

In the real implementation, direct substitution of zero k  value yields the singular 

behavior in our formulation of Hankel function and can not be carried out in the 

program. We select 0.01ka=  to simulate the quasi-static result. Good agreement is 

made in Fig. 3-2(b) after comparing with that of Fig. 3-2(a). Parameter study of β  

on the stress *
zrσ  along the circular boundary is done as shown in Fig. 3-3(a). To 

simulate the ideally bonded case, we choose 3210β =  in the real computation. Good 

agreement is made after comparing with that of the ideally bonded case ( )β =∞ . 

The derivation of ideally bonded case is also given in the Appendix C. Figs. 3-3(a) 

and 3-3(b) show that the higher the λ  value is, the larger the stress appears. Our 

results also match well with those of Wang and Sudak’s data. Furthermore, test of 

convergence for the Fourier series using Parseval’s sum are shown in Figs. 3-4(a) and 

3-4(b). Figs. 3-5(a) and 3-5(b) show the distribution of displacement *( I M Iu uμ=  

/ )p  along the circular boundary versus the wave number with 1λ=  by using the 

Wang and Sudak’s approach and our method, respectively. Good agreement is made. 

It is expected that higher wave number yield higher oscillation along the angle from 

0 ~ 2π . 

Case 2: infinite matrix with a single inclusion subject to a concentrated force 

We also suppose the same parameters of 4I Mμ μ=  and 2I Mc c=  as the case 1. 

Here, the source is located at 0.9e a=  in the inclusion as shown in Fig. 3-1(b). To 

verify the accuracy of the present solution, we compare with the quasi-static result 

( 0.01)Mk a=  for the stress distribution along the interface as shown in Fig. 3-6 using 

the static solution ( 0)Mk =  as derived in the Appendix A. Also, an alternative 

method by limiting processes ( 0)k →  is also given in the Appendix B. Regarding 
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the series solution as well as the closed-form solution for the static case, the result is 

summarized in the Table 3.1. Excellent agreement between the two results is observed 

from the Fig. 3-6. The stress *
zrσ  versus Mk a  for different values of λ  is shown in 

Fig. 3-7. Some amplifications for certain values of Mk a  can be found in the same 

trend of Fig. 3-3(b). Fig. 3-8 shows the distribution of displacement *( / )I M Iu u pμ=  

along the circular boundary versus the wave number with 1λ= . 

Case 3: two inclusions in the matrix with a concentrated force 

Following the success of the single-inclusion case to compare well with the Wang and 

Sudak’s result, we extend to two inclusions as shown in Fig. 3-9. We also suppose the 

same properties of 4I Mμ μ=  and 2I Mc c=  as the case 1.  Here, the concentrated 

source is located in the matrix of (2.5,0).e=  Figure 3-10 shows the variation of 
* / /I M
zr zr zrR p R pσ σ σ= =  at the point 1( ,0)a−  for various distances 0.01 ~d =  

13.  The local maximum or minimum of *
zrσ  occurs in a period of half wavelength. 

The contour of the displacement for the two-inclusions problem is shown in Fig. 3-11. 

3.5 Conclusions 

Two-dimensional antiplane dynamic Green’s functions for a circular inclusion or two 

circular inclusions with imperfect interface have been successfully derived by using 

the present formulation. A limiting case of zero wave number matches well with the 

static solution. Ideal bonded case can be seen as a special case of our solution. 

Moreover, good agreement is made after comparing with the analytical solution 

derived by Wang and Sudak’s results. Parameter study of wave number and interface 

constant is also done.  
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Chapter 4 Conclusions and further research 

4.1 Conclusions 

The thesis is concerned about the derivation of Green’s function for Laplace and 

Helmholtz problems with circular aperture and/or inclusions by using the null-field 

integral equation approach. In the context of this thesis, we have demonstrated that 

our approach is useful and effective. Based on the proposed formulation for solving 

the problems involving circular apertures and/or inclusions with perfect or imperfect 

interface, some concluding remarks are itemized as follows: 

 

1. A systematic approach to solve the Green’s function of Laplace or Helmholtz 

problems with circular apertures and/or inclusions was proposed successfully in 

this thesis by using the null-field integral equation in conjunction with 

degenerate kernels and Fourier series. Problems involving infinite, semi-infinite 

and bounded domains with perfect or imperfect circular boundaries were 

examined to check the accuracy of the present formulation. 

 

2. The singularity and hypersingularity were avoided by using degenerate kernels 

for interior and exterior regions separated by the circular boundary. Instead of 

directly calculating principal values, all the boundary integrals can be performed 

analytically by using the degenerate kernel and Fourier expansion. 

 

3. Parameter study of wave number ( )k  and interface constant ( )β  is done for 

the two-dimensional antiplane dynamic Green’s functions of a circular inclusion 

with imperfect interface. For the static case ( 0)k = , the Helmholtz problem can 

be reduced to the Laplace problem. The formulation can be found in the 

Appendix A. Also, an alternative method by limiting process ( 0)k →  is in the 

Appendix B. When β  approaches infinity, the circular inclusion is perfectly 

bonded to the matrix. When β  approaches zero, the circular inclusion is fully 

debonded from the matrix. The derivation is given in the Appendix C. 

 

4. We derived the analytic Green’s function for one inclusion problem by using the 
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null-field integral equation. Also, the present approach can be utilized to 

construct semi-analytic Green’s functions for several circular aperture or 

inclusions. Null-field integral equation is seen as a “semi-analytical” approach 

since error purely ascribes the truncation Fourier series.  

 

5. After introducing the degenerate kernel, the BIE is nothing more than the linear 

algebra for the unknown coefficients.  

 

6. A general-purpose program for deriving the Green’s function of Laplace or 

Helmholtz problems with arbitrary number of circular apertures or inclusions of 

arbitrary radii and various positions involving Dirichlet or Neumann or mixed 

boundary condition was developed. 
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4.2 Further research 

In this thesis, our formulation has been applied to derive the Green’s function with 

circular boundaries by using the separate form of fundamental solutions and Fourier 

series expansions. However, several issues are worth to be further investigated as 

follows: 

 

1. In this thesis, we only consider simpler problems in which the imperfect 

interface is circumferentially homogeneous. The more general case in which the 

imperfect interface is circumferentially inhomogeneous can also be solved by 

using the present method. 

 

2. The extension to Helmholtz problem with a hill can be studied by using the 

present approach in conjunction with the multiply-domain technique by 

decomposing the original problem into one interior problem of circular domain 

and a half-plane problem with a semi-circular canyon. 

 

3. The degenerate kernels are expanded in the polar coordinate and only problems 

with circular boundaries are solved. For boundary value problems with ellipse or 

crack, further investigation should be considered. 

 

4. According to our successful experiences for half-plane problems, it is 

straightforward to quarter-plane problems which can be studied by employing 

the symmetric or anti-symmetric property of image method.  

 

5. Following the success of applications in two-dimensional problems, it is 

straightforward to extend this formulation to 3-D problems with spherical 

inclusions and/or apertures with perfect or imperfect circular boundaries using 

the corresponding 3-D degenerate kernel functions for fundamental solutions and 

spherical harmonic expansions for boundary densities. 
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Appendix 1 Static cases 

Case 1: a concentrated force in the matrix  

For the static case ( 0)k =  and ideally bonded interface ( )β→∞ , we can replace 

the 0 ( )H kr  by ln r  and redo the procedure. Then, we follow the formulation for 

Laplace problems in Chapter 2. For the problem with inclusion, we can decompose 

into subsystems of matrix and inclusion after taking free body on the interface as 

shown in Fig. 3-1(c). Then, by collocating x  on ( , )a φ−  and ( , )a φ+  for the 

matrix and inclusion, respectively, the null-field equations yield 
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Similarly, interface conditions of Eq. (3-5) can be rewritten as 

  ( )I M I

I

t u uβ
μ

= − , on the interface (A1-3)

  M I
M It tμ μ− = , on the interface (A1-4)

By assembling the matrices in Eqs. (A1-1), (A1-2), (A1-3) and (A1-4), we have 
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After rearranging Eq. (A1-5), we have 
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The unknown coefficients in the algebraic system can be determined as shown below: 

0

0

ln
2

( ) ( )
[ ( )]

0
0

( )
[ ( )]

0

Me

mIe
m

M I M Ie
m
e

e
m

mIe
m

M M I M I

p e
a

p a m a
a m m a e
b
p
p

p a
q m a e

πμ
β μ

π μ μ β μ μ

βμ
μ π μ μ β μ μ

⎡ ⎤
⎢ ⎥−
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ + +⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 (A1-7)

where 0 0, , ande e e e
m ma p a p , 1, 2,3,m=  are the Fourier coefficients of boundary 

densities for the matrix. As β  approaches infinity, we have 
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Then, we can obtain the analytical result for static stress ( / / )I M
zr zr zra p a pσ σ σ= =☆  

of the matrix as shown below: 
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The Wang and Sudak’s closed-form solution is shown below: 
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By expanding the Eq. (A1-10) into Fourier series, we have 
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where the Fourier coefficient of ma  can be determined by using the Poison integral 

formula [Chen and Chou (2007)] as shown below: 
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An alternative proof by using the degenerate kernel can also be obtained as shown 

below: 
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By multiplying ( )a−  into Eq. (A1-14), we can also obtain the result of static case 
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Therefore, we have proved that our series-form solution is mathematically equivalent 

to the closed-form solution of Wang and Sudak. 

Case 2: a concentrated force in the inclusion 

Similarly as shown in case 1, we can obtain the unknown coefficients as shown 

below: 
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where 0 0, ,  and e e e e
m ma p a p , 1, 2,3,m=  are the Fourier coefficients of boundary 

densities for the inclusion. As β  approaches infinity, we have 
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Then, we can obtain the analytical result for static stress ( / / )I M
zr zr zra p a pσ σ σ= =☆  

of the inclusion as shown below: 
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A closed-form solution can be obtained by using degenerate kernel. By multiplying 

( )a  into Eq. (A1-14), we can also obtain the result of closed-form solution for the 

inclusion 
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Therefore, we have proved that the closed-form solution can be obtained 

mathematically by using degenerate kernel. Based on the Fourier series expansion, the 

closed-form solution of Eq. (A1-19) yields 
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where the Fourier coefficient of 0a  and ma  can be determined by using the Poison 

integral formula as shown below: 
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(A1-22)

It is straightforward to represent the closed-form solution into Fourier series solution. 

On the contrary, it always needs special treatment, e.g., Watson transformation if we 

would obtain the closed-form solution by way of Fourier series solution. Here, we do 

not employ the Watson transformation, but take advantage of expressions of 

degenerate kernels for fundamental solution. The contours of shear stress 

cos sinzx zr zθσ σ φ σ φ= −  and sin coszy zr zθσ σ φ σ φ= +  for a concentrated force in 

the matrix and inclusion are summarized in the Table 3-2 and 3-3, respectively.  
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Appendix 3 Special cases of β →∞  and 0β =  

Case 1: an ideally bonded case ( )β→∞  

As the parameter β  approaches ∞ , the interface condition yields the force 

equilibrium and displacement continuous. Then, we follow the formulation for the 

Helmholtz problem in Chapter 3. For the problem with inclusion, we can decompose 

into subsystems of matrix and inclusion after taking free body on the interface as 

shown in Fig. 3-1(c). By collocating x  on ( , )a φ−  and ( , )a φ+  for the matrix and 

inclusion, respectively, the null-field equations yield Eqs. (3-17) and (3-18). Then, the 

interface conditions of Eq. (3-5) can be rewritten as 
M Iu u= , on the interface (A3-1)

M I
M It tμ μ− = , on the interface (A3-2)

By assembling the matrices in Eqs. (3-17), (3-18), (A3-1) and (A3-2), we have 

111 11

111 11

1

1

( , )0 0
0 0 0
0 0 0

0 0 0

MM M

MMI I

I
M I

I

p U xuT U
tT U
u
tI I

ξ
μ

μ μ

⎡ ⎤⎡ ⎤⎡ ⎤ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦  

(A3-3)

After rearranging Eq. (A3-3), we have 

11 11
1

11 11 1

( , )

0

M M
M

MI IM M

I

pT U U xu
T U t

ξ
μμ

μ

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦  

(A3-4)

The unknown coefficients in the algebraic system can be determined as shown below: 

'
0 0 0 0 0

' '
0 0 0 0 0

( )[ ( ) ( )] / 2 { ( )

[ ( ) ( )] ( )[ ( ) ( )]}

e
I M M I I I

M M M M I M M

a pJ k a J k e iY k e a k J k a

J k a iY k a k J k a J k a iY k a

π μ
μ

=− + −
+ + +

 (A3-5)

' '
0 0 0 0 0

' '
0 0 0 0 0

( )[ ( ) ( )] / 2 { ( )

[ ( ) ( )] ( )[ ( ) ( )]}

e
I I I M M M I I I

M M M M I M M

p pk J k a J k e iY k e a k J k a

J k a iY k a k J k a J k a iY k a

μ π μ μ
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 (A3-6)
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[ ( ) ( )] ( )[ ( ) ( )]}
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m m I m M m M I I m I
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a pJ k a J k e iY k e a k J k a
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 (A3-7)
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' '

' '

( )[ ( ) ( )] / { ( )

[ ( ) ( )] ( )[ ( ) ( )]}

e
m I I m I m M m M M I I m I

m M m M M M m I m M m M

p pk J k a J k e iY k e a k J k a

J k a iY k a k J k a J k a iY k a

μ π μ μ
μ

=− +
+ − +

 (A3-8)

where 0 0, ,  and e e e e
m ma p a p , 1, 2,3,m=  are the Fourier coefficients of boundary 

densities for the matrix. According to the interface boundary condition of Eqs. (A3-1) 

and (A3-2), we obtain the coefficient of the inclusion as shown below: 

0 0

0 0 /

i e

i e
M I

a a
p pμ μ

⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬

−⎩ ⎭ ⎩ ⎭  
(A3-9)

/

i e
m m
i e
m M m I

a a
p pμ μ

⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬

−⎩ ⎭ ⎩ ⎭  
(A3-10)

where 0 0, ,  andi i i i
m ma p a p  are the Fourier coefficients of boundary densities for the 

inclusion. Then, we can obtain the series-form Green’s function for the matrix and the 

inclusion, respectively, by applying Eq. (3-9) to have 

( )

'
0 0 0 0 0 0
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1

0 0

( , ) [ ( ) ( )][ ( ) ( )]
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(A3-11)
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m I m I m I m I m m I m I

aG x J k a k Y k a iJ k a p Y k a iJ k a
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πξ ρ

π ρ
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= − − −

− − −

< <

(A3-12)

The absolute amplitude of potential u  for the ideally bonded case and for the 

parameter 32( 10 )β =  are shown in Figs. (3-12) and (3-13). Good agreement is made. 

Case 2: a cavity case ( 0)β =  

As the parameter β  is zero as shown in Fig. (3-14), the circular inclusion is fully 

debonded from the matrix. Similarly as shown in the case 1, we can obtain the 

unknown coefficients as shown below: 
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(A3-13)

where 0 ande e
ma a , 1, 2,3,m=  are the Fourier coefficients of boundary densities 

for the matrix. Then, we can obtain the series-form Green’s function for the matrix by 

applying Eq. (3-9) to have 
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(A3-14)

The absolute amplitude of potential u  for the cavity case and for the 

parameter 32( 10 )β −=  are shown in Figs. (3-15) and (3-16). Good agreement is also 

made. 
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Number of Papers of FEM, BEM and FDM 
Numerical method Search phrase in topic field No. of entries 

FEM ‘Finite element’ or ‘finite elements’    66,237     6 
FDM ‘Finite difference’ or ‘finite differences’    19,531     2 
BEM ‘Boundary element’ or ‘boundary elements’ or ‘boundary integral’    10,126     1 
FVM ‘Finite volume method’ or ‘finite volume methods’ 1695 
CM ‘Collocation method’ or ‘collocation methods’ 1615 

 
 
 
 
 
 
 
 
 

Table 1-1 Bibliographic database search based on the Web of Science [Cheng A. H. D. (2005)] 
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where CPV and RPV are the Cauchy principal value and Riemann principal value, respectively. It is noted that the kernel in the present method 
should be properly expand in terms interior and exterior expansion of degenerate kernels 
 

Table 2-1 Comparisons of the BIE between the conventional BIEM and the present method 
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Table 2-2 Comparison of the numerical results 

MCP MMP Present Method 
Partitioning number, k [Melnikov and Melnikov (2001)] Fourier term, M 

2 2k k×  k k×  2(2 1) 2(2 1)M M+ × +  

Field 
point, 

y 

10 20 50 10 20 50 10 20 50 
0 

0.2 
0.4 
0.6 
0.8 
1.0 

0.000280 
0.010667 
0.062359 
0.177534 
0.317893 
0.000014 

0.000128 
0.010712 
0.062411 
0.177574 
0.317902 
0.000006 

0.000067 
0.010781 
0.062443 
0.177585 
0.317911 
0.000002 

0.000107
0.010700
0.062407
0.177583
0.317907
0.000000

0.000049
0.010779
0.062435
0.177590
0.317913
0.000000

0.000032
0.010798
0.062448
0.177593
0.317914
0.000000

0.000000 
0.010832 
0.062458 
0.177597 
0.318032  
0.002014 

0.000000
0.010832
0.062462
0.177596
0.317915
0.000064

0.000000
0.010832
0.062462
0.177596
0.317915
0.000000



 54

 
 

 Concentrated force in the matrix Concentrated force in the inclusion 

Pr
ob

le
m

 st
at

em
en

t 

 
 
 
 
 
 
 
 
 
 

 
 

St
re

ss
 d

is
tr

ib
ut

io
n 

al
on

g 
th

e 
in

te
rf

ac
e 

 
 
 
 
 
 
 
 
 

 
 
 

C
lo

se
d-

fo
rm

 
so

lu
tio

n 2

2 2
cos( )

( ) 2 cos
I

zr
I M

ea a
e a ea

☆ μ θσ
π μ μ θ

−
=

+ + −
 

[Wang and Sudak, (2007)] 

2

2 2

2

2

cos( )
( ) 2 cos

1 ( )
2

I
zr

I M

I M I

M M I

a ea
e a ea

☆ μ θσ
π μ μ θ

μ μ μ
π μ μ μ

−
=

+ + −

−
+

+

 

Se
ir

es
-f

or
m

 
so

lu
tio

n 

1
( ) cos

( )
mI

zr
mI M

a m
e

☆ μσ θ
π μ μ

∞

=
=

+
∑  

1
( ) cos

2 ( )
mI I

zr
mM I M

e m
a

☆ μ μσ θ
πμ π μ μ

∞

=
= +

+
∑  

 
 
 
 

Table 3-1 Series-form & closed-form solutions for the static case (ideally bonded  
interface) 
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Table 3-2 Stress contours of zxσ  and zyσ  for the static and dynamic solutions (a 

concentrated force in the matrix) 
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Table 3-3 Stress contours of zxσ  and zyσ  for the static and dynamic solutions (a 

concentrated force in the inclusion) 
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Integral equation 
(1888) 

  Integral equations 
(Fredholm, 1903) 

Modern numerical  
solutions of BIEs 
(in early 1960’s) 

Jaswon and Symm (1963) 
- 2D Potential Problems 

  F. J. Rizzo (1964, paper 1967)
—2D Elasticity Problems 

T. A. Cruse and F. J. Rizzo (1968) 
—2D elastodynamics 

P. K. Banerjee (1975)  
—coined the name ‘boundary element method’
( this has been disputed by others ) 

BEM Cauchy  
Kernel singular 

DBEM Hadamard  
Kernel hypersingular 

crack 

(1984)

FMM Large scale 
Degenerate kernel 

BEM emerged in 1980’s 

Figure 1-1 A brief history of the BEM 

                                         Original data from Prof. Liu Y J  

A Brief History of the BEM 
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Figure 1-2 (a) Bump contour 

 
  

 
 
 
 
 
 

 
 

 
Figure 1-2 (b) Limiting process 
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Figure 1-3 The boundary value problems with arbitrary boundaries 
 
 
 
 
 
 
 
 
 
 
 
 
 

Circular boundary 
Degenerate boundary 

Degenerate boundary 
(Chebyshev polynomials) 
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(Mathieu function) 

Circular boundary 
(Fourier series)



 60

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Numerical Methods 

Mesh Methods Meshless Methods 

Finite Element Method Boundary Element MethodFinite Difference Method 

Figure 1-4 Mesh generation [Chen and Lee (2007)] 

DE PDE- variational principle IE MFS,Trefftz method MLS, EFG 

Domain 

Boundary 

Diagnosis by feeling the pulse Acupuncture and moxibustion Operation 
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Figure 1-5 Convergence test [Hsiao (2005)] 
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Figure 1-6 Boundary-layer effect analysis [Wu (2006)]  
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Figure 1-7 The frame of the thesis 

Chapter 1 Introduction 

Chapter 2 Formulation of null-field integral equation and  
applications to construct the Green’s function for Laplace problems 

Chapter 4 Conclusions and further research 

Chapter 3 Applications to derive the 
 Green’s function for Helmholtz problems
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Figure 2-1 Problem statement 
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Figure 2-2 (a) Sketch of the null-field integral equation in conjunction 
with the adaptive observer system 
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Figure 2-2 (b) Sketch of the boundary integral equation for the domain point in 
conjunction with the adaptive observer system 
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Figure 2-3 Vector decomposition for the potential gradient in the hypersingular 

equation (collocation point x  integration on jB ) 
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Figure 2-4 Decomposition of the inclusion problem using the subdomain approach by taking free body 
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Figure 2-5(a) Green’s function for the eccentric ring 
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Figure 2-5(b) Potential contour using the Melnikov’s method [Melnikov and 
Melnikov (2001)] 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-5(c) Potential contour using the present method (M=50) 
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Figure 2-6(a) Green’s function for the half-plane with an aperture 
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Figure 2-6(b) Potential contour using the Melnikov’s method [Melnikov and 
Melnikov (2001)] 

 

 
 

 
 

 
 

 
 
 

 
 
 

Figure 2-6(c) Potential contour using the present method (M=50) 
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Figure 2-7(a) Green’s function for the half-plane problem with the Robin boundary 
condition 
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Figure 2-7(b) Potential contour by using the Melnikov’s approach [Melnikov and 
Melnikov (2006)] 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-7(c) Potential contour by using the null-field integral equation approach 
(M=50) 
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Figure 2-8(a) Problem sketch of half-plane problem with a circular hole and a 
semi-circular inclusion 
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Figure 2-8(b) Potential contour by using the Melnikov’s method approach 
[Melnikov and Melnikov (2006)] 

 

 
 
 
 

 
 
 

 
 
 

 
 

Figure 2-8(c) Potential contour by using the null-field integral equation approach 
(M=50) 
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Figure 3-1(a) An infinite matrix containing a circular inclusion with a concentrated 
force at ξ  in the matrix 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-1(b) An infinite matrix containing a circular inclusion with a concentrated 
force at ξ  in the inclusion 
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Figure 3-1(c) An infinite matrix containing a circular inclusion with a 
concentrated force at ξ  in the matrix (take free body) 

( )

M II

M

I M I

I

t t

t u u

μ
μ

β
μ

= −

= −
 

,I Icμ

a θ

,I Iu t

⊗
a θ ( ,0)eξ

,M Mcμ  

,M Mu t

2 2( ) ( , ) ( )
M

pk G x xξ δ ξ
μ

∇ + = − −



 78

 

Figure 3-2(a) Distribution of *
zrσ  for the dynamic ( 0.01)Mk a=  solution along 

the circular boundary (Wang and Sudak’s solution) 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-2(b) Distribution of *
zrσ  for the dynamic ( 0.01)Mk a=  solution along 

the circular boundary by using the present solution 
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Figure 3-3(a) Parameter study of / Maλ β μ=  for the stress response (Wang and 
Sudak’s solution) 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-3(b) Parameter study of / Maλ β μ=  for the stress response by using the 
present solution 
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Figure 3-4(a) Test of convergence for the Fourier series with a concentrated force in 
the matrix (real part) 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-4(b) Test of convergence for the Fourier series with a concentrated force in 
the matrix (imaginary part) 
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Figure 3-5(a) The distribution of displacement *
Iu  along the circular boundary for 

the case of 1λ=  ( 1, 2,3, 4,5Mk a= ) (Wang and Sudak’s solution) 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-5(b) The distribution of displacement *
Iu  along the circular boundary for 

the case of 1λ=  ( 1, 2,3, 4,5Mk a= ) by using the present solution 
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Figure 3-6 Distribution of *
zrσ  for the dynamic ( 0.01)Mk a=  solution along the 

circular boundary ( 0.9 )e a=  

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-7 Parameter study of / Maλ β μ=  for the stress response ( 0.9 )e a=  
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Figure 3-8 The distribution of displacement *
Iu  along the circular boundary for the 

case of 1λ=  ( 1, 2,3,4,5)Mk a=  ( 0.9 )e a=  
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Figure 3-9 An infinite matrix containing two circular inclusions with a concentrated 
force at ξ  in the matrix 
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Figure 3-10 Distribution of *
zrσ  of the matrix at the position of 1( ,  )a π  various 

d   
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-11 The contour of the displacement for an infinite matrix containing two 
inclusions with a concentrated force at ξ  in the matrix 
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Figure 3-12 The absolute amplitude of displacement for an ideally bonded case 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-13 The absolute amplitude of displacement for 3210β =  
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Figure 3-14 A matrix with a debonded inclusion 
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Figure 3-15 The absolute amplitude of displacement for the cavity 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-16 The absolute amplitude of displacement for 3210β −=  
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