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Notations

radius of a circular aperture

Fourier coefficients of boundary density G(s ,&)
boundary

Cauchy principal value

domain of interest

complementary domain

distance between the circles

Green’s function

Zeroth order Hankel function of the first kind

the nth order Bessel function of the first kind
the derivative of J_ ()

wave number

kernel function in the hypersingular formulation
degenerate kernel function of L(s,x) for R>p
degenerate kernel function of L(s,x) for p>R
truncated terms of Fourier series

kernel function in the hypersingular formulation
degenerate kernel function of M(s,x) for R>p
degenerate kernel function of M(s,x) for p >R
number of the circles

normal vector

normal vector at the source point s

normal vector at the field point x

radius of the outer boundary

Riemann principal value

source point

kernel function in the singular formulation
degenerate kernel function of T(s,x) for R>p
degenerate kernel function of T(s,x) for p>R
normal derivative of u(s) at s

normal derivative of u(x) at X

normal derivative of U'

normal derivative of u"

kernel function in the singular formulation
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U'(s, x) degenerate kernel function of U(s,x) for R>p

ue(s, x) degenerate kernel function of U(s,x) for p>R

u(s) potential function on the source point s

u(x) potential function on the field point x

u' Fourier coefficients of boundary densities for the inclusion
u" Fourier coefficients of boundary densities for the matrix

X field point

Y, () the nth order Bessel function of the second kind

Y. () the derivative of Y, (-)

I} the imperfect interface parameter

@ the circular frequency

1 shear modulus

A material conductivity

P, d, Fourier coefficients for the boundary density of 9G(s,&)/on
r distance between the source point s and the field point x, r= |x— s|
[U] influence matrix of the kernel function U (s, X)

{u} vector of Fourier coefficients {a, & b - a, b,}
[T] influence matrix of the kernel function T (s,X)

{t} vector of Fourier coefficients {p, P, ¢ = Pu GQu}
(% Vi) boundary point for the kth circle

O(X—:5) Dirac-delta function

(1] diagonal matrix of shear modulus

£, & location of a concentrated source and image source of Green’s function
0 polar angle measured with respectto x, direction

(R,0) polar coordinate of s

(p, ) polar coordinate of X

V? Laplacian operator

“1” index of inclusion

“M” index of matrix
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Abstract

In this thesis, we derive the Green’s function for Laplace and Helmholtz problems
with circular apertures and/or inclusions subjected to the Dirichlet, Neumann, mixed
and imperfect-interface boundary conditions by using the null-field integral equation
approach in conjunction with degenerate kernels, Fourier series and the adaptive
observer system. After exactly collocating points on each real circular boundary to
satisfy the boundary conditions, a linear algebraic system is obtained. Then unknown
coefficients can be easily determined. Five advantages: (1) mesh-free generation (2)
well-posed model, (3) principal value free (4) elimination of boundary-layer effect (5)
exponential convergence, are achieved. Finally, several examples, including the
eccentric case, half-plane Laplace problems with circular apertures and inclusions,
and anti-plane dynamic Green’s function for several circular inclusions problems,
were demonstrated to see the validity of the present formulation and match well with
available solutions in the literature. Besides, parameter study of wave number and
interface constant is done. Special cases of cavity and ideal bonding are also
examined. A general-purpose program for deriving the Green’s function of Laplace or
Helmholtz problems with arbitrary number of circular apertures and/or inclusions of
arbitrary radii and various positions involving the Dirichlet or the Neumann or mixed

boundary condition was developed.

Keyword: degenerate kernel, Fourier series, null-field approach, inclusion, anti-plane,

Green’s function, imperfect, Laplace or Helmholtz problems, imperfect-interface
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Chapter 1 Introduction

1.1 Overview of BEM and motivation

For many problems involving complicated geometry shape, initial condition or
boundary condition, numerical solutions are generally required in engineering
applications. Researchers and scholars mainly proposed several numerical methods as
shown in the Table 1-1, e.g., boundary element method (BEM), finite element method
(FEM), finite difference method (FDM). FDM approximates the derivatives in the
differential equations which govern each problem using some types of truncated
Taylor expansion and thus express them in terms of the values at a number of discrete
mesh points. FDM has main difficulties of the technique in the consideration of
curved geometries and the application of boundary condition. For the case of general
boundaries, the regular finite difference grid is unable to accurately reproduce the
geometry of the problem. In the past decade, FEM has been widely applied to carry
out many engineering problems. FEM utilizes a weighted residual method of the
minimum potential energy theorem. The disadvantages of FEM are inconvenient in
modeling infinite regions, moving boundary problems, concentrated load and dealing
with quantities of data, especially for three-dimensional problems. BEM was
developed as a response to the above difficulties. The method requires only
discretization of the boundary thus reducing the quantity of data in numerical
implementation. BEM is suitable for the general boundaries regardless of the
dimensionality of the problem. Because of the problem formulation in terms of
fundamental solutions, discontinuities and singularities can be modeled without
special difficulties. There are also no difficulty for free and moving boundaries.
Another important advantage of the method is that it can deal with problems
extending to infinity without having to truncate the domain at a finite distance. The
integral equation was introduced by Fredholm in 1903. The origin of the boundary
element method can be traced to the work carried out by some groups of researchers
in the 1960’s on the applications of boundary integral equations to potential flow and
stress analysis problems. In the 1960 period, the BEM was utilized to solve 2-D

elasticity by Rizzo [Rizzo (1967)] and 2-D elastodynamics problem by Cruse and



Rizzo [Cruse and Rizzo (1968)], respectively. In 1978, the first book on boundary
elements in its title was published [Brebbia (1978)], and the first international
conference on the topic was organized. From 1978 to 1986, the mathematical
foundation of BEM is the singular integral equation with Cauchy kernel. In order to
solve the boundary value problem with degenerate boundaries, Hong and Chen [Hong
and Chen (1988)] introduced the dual BEM with hypersingularity. Another break
through of BEM is the introduction of degenerate kernels which makes fast multipole
BEM possible. A brief history of BEM is shown in Figure 1-1. Although the study of
BEM has been popular for solving engineering problems, five critical issues are of

concern.

(1) Treatment of weak, strong and hypersingular singularity

Singularity of BEM appears when the source and response points coincide. One
way is to face the singularity. First, Guiggiani [Guiggiani (1995)] has derived the
free terms for Laplace and Navier equations using differential geometry and bump
contour approach in Figure 1-2(a). Second, Gray and Manne [Gray and Manne
(1993)] have employed a limiting process to ensure a finite value from an interior
point to boundary by using a symbolic software in Figure 1-2(b). On the other
hand, many scholars proposed several skills to regularize singularity. Achenbach
et al. [Achenbach, Kechter and Xu (1988)] proposed the off-boundary approach
in order to overcome the fictitious frequencies free of singularity and Waterman
used null-field approach to deal with the singularity. Although, fictitious BEM or
null-field approach can avoid the singularity, but they result in an ill-posed matrix
which will be elaborated on later.
(2) 1l-posed model

In order to avoid directly calculating the singular and hypersingular integrals, two
approaches, null-field approach or fictitious BEM [Achenbach, Kechter and Xu
(1988)], have been used. However, they result in an ill-conditioned matrix. The
influence matrix is not diagonally dominated and needs preconditioning. To
approach the fictitious boundary to the real boundary or to move the null-field
point to the real boundary can make the system well-posed. However, singularity

occurs. In the thesis, we may wonder whether it is possible to push the null-field
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(3)

(4)

point on the real boundary but free of calculating singularity and hypersingularity.
The answer is yes. Instead of determining the singular (hypersingular) integrals
using the definition of CPV (HPV), the kernel function is described in an
analytical form for interior and exterior potentials by employing the separable
technique since the double-layer potential is discontinuous behavior when across
the boundary. Therefore, degenerate kernels, namely separable kernels, are
employed to represent the potential of the perforated domain which satisfies the
governing equation.

Boundary-layer effect

Boundary-layer effect in BEM occurs when the collocation point approaches near
the boundary. Kisu and Kawahara [Kisu and Kawahara (1988)] proposed a
concept of relative quantity to eliminate the boundary-layer effect. Chen and
Hong in Taiwan [Chen and Hong (1994)] as well as Chen et al. in China [Chen,
Lu and Schnack (2001)] independently extended the idea of relative quantity to
two regularization techniques which the boundary densities are subtracted by
constant and linear terms. For the stress calculation, Sladek et al. [Sladek and
Sladek (1991)] used a regularized version of the stress boundary integral equation
(o BEM) to compute the correct values of stresses close to the boundary. Others
proposed a regularization of the integrand by using variable transformations. For
example, Telles [Telles (1987)] used a cubic transformation such that its Jacobian
is minimum at the point on the boundary close to the collocation point and can
smooth the integrand. Similarly, Huang and Cruse [Huang and Cruse (1993)]
proposed rational transformations which regularized the nearly singular integrals.
We concern how to develop a BIEM formulation free of boundaries-layer effect.

Convergence rate

How to speed up the convergence rate is an important issue for numerical
methods. The different boundary shape has different interpolation function for
boundary densities. Fourier series for circular boundary, spherical harmonic
function for surface of sphere, Methieu function for the boundary densities of
elliptic boundaries and Legendre polynomials for the boundary densities on the

regular and degenerate straight boundaries were incorporated into BEM,
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respectively. Regarding to constant, linear and quadratic elements, the
discretization scheme does not take the special geometry into consideration. It
results in the slow convergence rate about these geometry. Figure 1-3 shows
randomly distributed apertures and/or inclusions with square, elliptic and circular
shapes, etc. Bird and Steele [Bird (1992); Bird and Steele (1991); Bird and Steele
(1992)] presented a Fourier series procedure to solve circular plate problems
containing multiple circular apertures in a similar way of Trefftz method by
adopting the interior and exterior T-complete sets. The T-complete function can
be found in the degenerate kernels of fundamental solution [Chen, Wu, Lee and
Chen (2007)]. Barone and Caulk [Barone and Caulk (1981, 1982, 1985, 2000);
Caulk (1983, 1983, 1983, 1984)] have solved the boundary potential and its
normal derivative of Laplace problem by using Fourier series on each aperture in
two-dimensional region with circular apertures by using the special boundary
integral equations. Crouch and Mogilevskaya [Crouch and Mogilevskaya (2003)]
utilized Somigliana's formula and Fourier series for elasticity problems with
circular boundaries. Mogilevskaya and Crouch [Mogilevskaya and Crouch (2001)]
have solved the problem of an infinite plane containing arbitrary number of
circular inclusions based on the complex singular integral equation. In their
analysis procedure, the unknown tractions are approximated by using complex
Fourier series. However, for calculating an integral over a circular boundary, they
didn’t express the fundamental solution using the local polar coordinate. However,
they didn’t employ the null-field integral equation and degenerate kernels to fully
capture the circular boundary, although they all employed Fourier series
expansion. Kress has proved that the exponential convergence instead of the
algebraic convergence in the BEM can be achieved by using the degenerate
kernels and Fourier expansion [Kress (1989)]. This thesis will take advantage of
this higher rate of exponential convergence to derive the Green’s function for
problems with circular boundaries by using Fourier series in conjunction with

degenerate kernels.
Mesh generation

Although BEM is free of domain discretization, boundary mesh generation is also

-4-



required since collocation point is on the boundary. We introduce the generalized
Fourier coefficients for problems with circular boundaries. In Figure 1-4, domain
type methods, FEM and FDM, have been widely used to solve the engineering
problem. Boundary type methods, BEM, MFS and Trefftz method have received
more attention in the recent years. In analogy of clinical medicine, FEM behaves
like operation, BEM is similar to diagnosis by feeling the pulse and boundary
collocation method behaves like acupuncture and moxibustion [Chen and Lee
(2007)].
In this thesis, we focus on the Green’s function for problems with circular apertures
and/or inclusions since the fundamental solutions can be expanded into separable
forms in the polar coordinate. Chen and Weng [Chen and Weng (2001)] have
introduced the conformal mapping with a Laurent series expansion to analyze the
Saint-Venant torsion of a circular compound bar with an imperfect interface. Lebedev
et al. [Lebedev, Skalskaya and Uflyand (1979)] solved the problem by using the
bipolar coordinate. Recently, Honein et al. [Honein, Honein and Herrmann (1992)]
have investigated the harmonic problem with two circular inclusions by using the
Mobius transformation. To fully capture the geometry of circular boundary, the
fundamental solution and boundary densities are expanded into the degenerate form
and Fourier series in the polar coordinate, respectively. Five advantages are obtained,
(1) singularity free, (2) boundary-layer effect free, (3) exponential convergence, (4)
well-posed model, (5) mesh-free generation. In the recent three years, Chen [Chen
(2005)] and his coworkers applied the null-field integral formulation, Fourier series
and degenerate kernels to solve Laplace [Chen, Shen and Wu (2005); Chen, Shen and
Chen (2006); Chen and Wu (2006); Chen and Wu (2007); Shen, Chen and Chen
(2005)], Helmholtz [Chen (2005); Chen, Chen and Chen (2005); Chen, Chen and
Chen (2005)], biHelmholtz and biharmonic [Chen, Hsiao and Leu (2006)] problems
with circular apertures. Exponential convergence by using their methods was
achieved as demonstrated by Hsiao [Hsiao (2005)] in Figure 1-5. Then, Chen and Wu
have developed this approach to solve inclusion problems in their theses. The
boundary-layer effect is eliminated by using the null-field integral equation. A

demonstration to eliminate the boundary-layer effect is shown in Figure 1-6 which



was done by Wu [Wu (2006)]. In mathematics, Green’s function is important to solve
the ordinary and partial differential equations [Kellogg (1953); Bergman and Schiffer
(1953); Morse and Fechbach (1953); Courant and Hilbert (1962); Melnikov (1977);
Roach (1982)]. Analytical Green’s function have been presented for only a few simple
configurations, Boley [Boley (1956)] analytically constructed the Green’s function by
using the successive approximation. Adewale [Adewale (2006)] proposed an
analytical solution for an annular plate subjected to a concentrated load. Numerical
Green’s function has received attention by many researchers [Telles, Castor and
Guimaraes (1995); Guimaraes and Telles (2000); Ang and Telles (2004)]. Melnikov
[Melnikov (1982, 1995); Melnikov and Melnikov (2001)] utilized the method of
modified potentials (MMP) to solve boundary value problems from various areas of
computational mechanics. Later, Melnikov [Melnikov and Melnikov (2006)] studied
in computing Green’s functions and matrices of Green’s type for mixed boundary
value problems stated on 2-D regions of irregular configuration. For the different field
problems, dynamic Green’s functions for time-harmonic problems [Kitahara (1985);
Denda, Wang and Yong (2003); Denda, Araki and Yong (2004)], piezoelectricity
problems [Wang and Zhong (2003); Chen and Wu (2006)], and scattering problems in
elastodynamics [Willis (1980a, b); Talbot and Willis (1983)] have been solved by
using BEM. Following the experiences of previous investigators and the success of
Chen’s group using null field integral formulation, the null-field approach will be
extended to derive Green’s function for Laplace and Helmholtz equations with
multiple circular apertures and/or inclusions subjected to the Dirichlet, Neumann,
mixed and imperfect interface boundary conditions, respectively. We will revisit the
dynamic Green’s function for the imperfect interface by Wang and Sudak [Wang and
Sudak (2007)].

1.2 Organization of the thesis

The frame of the thesis is shown in Figure 1-7. In this thesis, the null-field integral
equations in conjunction with degenerate kernels and Fourier series, namely the
null-filed integral equation approach, are utilized to derive the Green’s function with

circular apertures and/or inclusions. The organization of each chapter is summarized



below:

In the chapter 2, we introduce the formulation of null-filed integral equation and
construct the Green’s function of Laplace problems. To fully utilize the geometry of
circular boundary, Fourier series for boundary densities, degenerate kernels for
fundamental solutions and the adaptive observer system will be incorporated into the
null-field integral equation. A linear algebraic system is obtained after collocating
points on each circular boundary and satisfying the boundary conditions. The
unknown coefficients in the algebraic system can be determined easily. It is
straightforward to obtain the field solution by substituting the unknown coefficients to
integral equation for domain point. For solving the potential gradient by using the
hypersingular equation, vector decomposition should be considered. Furthermore, the
derivation of Green’s function for 2-D Laplace problem containing circular apertures
or inclusions is the main concern. Green’s functions for eccentric or half-plane
problems with a circular hole as well as an aperture and a semi-circular inclusion are
found. The results of eccentric case and half-plane problems with a circular aperture
or an aperture and a semi-circular inclusion are compared with those by Melnikov.

In the chapter 3, we focus on the applications in deriving the anti-plane dynamic
Green’s function of the Helmholtz equation for several circular inclusions with
imperfect interfaces. Not only special cases of cavity and ideal bonding but also
parameter study of wave number and interface constant are considered. Numerical
examples were given to test our programs and some results were compared with those
of Wang and Sudak to verify the validity of our formulation.

In the chapter 4, we draw out some conclusions item by item and reveal some further

topics.



Chapter 2 Construction of Green’s function using the
null-field integral approach for Laplace problems
with circular boundaries

Summary

A null-field integral approach is employed to derive the Green’s function for boundary
value problems stated for the Laplace equation with circular boundaries. The kernel
function and boundary density are expanded by using the degenerate kernel and
Fourier series, respectively. Not only an eccentric ring but also a half-plane problems
with a circular aperture subject to Dirichlet or Robin boundary condition are
demonstrated to verify the validity of the present approach. Besides, a half-plane
problem with a circular aperture as well as a semi-circular inclusion is solved. Good

agreement is made after comparing with the Melnikov’s results.
2.1 Introduction

Mathematicians as well as engineers have studied Green’s function in many fields
[Jaswon and Symm (1977); Melnikov (1977)]. But, only a few of simple regions
allow a closed-form Green’s function for Laplace equation. For example, one aperture
or circular sector in half-plane, infinite strip, semi-strip or infinite wedge are mapped
by elementary analytic functions, making their Green’s function expressed in a closed
form. A closed-form Green’s function of Laplace equation by using the mapping
function becomes impossible for complicated domain except for the annular case.
Numerical Green’s function has received attention from BEM researchers by Telles et
al. [Telles, Castor and Guimaraes (1995); Guimaraes and Telles (2000); Ang and
Telles (2004)]. Melnikov [Melnikov (1982), (1995); Melnikov and Melnikov (2001)]
utilized the method of modified potentials (MMP) to solve boundary value problems
from various areas of computational mechanics. Later, Melnikov [Melnikov and
Melnikov (2006)] studied in computing Green’s functions and matrices of Green’s
type for mixed boundary value problems stated on 2-D regions of irregular
configuration. For the image method, Thompson [Thomson (1848)] proposed the

concept of reciprocal radii to find the image source to satisfy the homogeneous



Dirichlet boundary condition. Chen and Wu [Chen and Wu (2006)] proposed an
alternative way to find the location of image through the degenerate kernel. In this
chapter, we will construct the Green’s function of multiply connected domain by
using the null-field integral equation. Green’s function for eccentric case and
half-plane problems with a circular hole or an aperture as well as a semi-circular

inclusion are solved semi-analytically and match well with Melnikov’ results.

2.2 Formulation of null-field integral equation

The null-field integral equation combining degenerate kernels of the fundamental
solution and Fourier series of boundary densities is utilized to solve problems with
circular apertures and/or inclusions. An adaptive observer system is addressed to fully
employ the property of degenerate kernels for circular boundaries. After exactly
collocating points on each real circular boundary to satisfy the boundary conditions, a
linear algebraic system is obtained. How to use the hypersingular equation and match
of interface conditions is also introduced for multiply-connected problems in this

formulation.

2.2.1 Dual boundary integral equations and dual null-field integral equations

Considering the problem with N randomly distributed circular cavities and/or
inclusions bounded in the domain D and enclosed with the boundaries, B,
(k=0,1,2,---, N) as shown in Figure 2-1. We define

8= B, (2-1)

In mathematical physics, many engineering problems subjected to the concentrated

source satisfy

V2G(X, &) =6(x—¢), xeD (2-2)
where G(x, €) is the Green’s function and can be seen as the potential, V°
indicates the Laplacian operator, 6(x—¢) denotes the Dirac-delta function of source
at £ and D is the domain of interest. Based on the dual boundary integral

formulation for the domain point, we have

27G(x,£) = f T (5, X)G(s, £)dB(s) - f U s, X )MdB(s)+U(§ X) 23

, XxXeD



G(X £) aG(S £)

f M (s, X)G(s, £)dB(s) — f L(s, X) dB(s) + L(&, X)

(2-4)
, XeD
where S and x are the source and field points, respectively, B is the boundary,
n, and n. denote the outward normal vector at field point x and source point s

X

and the kernel function U (s,x) =Inr is the fundamental solution which satisfies

V2U (s, X) = 2m6(X—S9) , (2-5)
The other kernel functions, T(s,x), L(s,x) and M(s,x), are defined by
oU (s, X oU (s,x 0°U (s, x
T(s,X)EL, L(s,x) = ( ), M (s,x) = oY) (2-6)
n, n, on.on,

By collocating the field point x outside the domain (including boundary), the

null-field integral equations yield

O:fBT(s,x)G(s,g)dB(s)—j;u(S,X)%riadB(S)+U(£1x)1 ot

O:fBM(s,x)G(s,f)dB(s)—j:3 L(s,x)%rzg)dB(s)JrL(f,x), xe D¢ (2-8)

where D° is the complementary domain. By using the degenerate kernels, the BIE
for the “boundary point” can be easily derived through the null-field integral equation
by exactly collocating x on B in Eq. (2-7) [Chen, Shen and Chen (2006)]. All the
singular integrals disappear in the present formulation since that the potential across
the boundary can be explicitly determined in both sides by using degenerate kernels
as shown in the Table 2-1. Mathematically speaking, our domain is a closed set

(DUB), instead of the open set (D only) of the conventional method.

2.2.2 Expansion of kernel function and boundary density

Based on the separable property, the kernel function U (s,x) can be expanded into
series form by separating the field point X(p,¢)and source points(R,#) in the polar

coordinate:
U'(R,8;p,$)=In i%[ﬁ] cosm(0—¢), R>p
U (s,x)=1 m;l (2-9)
U®(R,0;p,0)=Inp— Z% —| cosm(6—¢), p>R

It is noted that the leading term and the numerator in the above expansion involve the

larger argument to ensure the log singularity and the series convergence, respectively.
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According to the definition of T (s, x)in Eq. (2-6), we have

T(R0:p,6) =2+ 3 (Lroosm©—6), R>
T(s,X) = " (2-10)

Te(R,G;p,qb):—i(Rpm_ Ycosm(0 —¢), p>R

For the higher-order kernel functions, L(s,x) and M(s,x) in Eqg. (2-6), are shown

below:

L(R.0:p6) =Y (o) cosm(v—0), R>p

L(s,X) = 1m:lx - (2-11)
Le(R,H;p,<b)=;+Z(pm+l)cosm(9—¢), p>R

i . < mPW1

M (R’H’p!(b):Z( Rm+1 )Cosm(9_¢)! RZP

M (s, X) = " - (2-12)
Me(R,H;p,¢):Z(W)Cosm(«?—qb), p>R

The unknown boundary densities can be represented by using the Fouries series as

shown below:

G(s;,§)=aj +> (alcosnd, +b!sinng,), s, €B

n=1

j:1,2,"',N (2'13)

j ’
0G(s., e _— .
%: oK +Z;(pn‘ cosnd; +q,sinnd;), s;€B;, j=12,---,N (2-14)
where N is the number of circular boundaries. In real computation, the finite M

terms for expansion of kernel and boundary density are adopted.
2.2.3 Adaptive observer system

An adaptive observer system is addressed to fully employ the property of degenerate
kernels for circular boundaries as shown in Figures 2-2 (a) and (b). For the integration,
the origin of the observer system can be adaptively located on the center of the
corresponding boundary contour. The dummy variable in the circular boundary
integration is the angle ¢ instead of radial coordinate R. By using the adaptive

system, all the integrations can be easily calculated for multiply connected problems.
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2.2.4 Vector decomposition technique for the potential gradient in the
hypersingular equation

Considering the Green’s function problem for the nonconcentric case, we solved the
potential gradient by employing the hypersingular integral equation in Eq. (2-4).
When we collocate the domain point x on the B, circular boundary, but integrate
the B, circular boundary, the normal derivative of potential for the domain point x
need special treatment. In Figure 2-3 the true normal direction with respect to the
collocation point x on the B, boundary can be superimposed by using the radial
direction and angular direction on the B; boundary. According to the concept of
decomposition technique, the degenerate kernels for the higher-order singular

equation of Eq. (2-6) are changed as :

L'(R,6; p,®) z%ﬁ;p”’b)cos«ﬁ —¢;)
_i_iwcos(z_(éi_gbj)’ R>p
p 0¢ 2
L(s,Xx) =1 HU°(R.0: p.) (2-15)
L*(R,0; p,¢) = a’p’p’ cos(¢; — )
10U°R.0:0,0) (T,
+p 5 cos(2 ¢ —¢;), p>R
Mi(R,e;p,@:%/Wcos(a—@)
+lwcos(£_¢i_¢j), R>p
M | p 0 2
(s,x)= T (R.0: p.) (2-16)
Me(R,e;p,qb):a’—p’p’COS(c—f)
1T RO @) (o™ s
+p 99 cos(o—h =) p>R

where ¢ and ¢; shows the angle of the domain point x for the ith and jth

circles, respectively, in the polar coordinate.

2.25 Linear algebraic equation

By moving the null-field point x; tothe ith circular boundary in the limit sense for

Eq. (2-7), we have the linear algebraic equation
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(Ut} = [TH{u} +{b} (2-17)

where {b} is the vector due to the source of Green’s function, [U] and [T] are
the influence matrices with a dimension of (N +1)(2M +1) by (N +1)(2M +1),
{u} and {t} denote the column vectors of Fourier coefficients with a dimension of
(N+1)(2M +1) by 1 inwhich [U], [T], {u}, {t} and {b} can be defined as

follows:

U 00 U 01 U ON TOO TOl TO N
[U]— UlO Ull UlN 1 [T]— -r:lO -r.ll IN (2-18)
UNO UNl UNN TNO TNl TNN
0 tO bO\
ul tl bl
{u}: Uy {t}:‘ t ’{b}:‘ b, (2-19)
l"IN ‘tN bN
where the vectors {u;} and {t;} areinthe form of {a; a’/ b’ - a} b)Y
and {p! p/ o - p) q)} respectively; the first subscript “ i ”

(i=0,1,2,---,N) in [U;] and [T;] denotes the index of the ith circle where the
collocation point is located and the second subscript “ j” (j=0,1,2,---, N) denotes
the index of the jth circle where boundary data {u;} or {t;} are specified, N is
the number of circular apertures in the domain and M indicates the truncated terms
of Fourier series. The coefficient matrix of the linear algebraic system is partitioned
into blocks, and each off-diagonal block corresponds to the influence matrices
between two different circular cavities. The diagonal blocks are the influence matrices
due to itself in each individual hole. After uniformly collocating the point along the

jthcircular boundary, the submatrix can be written as
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U - (¢1) Ulc ((751) Uls (¢1) Ui;‘v'c (¢1) U e (¢1)
UOC (¢2) Ulc(¢2) Uls(¢2) Ui?ﬂc(@) ij (¢2)
[Uij] _ Uij :(¢3) U (¢3) U (¢3) Uij :(¢3) Uij :(ﬁbs) (2_20)
OC(¢2M) UlC(¢2M) U15(¢2M) MC(¢2M) Ms (¢2M)
(¢EM+4) LJ (¢2M+1) LJ (¢5M+4) e (¢EM+4) LJ (¢EM+&)
TijOC (¢1) Tij1C (¢1) Tijls (¢1) o TijMC (¢1) TijMS (¢1)
Tijoc (‘752) TijlC (¢2) Tij15 (¢2) o TijMC (‘752) Tist (¢2)
[Tij ] _ Tij (‘753) Tij (¢3) Tij (¢3) Tij :(¢3) Tij :(¢3) (2_21)
TijOC (¢2M ) Tijlc (¢2M ) Tuls (¢2M ) e Tich (¢2M ) TijMS (¢2M )
Tijoc (¢2M +1) Tij1C (¢2M +1) Tij15 (¢2M +1) e TijMC (¢2M +1) Tist (¢2M +1)
[ |n|X(pi,¢1)—§| ‘
|n|x(pi’¢2)_£|
{b}=1 Mx(p,0)—¢ (2-22)
In |X(Piv¢2m+1) _§|

where ¢, 1=12,---,2M +1, are the angles of collocation along the circular
boundary. Although both the matrices in Eqgs. (2-20) and (2-21) are not sparse, it is
found that the higher order harmonics is considered, the lower influence coefficients
in numerical experiments is obtained. It is noted that the superscript “0c” in Egs.
(2-20) and (2-21) indicates the first term of Fourier series. The element of [U;] and

[T;] are defined respectively as

Ui?c(¢m):j;jU(sj,xm)cos(nej) R,;do;,

(2-23)
n=012-M, m=12 -, 2M +1

Uz, )_fBjU(sj,xm)sin(an)Rdej, 224
n=12--, M, m=12-, 2M +1
N=0,12- M, m=12-- 2M +1

Tijns(¢m):fBjT(sj,xm)sin(an)RjdHJ-, 226

n=,2,---, M, m=12,---, 2M +1

where j is no sum, s; =(R;,0;), and ¢, is the polar angle of the collocation
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point x . The influence coefficient of Ui(¢,) in Eq. (2-23) denotes the response at
X, due to cosné@ distribution. The direction of contour integration should be taken
care, i.e., counterclockwise and clockwise directions are for the interior and exterior
problems, respectively. By rearranging the known and unknown sets, the Fourier

coefficients can be obtained easily.

2.2.6 Matching of interface conditions for problems of apertures and
inclusions

Before extending the formulation from aperture to inclusion, subdomain approach by
taking free body needs to be used. By decomposing the inclusion problem into two
problems, we have two subsystems. One is the problem with apertures and the other is
for each single inclusion problem. Figure (2-4) represents the decomposition of the
inclusion problem. According to the continuity of displacement and equilibrium of

traction along the ideal interface for the subdomain approach, we have the constraints
{ul't={uj} on 8, (2-27)
{6} ==l {51} on B, (2-28)

where [g,] and [y, ] can be defined as follows:

=, " =T (2-29)
0 0 - g 0 0 - p

in which g, and g, denote the shear modulus of the matrix and the inclusion,
respectively. After assembling the null-field integral equations and the interface
conditions (displacement continuity and force equilibrium), a global algebraic system
can be obtained.

T UM 0 0 |juf'| [U;(x9)

J

0 0 T Uy | o 530
Il 0 -1 o0 |u| | o0 (2-30)
0 wy 0 4y |t 0
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2.2.7 Image technique for solving half-plane problems

The half-plane problem is imbedded to a full-plane problem through the image
method. By employing the anti-symmetric property, the boundary condition of
half-plane can be satisfied through the image approach. In the real implementation,

the full-plane problem is solved, first.
2.3 llustrative examples and discussions

Case 1: eccentric ring (semi-analytical solution)

Figure 2-5(a) depicts the Green’s function of the eccentric ring. The source point is
located at £ = (0,0.75). Figures 2-5(b) and 2-5(c) show the potential distribution by
using the present method and Melnikov's approach [Melnikov and Melnikov (2001)],
respectively. The two radii of inner and outer circles are a=0.4 and b=1.0. The
two centers of the inner and outer circles are (-0.4, 0) and (0,0), respectively. It is
noted that outer radius of one is a degenerate scale and needs special treatment as
described in detail by Chen and Shen [Chen and Shen (2007)]. Comparison of the
present results with MCP and MMP methods [Melnikov and Melnikov (2001)] is
shown in the Table 2-2. We can also obtain good data by our method instead of
dealing with Green’s function G(x,£) by MMP method, beforehand. Good

agreement is made.
Case 2: a half plane with an aperture (semi-analytical solution)

Figure 2-6(a) depicts the Green’s function for the half plane with a hole. The source
point is located at £ =(2,1). The center and radius of the aperture are (0,3) and
a=1.0. Figures 2-6(b) and 2-6(c) show the potential distribution by using the present

method and Melnikov's approach, respectively. Good agreement is made.

Case 3: a half-plane problem with a circular boundary subject to the Robin boundary

condition.

A half-plane problem with an aperture is considered. The governing equation and
boundary condition are shown in Fig. 2-7(a). The center and radius of the aperture are
(2,2) and a=1.0,respectively. The concentrated source is located at(0,3.5). The
Robin boundary condition is t =—2u imposed on the aperture. Figures 2-7(b) and

2-7(c) show the potential distribution by using the present method and Melnikov's
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approach, respectively. Good agreement is obtained.
Case 4: a half plane problem with a aperture and an inclusion

A half-plane problem with a circular hole and a half-circular inclusion are considered
as composed of two regions D, ={0<r<l0<e¢<7} and D,={l<r <o,

0<p<m} filled in with different materials (A=\,/) = 0.1). The governing
equation and boundary condition are shown in Fig. 2-8(a). The center and radius of
the aperture are (r,p;1.4,7/3)and a, = 0.4, respectively. The concentrated source is
located at (r,;0.5,7/3). Figures 2-8(b) and 2-8(c) show the potential distributions
by using the present method and Melnikov's approach, respectively. Good agreement

is also made.
2.4 Concluding remarks

For the Green’s function with circular boundaries, we have proposed a semi-analytical
approach to construct the Green’s function by using degenerate kernels and Fourier
series. Several examples, including the eccentric case and half plane problems with
circular apertures and inclusions, were demonstrated to check the validity of the
present formulation. Our advantages are five folds: (1) mesh-free generation (2)
well-posed model (3) principal value free (4) elimination of boundary-layer effect (5)
exponential convergence. A general-purpose program to construct the Green’s fuction
for Laplace problems with circular boundaries of arbitrary number, various radius and
location was developed. Following the success of Laplace case, we will extend to the

Helmholtz equation in the next chapter.
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Chapter 3 Derivation of anti-plane dynamic Green’s
function for several circular inclusions with imperfect
interfaces

Abstract

A null-field integral equation is employed to derive the two-dimensional antiplane
dynamic Green’s functions for a circular inclusion with an imperfect interface. We
employ the linear spring model with vanishing thickness to characterize the imperfect
interface. Analytical expressions of displacement and stress fields due to
time-harmonic antiplane line forces located either in the unbounded matrix or in the
circular inclusion are presented. To fully capture the circular geometries, degenerate-
kernel expressions of fundamental solutions in the polar coordinate and Fourier series
for boundary densities are adopted. Good agreement is made after comparing with the
analytical solution derived by Wang and Sudak’s results. Parameter study of wave
number and interface constant is done. In this chapter, we employ the null-field BIE
to derive the analytical Green’s function instead of choosing the Trefftz bases by
using the Wang and Sudak’s approach. Special cases of cavity and ideal bonding as

well as static solutions are also examined.

3.1 Introduction

Analytical as well as numerical Green’s functions have received many BEM
researchers’ attention [Ang and Telles (2004)]. Boundary element method (BEM) was
employed to solve time-harmonic Green’s function [Kitahara (1985); Denda, Wang
and Yong (2003); Denda, Araki and Yong (2004)]. Also, dynamic Eshelby problems
[Mikata and Nemat-Nasser (1990); Cheng and Batra (1999); Michelitsch, Levin and
Gao (2002)], piezoelectricity problems [Chen and Wu (2006); Wang and Zhong
(2003)] and scattering problems in elastodynamics [Willis (1980a, b); Talbot and
Willis (1983)] were solved. Although a lot of papers on homogenous case were
published, only a few of the time-harmonic dynamic Green’s functions of a circular
cylindrical inclusion can be found [Mura (1988); Mura, Shodja and Hirose (1996)].
Recently, Wang and Sudak [Wang and Sudak (2007)] derived an analytical solution

for antiplane time-harmonic Green’s functions of a circular inhomogeneity with an
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imperfect interface. The interface between the inclusion and the matrix is modeled to
the linear springs with vanishing thickness. Interface boundary conditions are
tractions equilibrium but the displacements across the interface are discontinuous. In
addition, the stress response is proportional to the linear springs interface with
vanishing thickness. The key concept of Wang and Sudak’s method is that they
introduced the Trefftz bases for the solution representation of inclusion and matrix,
respectively. However, the completeness of Trefftz bases needs special case. Our main
concern is to revisit the problem solved by Wang and Sudak and derive the analytical
solution in an alternative way by using the null-field integral equation. Based on the
null-field integral formulation, the analytical solution will be derived in a more
systematic and straightforward way. Besides, special cases of cavity and ideal

bonding as well as static solutions will be examined.

3.2 Derivation of anti-plane dynamic Green’s function for Helmholtz
problems with an imperfect interface

3.2.1 Problem statement and null-field integral formulation

For a two-dimensional problem with an imperfect interface, we consider a unbounded
matrix containing a circular inclusion of radius a with its centre at the origin. A

—iwt

time-harmonic antiplane line force of strength pe is located at (e,0) on the x
axis either in the inclusion (0<e<a) or in the matrix (a<e) as shown in Figs.
1(a) and 1(b). The p,, and g, represent the shear moduli of matrix and inclusion,
respectively. The anti-plane displacement field subject to the concentrated load in the

matrix is shown below

(V2 +k)G(x,E) = —L8(x—¢), xeD, ife<a (3-1)

Hy
For the infinite matrix with a single inclusion subject to a concentrated load, we have
(V2+kf,,)G(x,§):—L6(x—£), xeD, ife>a (3-2)

Ho

where V? is the Laplacian operator, k, and k, are the wave numbers for the
inclusion and matrix, 6(x—¢) denotes the Dirac-delta function, D, and D,, are
domains of the inclusion and matrix, respectively. The time factor e ™' has been

omitted due to the frequency-domain approach after employing the separable property.
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For a linear elastic body, the stress components are
ou, _p, 0u
o) o) 2L xeD 3-3
== or O = r 90 [ (3-3)
ouy, _,u_Mé)uM

1029 =
or r 060

Ox = Hwm » X€E DM (3-4)

Moreover, we presume that the circular boundary interface is imperfect and
homogeneous in the angular direction. The interface boundary conditions are given by

[Hashin (1991); Ru and Schiavone (1997); Wang and Meguid (1999)].

o, =oy =03, —U,),onthe interface r=a (3-5)

where the non-negative constant (G is the parameter of imperfect interface. The
circular inclusion is perfectly bonded to the matrix if (G approaches infinity. On the
other hand, the circular inclusion is fully debonded from the matrix if 3 approaches

zero. In order to employ the Green’s third identity as follows

J 09900 v v i) = [ i () 20—y 2400

1dB(x)  (3-6)

we need two systems, u(x) and v(x). We choose u(x) as G(x,£) and set v(x)

as the fundamental solution U (x,s) such that

VU (X,8) = 27m6(x — ) (3-7)
Then, we can obtain the fundamental solution as follows
—imH (kr
U (s == ) (3-8)

where H{"(kr) is the zeroth Hankel function of the first kind and r=|s-x|. In the
present method, we adopt the mathematical tools, degenerate kernels, for the purpose
of analytical study. The combination of degenerate kernels and Fourier series plays
the major role in handling problems with circular boundaries. Based on the separable
property, the kernel function U(s,x) and T(s,x) can be expanded into separable
form by dividing the source point s=(R,#) and field point x=(p,¢) in the polar
coordinate [Chen, Liu and Hong (2003)]. After exchanging with the variables x and
S, we have
9G(s,¢)

27G(x,£) = f T(s, X)G(s, £)dB(s) — f U, )4dB(s)+U(§ X) 29)

, xeD

where T(s,X) is defined by
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T(s,x)=

oU (s, x)
p) (3-10)

where n, denotes the outward normal vector at the source point s. To solve the
unknown boundary densities G(s,£) and 0G/on.(s,&) , the field point x is

located outside the domain to yield the null-field integral equation as shown below:

0= [T(s,XG(s,£)B(s) - [U(s%) 9G(s

) dB(s) +U(&,x), xeD° (3-11)

S

on

where D° is the complementary domain. By using the degenerate kernels, the BIE
for the “boundary point” can be easily derived through either the null-field integral
equation in Eg. (3-11) or the BIE for the domain point of Eq. (3-9) by exactly
collocating x on B [Chen, Shen and Chen (2006)].

3.2.2 Expansions of kernel function and boundary density

Based on the separable property, the kernel function U (s,x) can be expanded into

series form by separating the field point X(p,¢)and source points(R,#) in the polar

coordinate:
U'(s,%) =2 end (k) HE (R)cos(m(d — ), R > p
U(s,x) = . (3-12)
US(s:) = e (kp), (R)cos(m(9 — ), p >R
m=0
where the superscripts “i” and “e” denote the interior and exterior cases for the
expressions of kernel, respectively, and ¢, is the Neumann factor
bm=9 3-13
g, = -
" 12, m=12,---00 (3-13)

It is noted that the larger argument is contained in the complex Hankel function to
ensure the series convergence and log singularity. According to the definition of

T(s,x) inEg. (3-10), we have

T'(5,0 = 28 3" 2, 3, () D (R)cos(m(0 —6), R > p

T(s,x) = (3-14)

—T

2

TE(5,0 =20 S~ HO(kp) 3 (kR) cos(m(0— ), p > R

The unknown boundary densities can be represented by using the Fourier series as

shown below:

G(s &) =a,+» (a,cosnd+b, sinnd), seB (3-15)

n=1
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aGa(:,é“) _— +Z(pn cosnd+q, sinnd), seB (3-16)
n=1

S

where a,, a,, b,, p,, p, and q, are the Fourier coefficients. In the real
computation, the boundary integrations can be easily calculated by employing the
orthogonal property of Fourier series, and only the finite M terms are used in the

summation.

3.3 Series representation for the Green’s function of an inclusion
case

For the problems with inclusion, we can decompose into subsystems of matrix and
inclusion after taking the free body on the interface as shown in Fig. 3-1(c). By
collocating x on (a ,¢) and (a“,¢) for matrix and inclusion, respectively, the

null-field equations yield

0= —agk,, m°ad, (kyy )Y, (ky @) —iJ (K, @)] — > [&5, cos(me) + b, sin(me)]

Ky 780, (Kyy QLY. (Kyy @) — i3, (o @)] — PEm2ad, (K ALY, (K@) — i, (ki )]
S Lpt cos(me) + 68 sin(me)]r2ad,, (ky )Y, (kya) — idy, (ky 2)]
" (3-17)
P 3y (Y (K €) — 13, (K €)]
f 2
£33, (K @)Y, (Kuy€) — i, (ks )] COS(ME)}

, X—(a ,¢)

0= ajk,%ad; (k @)Y, (k@) — iJ, (k)] + > [, cos(me) + b}, sin(me)]
k m2ad’, (k@)Y (k@) — id,, (k, )] — ph?ad, (k @)Y, (k, ) — id, (K, a)]
S Lp! cos(mg) + g, sin(me)]r?ad, (k, a)[Y, (k,a) —iJ, (K, a)]

, X—(a",¢)

(3-18)

Interface conditions of Eq. (3-5) can be rewritten as
t' = ﬁ(u“" —u'"), on the interface (3-19)
|
—py, t™ = p,t", on the interface (3-20)
By assembling the matrices in Egs. (3-17), (3-18), (3-19) and (3-20), we have
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Y Ul 0 0 |ju" uiU(S,X)
0 0 T4 —UL|tY )
11 11 til — O (3_21)
0 Hom 0 P || U 0
After rearranging Eq. (3-21), we have

M M

T11 _U11 ulM B LU (é,X) (3 22)
R [ I
[

The unknown coefficients in the algebraic system can be analytically determined as

shown below
=PI, (kye) +iY, (K, e)][ﬁ‘lo(k|a)+k|:u|‘J(I)(k|a)]
/Zwa{knulJ(I)(kla)[_ﬁ[‘]o(km a)+iY,(kya)l 3.23
oty [0 2) + ¥, G T+ Ky 1 I (K, ) 429
[J(‘) (kya) + iYol (kya)1}

a =

Po = POK, 14, [ 3o (Kyy e)+iYo(kMe)]'J(I)(k|a)
I 2rajuy Lk, 1, J(I)(kla)[_ﬂ[‘]o(km a) +iY, (kya)] 324
13 02) 1% Gy )11 By Jo0,2) (524
[‘](‘)(kM a)+ iYol(kM a)l}

—plI, (kye) +iY, (k)63 (k@) +k 3, (k)]

/Wa{kI“IJ;n(kla)[_ﬁ[‘Jm(kM a)+iYm(kM a)] 3.5
Kyt 130 () 1Y, (i )11+ Bt 3 (1) (3-29)

[‘]r'n (kya) + iYn‘] (kya)I}

a, =

P = POk 1[I, (ky€) +iY, (kye)1J,, (k@)
I mapuy{k, H Jn(k, a)[—‘B[Jm (k@) +iY, (k)] (3.26)
+ Ky it [3 1 (K @) 1Y, (K @)1+ 8Ky 113y 3., (k @)
[3. (k,a)+iY. (k,a)]}

where ag, p;, a, andp;,, m=12,3,--- are the Fourier coefficients of boundary

densities for the matrix. According to interface boundary condition of Egs. (3-19) and

(3-20), we obtain the Fourier coefficient of the inclusion as shown below:
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where a;, p;, a, and p, are the Fourier coefficients of boundary densities for the
inclusion. Then, we can obtain the series-form Green’s function for the matrix by

applying Eq. (3-9) as shown below:

G(x,&) = —%a[aékm Jo(kya) + pgdo (ky @D, (Ky p) — i34 (Ky p)]

- W—;i[aﬁqknﬂ 3. (ky@)+ pr ., (ky ALY, (ky p) — i3, (ky p)IcOS (Mp)  (3-29)

m=1

PV, (ky 1) — i3, (K 1)1, @< p < 00
Ay

If we expand the fundamental function, we have

G(x,8) = —”—j[a;kMJ;(kM 2) + P3Jo (K Y, (ky p) — i35 (K )]

- %ai[aikm I (k@) + prdy, (ky @I, (ky p) —id,, (kyy p)] coS(Mep)

45 35 (K @)D (Kyy ) — 35 (ks )] (3-30)

2573, (@)Y, Ky ) — 13, (K, )] cOS(MAN}

,e<p<oo
G(x,&) = _%a[ang Jo (k@) + pod(ky @)I[Yo (ky p) —id, (ky p)]
TS Mk T (k@) + D33, (Y, () 3, (e ] oS

—%{Jomﬂ Y, (Ky€) — id (K, )] (3-31)

M

1253, (K )Y, (K ©) — i3, (kyy €] cOS(M)}

yalp<e
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3.4 llustrative examples and discussions

Case 1: one inclusion in the matrix with a concentrated force

Following the same example of Wang and Sudak [Wang and Sudak (2007)], we
suppose that u, =4u,, , ¢, =2c,,, and e is located at 1.1a on the x axis as
shown Fig. 3-1(a). For the static case (k =0), we can replace the H,(kr) by Inr
and redo the procedure. The formulation can be found in the Appendix A. On the
other hand, the static solution by using the limiting process (k — 0) is also derived
in the Appendix B. The stress o, along the circular boundary is shown in Fig. 3-2(a).
In the real implementation, direct substitution of zero k value yields the singular
behavior in our formulation of Hankel function and can not be carried out in the
program. We select ka=0.01 to simulate the quasi-static result. Good agreement is
made in Fig. 3-2(b) after comparing with that of Fig. 3-2(a). Parameter study of g
on the stress o, along the circular boundary is done as shown in Fig. 3-3(a). To
simulate the ideally bonded case, we choose 3 =10% in the real computation. Good
agreement is made after comparing with that of the ideally bonded case (6= o).
The derivation of ideally bonded case is also given in the Appendix C. Figs. 3-3(a)
and 3-3(b) show that the higher the X\ value is, the larger the stress appears. Our
results also match well with those of Wang and Sudak’s data. Furthermore, test of
convergence for the Fourier series using Parseval’s sum are shown in Figs. 3-4(a) and
3-4(b). Figs. 3-5(a) and 3-5(b) show the distribution of displacement (u; = 4, |u,|
/ p) along the circular boundary versus the wave number with A =1 by using the
Wang and Sudak’s approach and our method, respectively. Good agreement is made.
It is expected that higher wave number yield higher oscillation along the angle from
0~2r.

Case 2: infinite matrix with a single inclusion subject to a concentrated force

We also suppose the same parameters of p, =4u,, and c, =2c,, as the case 1.
Here, the source is located at e =0.9a in the inclusion as shown in Fig. 3-1(b). To
verify the accuracy of the present solution, we compare with the quasi-static result
(ky,a=0.01) for the stress distribution along the interface as shown in Fig. 3-6 using
the static solution (k,, =0) as derived in the Appendix A. Also, an alternative

method by limiting processes (k — 0) is also given in the Appendix B. Regarding
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the series solution as well as the closed-form solution for the static case, the result is
summarized in the Table 3.1. Excellent agreement between the two results is observed
from the Fig. 3-6. The stress o, versus k,a for different values of A is shown in
Fig. 3-7. Some amplifications for certain values of k,a can be found in the same
trend of Fig. 3-3(b). Fig. 3-8 shows the distribution of displacement (u; = s, [u,|/ p)

along the circular boundary versus the wave number with A =1.
Case 3: two inclusions in the matrix with a concentrated force

Following the success of the single-inclusion case to compare well with the Wang and
Sudak’s result, we extend to two inclusions as shown in Fig. 3-9. We also suppose the
same properties of u, =4u,, and c, =2c,, as the case 1. Here, the concentrated
source is located in the matrix of e=(2.5,0). Figure 3-10 shows the variation of
o, =RloL|/p=R

M
Oy

l
Oy

/p at the point (—a,,0) for various distances d =0.01~

13. The local maximum or minimum of o

r

occurs in a period of half wavelength.

The contour of the displacement for the two-inclusions problem is shown in Fig. 3-11.

3.5 Conclusions

Two-dimensional antiplane dynamic Green’s functions for a circular inclusion or two
circular inclusions with imperfect interface have been successfully derived by using
the present formulation. A limiting case of zero wave number matches well with the
static solution. Ideal bonded case can be seen as a special case of our solution.
Moreover, good agreement is made after comparing with the analytical solution
derived by Wang and Sudak’s results. Parameter study of wave number and interface

constant is also done.
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Chapter 4 Conclusions and further research

4.1 Conclusions

The thesis is concerned about the derivation of Green’s function for Laplace and
Helmholtz problems with circular aperture and/or inclusions by using the null-field
integral equation approach. In the context of this thesis, we have demonstrated that
our approach is useful and effective. Based on the proposed formulation for solving
the problems involving circular apertures and/or inclusions with perfect or imperfect

interface, some concluding remarks are itemized as follows:

1. A systematic approach to solve the Green’s function of Laplace or Helmholtz
problems with circular apertures and/or inclusions was proposed successfully in
this thesis by using the null-field integral equation in conjunction with
degenerate kernels and Fourier series. Problems involving infinite, semi-infinite
and bounded domains with perfect or imperfect circular boundaries were

examined to check the accuracy of the present formulation.

2. The singularity and hypersingularity were avoided by using degenerate kernels
for interior and exterior regions separated by the circular boundary. Instead of
directly calculating principal values, all the boundary integrals can be performed

analytically by using the degenerate kernel and Fourier expansion.

3. Parameter study of wave number (k) and interface constant (3) is done for
the two-dimensional antiplane dynamic Green’s functions of a circular inclusion
with imperfect interface. For the static case (k =0), the Helmholtz problem can
be reduced to the Laplace problem. The formulation can be found in the
Appendix A. Also, an alternative method by limiting process (k — 0) is in the
Appendix B. When [ approaches infinity, the circular inclusion is perfectly
bonded to the matrix. When (3 approaches zero, the circular inclusion is fully

debonded from the matrix. The derivation is given in the Appendix C.

4. We derived the analytic Green’s function for one inclusion problem by using the
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null-field integral equation. Also, the present approach can be utilized to
construct semi-analytic Green’s functions for several circular aperture or
inclusions. Null-field integral equation is seen as a “semi-analytical” approach

since error purely ascribes the truncation Fourier series.

After introducing the degenerate kernel, the BIE is nothing more than the linear

algebra for the unknown coefficients.

A general-purpose program for deriving the Green’s function of Laplace or
Helmholtz problems with arbitrary number of circular apertures or inclusions of
arbitrary radii and various positions involving Dirichlet or Neumann or mixed

boundary condition was developed.
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4.2 Further research

In this thesis, our formulation has been applied to derive the Green’s function with
circular boundaries by using the separate form of fundamental solutions and Fourier
series expansions. However, several issues are worth to be further investigated as

follows:

1. In this thesis, we only consider simpler problems in which the imperfect
interface is circumferentially homogeneous. The more general case in which the
imperfect interface is circumferentially inhomogeneous can also be solved by

using the present method.

2. The extension to Helmholtz problem with a hill can be studied by using the
present approach in conjunction with the multiply-domain technique by
decomposing the original problem into one interior problem of circular domain

and a half-plane problem with a semi-circular canyon.

3. The degenerate kernels are expanded in the polar coordinate and only problems
with circular boundaries are solved. For boundary value problems with ellipse or

crack, further investigation should be considered.

4. According to our successful experiences for half-plane problems, it is
straightforward to quarter-plane problems which can be studied by employing

the symmetric or anti-symmetric property of image method.

5.  Following the success of applications in two-dimensional problems, it is
straightforward to extend this formulation to 3-D problems with spherical
inclusions and/or apertures with perfect or imperfect circular boundaries using
the corresponding 3-D degenerate kernel functions for fundamental solutions and

spherical harmonic expansions for boundary densities.
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Appendix 1 Static cases

Case 1: a concentrated force in the matrix

For the static case (k=0) and ideally bonded interface (6 — oo), we can replace

the H,(kr) by Inr and redo the procedure. Then, we follow the formulation for

Laplace problems in Chapter 2. For the problem with inclusion, we can decompose

into subsystems of matrix and inclusion after taking free body on the interface as

shown in Fig. 3-1(c). Then, by collocating x on (a”,¢) and (a*,¢) for the

matrix and inclusion, respectively, the null-field equations yield

0=-2ma; — Zw(a; cosme + b sin me)

m=1

—2ralnap; +zal(p; cosme + py, Sinme)
m

m=1

Prne_S~2L @ym
——[lne Zm(e) cos(mg)]

/I’M m=1

, X—(a7,9)

0=-) 7(a, cosmg+b; sinmg)—2rraln ap,
m=1

+i%(pjn Cos Mg + g, sin mg)

m=1

, x> (@, 9)

Similarly, interface conditions of Eq. (3-5) can be rewritten as

t' :ﬁ(uM —u'), on the interface

1

—u, t™ =g, t', on the interface

(Al-1)

(A1-2)

(A1-3)

(A1-4)

By assembling the matrices in Egs. (Al-1), (A1-2), (A1-3) and (Al-4), we have

Tﬁ" U 1“{' 0 0 ulM
0 0 T1I1 -uU 1|1 th
|

0 Hom 0 Ky || Y
B B 0 til

After rearranging Eq. (A1-5), we have
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0
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(A1-6)

The unknown coefficients in the algebraic system can be determined as shown below:

a,
ap,
by
Po
P
O

where a;, p,, @, and p;,, m=1273,--

P

27 [ty

Ine

p(Ba+muy,)

a

ma[mguy w1y + Baluy + )] E

0
0

PBu,

)"

a

="

- fing TLM g 1y + Ba(pey + 44,1

0

e

densities for the matrix. As 3 approaches infinity, we have

~P ine
e 27 [y
8
ae p(/Ba+ mlul) (E)m
b;” ma[mMpy, py + Baluy +4)] €
"= lim 0
el |- PO @
" i TIMpty 4y + Balpy + 4] €
0

P
27 [y
I L
mm (i + 1) €
= 0
0
_ PAy
app (e +44y)
0

Ine

Aym
e

(A1-7)

are the Fourier coefficients of boundary

(A1-8)

Then, we can obtain the analytical result for static stress (¢ =aol /p=ac¥ /p)

of the matrix as shown below:

2, a
i o =LZ(—)"‘cosm¢9, e>a
p 7(py + pyy) 1 €

The Wang and Sudak’s closed-form solution is shown below:

eacosd—a’
oy =—H (5—— ), e>a
7wy, +py) e +a”—2eacosé

By expanding the Eq. (A1-10) into Fourier series, we have
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ol =—*___3 a cos(md), AL-11
7(py + fy ) ma1 ( )

where the Fourier coefficient of a_, can be determined by using the Poison integral

formula [Chen and Chou (2007)] as shown below:

1 2., eacosd-—a’
a =— cos(m&)d o
moog0 (e2+a2—2eacose) (o)

1, C)eoso-(y
==& € Jcos(md)de

0
T 1 (32— 2(Bycoso
e e

. . , e>a (A1-12)
2 (g)m —(g)m2

1_(2)2 2

An alternative proof by using the degenerate kernel can also be obtained as shown

below:
=1 a.,
Ine-) —(=)"cos(md), ex>a
U (s,x)=In+/e? +a’ - 2eacos 6 = m=1n11 © (A1-13)
=1 e
Ina-)») —()" a),
na Z{m(a) cos(m@), a>e
i m-1
( )cos m<9 e>a
oU (s, x - 0= e
L(s,x)= (5x) ___a-ecosd _ te (A1-14)

oa e’ +a’®—2eacosé

1 &, e
=+ (—)cos(mg), a>e
a a

m=1

By multiplying (—a) into Eq. (A1-14), we can also obtain the result of static case

O'Zif=mmz_l(g) COS(m@) e>a (A1_15)

Therefore, we have proved that our series-form solution is mathematically equivalent

to the closed-form solution of Wang and Sudak.
Case 2: a concentrated force in the inclusion

Similarly as shown in case 1, we can obtain the unknown coefficients as shown

below:
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_ P —-Ina

27y
a pay, i
a, My [T By + 7 (@6 +mpuy )] a
bt 0

e| ™ (Al-16)
Po PLy
P 2amy,
O P, &)
ping AT By + 7y (@8 +mpy )] @
0

where ag, py, a, andp;,, m=12,3,--- are the Fourier coefficients of boundary

densities for the inclusion. As (3 approaches infinity, we have

__IOM.Z Ina __DM.Z Ina
27 Ly 27 Ly
ay pfay, iy Py €m
a, My [T By + 7y (@8 +Mmuy )] Mpu (kg +14) @
¢ 0 0

b”é = lim = (A1-17)
Po B—0o0 P, Pay
pe 2ams, 2amy,
O POy &y J €m

p [T By + g (A8 +Mmpy )] @ pam gy +4y) @

0 0

Then, we can obtain the analytical result for static stress (¢ =aol /p=ac¥ /p)

of the inclusion as shown below:

@ Ay H 5" (Eym
of="0cM= + > (=)"cosml, a>e Al-18
P 2y 7wy + py ) ma @ ( )

A closed-form solution can be obtained by using degenerate kernel. By multiplying
(a) into Eq. (Al-14), we can also obtain the result of closed-form solution for the
inclusion

v M a’—eacos® . 1 ﬂf—ﬂMﬂl) ase
2 2 2 !
w(p + ) €°+a°—2eacosd” 27wy + Uy 1

r

(A1-19)

Therefore, we have proved that the closed-form solution can be obtained
mathematically by using degenerate kernel. Based on the Fourier series expansion, the

closed-form solution of Eq. (A1-19) yields
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£4 Z a,cos(md), a>e (A1-20)

A
ol =g 4—
=% 7(y + ty) 1

where the Fourier coefficient of a, and a, can be determined by using the Poison

integral formula as shown below:

1 .., a’—eacosd
a =— cos(m&)d o
moog (e2+a2—2eacosﬁ) (m&)

1o Y =)ot
e N Jcos(m@)de

0
T 1 (32— 2(Fycoso
e e

a -m+2 a -m -
2 QT (Al-21)

Gy-1 7

2 2
_ 1 e )7 2a 2eacos¢9 L1 1 (y, yINy7} J1do
277 "y, +uy,) €8 +a’—-2eacosd  2x gl + iy 4,

a, .a
_ L om (f ~(g)eose o+ L (ﬂ. ~ by

70w + i) 1+(E)2—2(§)C089 270 g + g 14
€ e

(E)Z _1 (A1'22)
H e’ .1 (M = Fhath
ﬂ(ﬂ|+ﬂM)( 1 27 Fa + Hyg £
__H
271y
, a>e

It is straightforward to represent the closed-form solution into Fourier series solution.
On the contrary, it always needs special treatment, e.g., Watson transformation if we
would obtain the closed-form solution by way of Fourier series solution. Here, we do
not employ the Watson transformation, but take advantage of expressions of
degenerate kernels for fundamental solution. The contours of shear stress
0,=0,C08¢p—0,sing and o, =0,sing+o,cos¢ for a concentrated force in

the matrix and inclusion are summarized in the Table 3-2 and 3-3, respectively.
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Appendix 2 Derivation of the static solutionds by using the limiting process (k — 0)

z—0 z—0
S 3()-1 1 @)~ im!
c 2
L2 : 1 : 1 \ma
© Jo(Z)~—(§Z) Jm(2)~(§Z) 12(m-1)!
o
! 1 1
g Y,(2) ~ (2/7)Inz V(@) ===
< 11 omld
Yo(z)~;(zz) Ym(2)~g(zz)
- a a x
3 o = Bax = _BMM [ps + Z pr,cos(md)] for the ideally bonded interface and a concentrated force in the matrix
O m=1
lim pe = lim POK, 11, [Io (k) + 1Yy (Ky e)]‘](')(k|a)
fooo 0 e 2maju, {klul‘](')(kla)[_ﬁ[JO(kM a) +iYy (ky )]+ ky iy [‘](')(kM a)"}_iYol (ky )11+ Bk, MM‘]O(kIa)[‘](')(kM a)‘l'iYol (ky )1}
_ _pk|lu| [Jo(kMe)+iY0(kMe)]‘](l)(k|a)
2 —2magny £k 1 35 (K )35 (Ky @) +1Y5 (Ky @)1 — Ky iy o (K, @) [ 35 (kyy @) +1Y (kyy )1}
S jimpt—lim Pk [3(ka®) + Yo (kue)Ma(kia) |
o k=0 70 ko 2mapu, LK, 1 3o (k 2)[Jo (ky @) + 1Y (ky @)l — Ky py Jo (k@) [, (ky @) +1Y, (ky, @)1}
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—lim —pk, iy [1+i(2In(ky,e)/ m)](—k,a/2)

ko 2rapy LK 1, (—k,al 2)[1+i(2In(ky a) / )] — Ky [(20 ] kyyam)]}
- 0

@i an)]

=0

Limiting

lim pe = lim ' POk, 1, [‘]m(kMe‘)+iYm(kMe)l]‘]r'n(kla) ' .
fooo T oo mapuy LK 1 3., (K 2)[—6[3, (Ky @) +1Y,, (Ky )]+ Ky iy [3,, (ki @) +1Y;, (ky @)T1+ 8Ky o I (ki @)L (ky @) 1Y, (K @)1
e Pk, 1, [‘]m(kMe)+iYm(kMe)]‘]r‘n(kla)
" g K T (K 1T (60)+ 1Y (K 01— Ky g I (K LT (02) £ 1Y, (o T
lim p¢ = lim— Pk, 14 [Jm(kMe)—f—iYm(kMe)]J;n(kla)
k=0 7 k=0 magu, K, 1 ‘]rln (ka)[J,, (kya) +1Y,, (ky )] — Kyt I (K, a)[‘]r'n (kya) + iYni] (kya)l}
PK; 1,
i (62010, () 1Y (k)] Ko7t T (K )T, (o) 1 1Y, (k)]
[, (k@) +iY, (k)13 (k@) [J,(ky©) +iY, (kye)1J, (k,a) }
PK; 1,

MNMJm(kIa)YnI](kMa) Ky 4 Y (K@)

Vol (a)  Yo(kye) )

=lim
k—0

k
mafu{

=lim
k—0

Limiting process

k
mauy [

pu,

(o 1k )il k@)™ I mmY 27y ™1 [ =DV Ky )]
ﬂ-a‘:uM[ -
[—(m—1) !/w(;kMe)m][(;k,a)m1/2(m—1) 1 [—m-1) !/w(; k,©)"]

=1lim
k—0

]
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Limiting process

Pu,

Tty [~y (:)m — (Z)m]

process

—p, )"
_ e
Ty (i + )
M cos(mé

Ty (u.ﬂLM Z( )" )
(Q\] 00
T Eaz“f = —EMM [py + Z P, cos(m@)] for the ideally bonded interface and a concentrated force in the inclusion
8 p p m=1

lim pg = lim PBKw 1y Io (K €)[Io (K@) +iY, (ky )]

oo e 2mapy gk o (K@) =813 (Ky @) + 1Yo (Ky @)1 + Ky oy [0 (Kyy @) +1Y5 (kyy @)1+ Bky 10y o (K @) [ 3o (kyy @) +iY5 (ky )T}
Pk 14 3o (K, €)[J, (Ky @) + 1Y (ky a)]
2 Tk 3y (K @) Ky 2) + ¥y (g 20T Koy 1y I (K Q)T (g 2) 1 1% ()T}
lim pf = lim Py 14 3o (ki €)[ 3o (k@) +iY, (ky )]
k=0 0 k=0 2mau, {—K, 11, 3, (k@) [ 3, (Ky, @) +iY, (Ky, @)1+ Ky, 11y I (K, Q)3 (kyy ) +iY, (K, @)1}
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PL,

= —1i , . ,
:"E klm 2may, {— Kiry Jo (K, a)[J‘o (kv @) ‘|‘ iY'O (kwa)l + K £ Jo (K a)[lJo(kM a) + ilYo (K a)]}
= Ky Jo(ki@)[J,(kya)+1Yy(kya)l Ky Jo(kie)[J,(kya)+iY,(kya)l
= lim K (—kal 2)(2%) In(k,a) 1, d.(k a)
2may [ K, (2/ 7k, a) ke
__ba
2rag,
||m pe — ||m kaMMI‘]m(kle)[‘]m(kMa)+|Ym(kMa)]
gm0 T oo Tafhy {kuﬂu%(kﬁ)[—ﬁ[Jm(kM a) +1Y,, (ky @)l + Ky oy [‘]rln(kM a)‘l'in; (ky )11+ Bky MM‘]m(kla)[‘]rln(kM a)"'iYn;] (kv a)I}
e _ Py 1413 (K ) [J (K @) +iY, (kyy )]
. P i LK, 1 (K T, (K 2) Yo (i 1 Koy iy 1 (K )T Ky 2) 1Y, oy )T
S impt = lim Pk 13 (K )31 (k@) + 1Y, (K, )]
S k=0 "™ k=0 Ay {_klﬂl‘]r'n(kla)[‘]m(km a) +iY,, (ky a)] +ky, UMJm(kla)[‘]r'n(kM a)—HYn'W (kv a1}
(@)
£ —lim , — L] . _
£ A, {—k|M|Jm(k|a)[Jm(kM a)+iYy, (kya)l | Ky Jn (k@) (ky @) + 1Yy (ky a)]}
- M 3n (K@), (k) + 1Y, (k)] K I (ki €)[J, (kyy @) +1Y,, (ky @)]
k=0 WaMM [_kllul‘]m(kla)Ym (kM a)] MM‘]m(kla)]

K I (ki €)Y (K a)] In (ki)
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Pu,

Tk [k 2m =1 - kya)l™] s [C ka)" i,
mafly +
[(; k&)™ /mi[mY/ 2%(; K, a)™"] [(; k&)™ /mi]

=lim
k—0

Pu,
mapuy L1 (z)m + (z)m]

Limiting process
|

oy ()"
_ a

Ty (ty + )

o=ty ()cosme
27 fuy, W(u.ﬂm E )
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Appendix 3 Special casesof 6 —oc and =0
Case 1: an ideally bonded case (6 — o0)

As the parameter [ approaches oo, the interface condition yields the force
equilibrium and displacement continuous. Then, we follow the formulation for the
Helmholtz problem in Chapter 3. For the problem with inclusion, we can decompose
into subsystems of matrix and inclusion after taking free body on the interface as
shown in Fig. 3-1(c). By collocating x on (a",¢) and (a",¢) for the matrix and
inclusion, respectively, the null-field equations yield Egs. (3-17) and (3-18). Then, the
interface conditions of Eq. (3-5) can be rewritten as

u™ =u', on the interface (A3-1)

M

—puy, " = p,t", on the interface (A3-2)

By assembling the matrices in Egs. (3-17), (3-18), (A3-1) and (A3-2), we have

Y U o0 0 [u MLU (&%)
I I M M
0 0 Tll _Ull tll — 0 (A3'3)
0 Hom 0 Ky || U
I 0o -l 0 ||t
After rearranging Eq. (A3-3), we have

T M _U M

s U oy (34
U Mg | em | T E
T11 _U11 tl 0

The unknown coefficients in the algebraic system can be determined as shown below:

a; = —pJo(ka)[Jy(ky ) +iYy(ky €)1/ 2ma{—k, J(I)(k| a)

. , o (A3-5)
[Jo (k) + 1Yo (ky @)+ Ky oy Jo (K @) [ I, (ky @) +1iY, (ky )1}
P = —PK, 1, Jé(k|a)[Jo(kM e) +1iY, (ky )1/ 2mau, {k, 1, J(;(k|a) A3-6
1300k 8) + Yoy 1~ Ky I K D () + Y, Gy} )
a, =—pd,(kia)ld, (kye)+iY, (ky,e)l/ ma{-k I, (ka) (A3-7)

[, (ky @) + 1Y, (Ky @)+ Ky gy 3, (K, a)[‘]rln (kya)+ iYnl1 (kya)1}
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P = — Pk 11 3, (k@) (ky €) +iY,, (kyy €)1/ map, £k, 1, I, (k@)

: . L (A3-8)
[Jn (k@) 1Y, (ky @)1 =Ky i 3 (K @), (kg @) 1Y, (ky )13

where ag, p,;, @, andp;, m=12.3,--- are the Fourier coefficients of boundary
densities for the matrix. According to the interface boundary condition of Egs. (A3-1)

and (A3-2), we obtain the coefficient of the inclusion as shown below:

Mg
Po)  (—#mPo ! 4

{a@}:{ a, } (A3-10)
Pn) [~ Prl 4

where &), p;,a, and p. are the Fourier coefficients of boundary densities for the
inclusion. Then, we can obtain the series-form Green’s function for the matrix and the

inclusion, respectively, by applying Eq. (3-9) to have
A o o . .
G(x, &) =~ [k Jo (K@) + P (ki @)IMYo (ky 2) = idy (ky 2)]
A e . . .
=~ 2 lak I (k) + b5 3, ()10 (ky ) ~ i3, (ky )] (A3-11)
m=1

cos(m¢)—%[Yo(kM 1 —id,(k, )], a<p<oo

61,8 = 223, (k. {aik, Y, (k) 19, (k)] - ilYs ()~ (k )1

230 (ko Ak [V, (k) =13, (k)] - PhIY, (a) =3, (k a)l} (A3-12)

cos(mg), O<p<a

The absolute amplitude of potential |u| for the ideally bonded case and for the

parameter (3 =10%) are shown in Figs. (3-12) and (3-13). Good agreement is made.
Case 2: a cavity case (3=0)

As the parameter (3 is zero as shown in Fig. (3-14), the circular inclusion is fully
debonded from the matrix. Similarly as shown in the case 1, we can obtain the

unknown coefficients as shown below:
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P Yolki®) —id(kye)
a] | 2kymasm, Yo(kya) —idg(kya)
asl | P Yalkue)—id,(kye)
K a1y Yo (Kyy @) — 9, ()

(A3-13)

where ajanda;, m=12,3,--- are the Fourier coefficients of boundary densities
for the matrix. Then, we can obtain the series-form Green’s function for the matrix by

applying Eqg. (3-9) to have
G(x,8) = _%aang Jo (kwa)[Yo (ky p) =135 (ky p)]
—%aia;kM 35, (@)Y, (K 2) i3, (K 2)]cOS (M) (A3-14)

(kN =id (k)] @< p<en

Hy

The absolute amplitude of potential |u| for the cavity case and for the
parameter (5 =10"%) are shown in Figs. (3-15) and (3-16). Good agreement is also

made.

50



Number of Papers of FEM, BEM and FDM

Numerical method Search phrase in topic field No. of entries
FEM ‘Finite element’ or “finite elements’ 66,237
FDM ‘Finite difference’ or “finite differences’ 19,531
BEM ‘Boundary element’ or ‘boundary elements’ or ‘boundary integral’ 10,126
FVM ‘Finite volume method’ or “finite volume methods’ 1695
CM ‘Collocation method’ or ‘collocation methods’ 1615

Table 1-1 Bibliographic database search based on the Web of Science [Cheng A. H. D. (2005)]

51



BIE Original problem and auxiliary system

Original Problem

B 216(x,6) = [T (5,06 (s.)aB(s) - [0 502888 4By LU (£,%), xeDUB

5 B~ o~ B~ m= 3ns

e ==~ ——— === ————=- 1

- I Degenerate (separate) form I <j

Fen) e o o e mn mm Em o Em EE EE e EE EE EE Em e EE = . o

£ 0= [{T (5,065, 0)dB(s) ~ [0 (5, 98 ‘96(5 5)o|B(s)+U(g,s), X €D°UB &
Original Problem Auxiliary system

E 27G(x, £) = f T (s,X)G(s, £)dB(s) — f U (s, x) 87 ‘96(3 9 4B(s) + U (€,%), x€D

C_U S

S wG(x,f):C.P.\/.f T(s,x)G(s,f)dB(s)—R.P.V.fU(s,x)MdB(s)JrU(g,x), x € B <j L]

E; B B ans

s B 3G (s, €) ‘

g 0_fBT(s,x)G(s,g)dB(s)—J;U(s,x)a—nsdB(s)JrU(g,x), xeD

where CPV and RPV are the Cauchy principal value and Riemann principal value, respectively. It is noted that the kernel in the present method
should be properly expand in terms interior and exterior expansion of degenerate kernels

Table 2-1 Comparisons of the BIE between the conventional BIEM and the present method
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Table 2-2 Comparison of the numerical results

Field
point,

MCP

MMP

Present Method

Partitioning number, k [Melnikov and Melnikov (2001)]

Fourier term, M

2k x 2k

k x k

2(2M +1)x2(2M +1)

10

20

50

10

20

50

10

20

50

0.2
0.4
0.6
0.8
1.0

0.000280
0.010667
0.062359
0.177534
0.317893
0.000014

0.000128
0.010712
0.062411
0.177574
0.317902
0.000006

0.000067
0.010781
0.062443
0.177585
0.317911
0.000002

0.000107
0.010700
0.062407
0.177583
0.317907
0.000000

0.000049
0.010779
0.062435
0.177590
0.317913
0.000000

0.000032
0.010798
0.062448
0.177593
0.317914
0.000000

0.000000
0.010832
0.062458
0.177597
0.318032

0.002014

0.000000
0.010832
0.062462
0.177596
0.317915
0.000064

0.000000
0.010832
0.062462
0.177596
0.317915
0.000000
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Table 3-1 Series-form & closed-form solutions for the static case (ideally bonded

interface)

Concentrated force in the inclusion

)
c
(3]
=
[«B]
s
©
i)
w
£
2
o
(@]
| -
o
* e * a a * a
Oar Ozr:|5§'{|zg|0;r|:_|ax| O':r el Ozr Uzﬁrr Eoir =
° Pasairinl I I I I I o
6 (Deg) 0 (Deg)
& 2
S ) % y7 a‘—eacos®
o o Pie lLl| eaCOSQ—a - 2 2
— O o, = > 7wy, +uy,) € +a”—2eacosé
- 5 w(u, +uy,) €°+a“—2eacosd
O = ! M 1 2
3 3 [Wang and Sudak, (2007)] +—(M)
O 27y + g 4y
e
O o
o
= o= M () eosme e E— > ()™ cosme
L3S () + phy) 1 € 2ty 7(py + py) ma @
= 3
N
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Table 3-2 Stress contours of o

ZX

and o, for the static and dynamic solutions (a

concentrated force in the matrix)

15 1.5+
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Contour of o, Contour of o,
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Table 3-3 Stress contours of o

ZX

concentrated force in the inclusion)

and o, for the static and dynamic solutions (a

Static case

%

\d,

\
\
-1.5+ ‘
\
|
\

-2 T T T T T T T
2 -1.5 -1 -0.5 0 05 1 15

P=la=1e=09,py =4y =1Lk=0,M=70,5=00

1.5+

0.5+

-0.5+

-1.5+

- T T T T
-2 -1.5 -1 -0.5 0 0.5 1 15

P=la=1e=09 1 =4,y =Lk=0M=70,3=00

Contour of o,

Contour of o,

Dynamic case

- T T T T T T
2 -1.5 -1 -0.5 0 0.5 1

p= :1,9:0.9,/1,| :4,/LM ::Lk| :l,kM =2,M=7

T
1.

5 2
0,3=10% p=a=Le

1.59
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Uzy*f
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Contour of o,

Contour of o,
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A Brief History of the BEM

Jaswon and Symm (1963)
- 2D Potential Problems

Integral equations
(Fredholm, 1903)

= T =
Integral equation
(1888)

Modern numerical
solutions of BIES
(in early 1960°’s)

T. A. Cruse and F. J. Rizzo (1968)
—2D elastodynamics

BEM Cauchy DBEM Hadamard

Kernel singular | Kernel hypersingular
— | —

crack

BEM emerged in 1980°s

P. K. Banerjee (1975)

F. J. Rizzo (1964, paper 1967)
—2D Elasticity Problems

—coined the name ‘boundary element method’
( this has been disputed by others ) EMM La?ée scale

(1984)

Degenerate kernel

Original data from Prof. Liu Y J

Figure 1-1 A brief history of the BEM
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Figure 1-2 (a) Bump contour
B
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Figure 1-2 (b) Limiting process
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Figure 1-3 The boundary value problems with arbitrary boundaries

59



Numerical Methods

Mesh Methods Meshless Methods
Finite Difference Method Finite Element Method Boundary Element Method Boundary
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Figure 1-4 Mesh generation [Chen and Lee (2007)]
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Figure 1-5 Convergence test [Hsiao (2005)]
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Figure 1-6 Boundary-layer effect analysis [Wu (2006)]
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Chapter 1 Introduction

Y

Chapter 2 Formulation of null-field integral equation and
applications to construct the Green’s function for Laplace problems

Y

Chapter 3 Applications to derive the
Green’s function for Helmholtz problems

Y

Chapter 4 Conclusions and further research

Figure 1-7 The frame of the thesis
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Figure 2-1 Problem statement
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Figure 2-2 (a) Sketch of the null-field integral equation in conjunction
with the adaptive observer system

Figure 2-2 (b) Sketch of the boundary integral equation for the domain point in
conjunction with the adaptive observer system
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Figure 2-3 Vector decomposition for the potential gradient in the hypersingular

equation (collocation point x integration onB;)
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Figure 2-4 Decomposition of the inclusion problem using the subdomain approach by taking free body
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Figure 2-5(a) Green’s function for the eccentric ring
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Figure 2-5(b) Potential contour using the Melnikov’s method [Melnikov and
Melnikov (2001)]

Figure 2-5(c) Potential contour using the present method (M=50)
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Figure 2-6(a) Green’s function for the half-plane with an aperture
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Figure 2-6(b) Potential contour using the Melnikov’s method [Melnikov and
Melnikov (2001)]

Figure 2-6(c) Potential contour using the present method (M=50)



u=0

2

Figure 2-7(a) Green’s function for the half-plane problem with the Robin boundary
condition
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Figure 2-7(b) Potential contour by using the Melnikov’s approach [Melnikov and
Melnikov (2006)]
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Figure 2-7(c) Potential contour by using the null-field integral equation approach
(M=50)
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u=0

Figure 2-8(a) Problem sketch of half-plane problem with a circular hole and a
semi-circular inclusion
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Figure 2-8(b) Potential contour by using the Melnikov’s method approach
[Melnikov and Melnikov (2006)]

Figure 2-8(c) Potential contour by using the null-field integral equation approach
(M=50)
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Figure 3-1(a) An infinite matrix containing a circular inclusion with a concentrated
force at £ in the matrix

Figure 3-1(b) An infinite matrix containing a circular inclusion with a concentrated
force at &£ in the inclusion



Figure 3-1(c) An infinite matrix containing a circular inclusion with a
concentrated force at & in the matrix (take free body)



C---analytical result
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Figure 3-2(a) Distribution of o, for the dynamic (k,,a=0.01) solution along
the circular boundary (Wang and Sudak’s solution)
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Figure 3-2(b) Distribution of o, for the dynamic (k,,a=0.01) solution along
the circular boundary by using the present solution
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Figure 3-3(a) Parameter study of A\ =ag/u,, for the stress response (Wang and
Sudak’s solution)

Figure 3-3(b) Parameter study of A =ag/p,, for the stress response by using the
present solution
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Figure 3-4(a) Test of convergence for the Fourier series with a concentrated force in
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the matrix (imaginary part)
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Figure 3-5(a) The distribution of displacement u; along the circular boundary for

the case of A=1 (k,,a=12,3,4,5) (Wang and Sudak’s solution)

Figure 3-5(b) The distribution of displacement u, along the circular boundary for
the case of A=1 (k,,a=12,3,4,5) by using the present solution

81



25

2 457 analytical result
O'* 2 2
ol ol = a’—eacosd ., 1  p— )

1s L Ty + ) €2 +a’—2eacos@ 27l + gy 4 |
1+ B

0.5 - B
O L L L L L L L

(0] 50 100 150 200 250 300 350
6 (Deg)

Figure 3-6 Distribution of o, for the dynamic (k,,a=0.01) solution along the

circular boundary (e =0.9a)
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Figure 3-7 Parameter study of A =ag/u,, for the stress response (e =0.9a)
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Figure 3-8 The distribution of displacement u; along the circular boundary for the

case of A=1 (k,a=12,34,5) (e=0.9a)
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Figure 3-9 An infinite matrix containing two circular inclusions with a concentrated
force at & inthe matrix
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Figure 3-10 Distribution of o, of the matrix at the position of (a,, 7) various
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Figure 3-11 The contour of the displacement for an infinite matrix containing two
inclusions with a concentrated force at & in the matrix
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Figure 3-12 The absolute amplitude of displacement for an ideally bonded case
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Figure 3-13 The absolute amplitude of displacement for 5 =10*
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Figure 3-14 A matrix with a debonded inclusion
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Figure 3-15 The absolute amplitude of displacement for the cavity
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