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A Semi-Analytical Approach for Boundary
Value Problems with Circular Boundaries

Jeng-Tzong Chen, Ying-Te Lee’ and Wei-Ming Lee

Abstract In this paper, a semi-analytical approach is developed to deal with the
problems including multiple circular boundaries. The boundary integral approach
is utilized in conjunction with degenerate kernel and Fourier series. To fully uti-
lize the circular geometry, the fundamental solutions and the boundary densities
are expanded by using degenerate kernels and Fourier series, respectively. Both
direct and indirect formulations are proposed. This approach is a semi-analytical
approach, since the error stems from the truncation of Fourier series in the imple-
mentation. The unknown Fourier coefficients are easily determined by solving a
linear algebraic system after using the collocation method and matching the bound-
ary conditions. Five goals: (1) free of calculating principal value, (2) exponential
convergence, (3) well-posed algebraic system, (4) elimination of boundary-layer
effect and (5) meshless, of the formulation are achieved. The proposed approach is
extended to deal with the problems containing multiple circular inclusions. Finally,
the general-purpose program in a unified manner is developed for BVPs with cir-
cular boundaries. Several examples including the torsion bar, water wave and plate
vibration problems are given to demonstrate the validity of the present approach.

1 Introduction

Most of engineering phenomena are simulated by the mathematical models of
boundary value problems. In order to solve the boundary value problems, researchers
and engineers have paid more attention on the development of boundary inte-
gral equation method (BIEM), boundary element method (BEM) and meshless
method than domain type methods, finite element method (FEM) and finite differ-
ence method (FDM). Although BEM has been involved as an alternative numerical
method for solving engineering problems, some critical issues exist, e.g. singu-
lar and hypersingular integrals, boundary-layer effect, ill-posed matrix system and
mesh generation.
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It is well known that BEM is based on the use of fundamental solutions to solve
partial differential equations. These functions are two-point functions which are sin-
gular as the source and field points coincide. Most of the efforts have been focused
on the singular boundary integral equation for problems with ordinary boundaries.
In some situations, the singular boundary integral equation is not sufficient to
ensure a unique solution, e.g. degenerate boundary, fictitious frequency and spurious
eigenvalue. Therefore, the hypersingular equation is required. The applications of
hypersingular equations have been summarized in the review article of Chen and
Hong (1999).

Unlike the conventional BEM and BIEM, Waterman (1965) introduced first the
so-called T-matrix method for electromagnetic scattering problems. Various names,
null-field approach or extended boundary condition method (EBCM), have been
coined. The null-field approach or T-matrix method was widely used for obtaining
numerical solutions of acoustics (Bates and Wall, 1977), elastodynamics (Water-
man, 1976 and hydrodynamics (Martin, 1981). Boström (1982) introduced a new
method of treating the scattering of transient fields by a bounded obstacle in the
three-dimensional space. He defined new sets of time-dependent basis functions,
and used these to expand the free-space Green’s function and the incoming and
scattered fields. The method is a generalization to the time domain of the null-field
approach first given by Waterman (1965). A crucial advantage of the null-field
approach or T-matrix method consists in the fact that the influence matrix can
be computed easily since the singular and hypersingular integrals are avoided.
However, they may result in an ill-posed matrix.

In the Fredholm integral equations, the degenerate kernel (or the so-called
separate kernel) plays an important role. However, its applications in practical
problems seem to have taken a back seat to other methods. The degenerate ker-
nel can be seen as one kind of approximation for the fundamental solution, i.e.,
the kernel function is expressed as finite sums of products by two linearly inde-
pendent functions. Kress (1989) proved that the integral equations of the second
kind in conjunction with degenerate kernels have the convergence rate of expo-
nential order instead of the linear algebraic order of conventional BEM. Recently,
Chen et al. applied the degenerate kernels in conjunction with null-field integral
equations to solve many boundary value problems including the Laplace (Chen
et al., 2005), Helmholtz (Chen et al., 2007a), biharmonic (Chen et al., 2006)
and biHelmholtz (Lee et al., 2007a) problems with holes and/or inclusions. The
main gain of their approach is to avoid the improper integrals and free of mesh.
They also linked the two numerical methods, Trefftz method and method of fun-
damental solutions, by using degenerate kernels (Chen et al., 2007b). Therefore,
these two methods can be seen as the same. The similar viewpoint was discussed
by Schaback (2007). However, Schaback claimed that MFS is closely connected
to the Trefftz method but they are not fully equivalent, since the source points
on the far-away filed yield a trial space that is a space of harmonic polynomi-
als (Lee et al., 2007b). In a word, the degenerate kernel has the property of
transferring the integral equation to a linear algebraic system, since the kernel
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A Semi-Analytical Approach for Boundary Value Problems with Circular Boundaries 31

functions in the integral equations are approximated by using two linearly inde-
pendent functions.

In this paper, we will apply the semi-analytical approach to deal with engineering
problems containing multiple circular boundaries. The boundary integral approach
is utilized in conjunction with degenerate kernel and Fourier series. Both direct and
indirect formulations will be considered. To fully utilize the circular geometry, the
fundamental solutions and the boundary densities are expanded by using degenerate
kernels and Fourier series, respectively. This approach is a semi-analytical approach,
since the error stems from the truncation of Fourier series in the implementation.
Five advantages: (1) free of calculating principal value, (2) exponential conver-
gence, (3) well-posed algebraic system (4) elimination of boundary-layer effect and
(5) meshless, of the formulation are the main concern. It will also be extended to
deal with the problems containing multiple circular inclusions. Finally, the general-
purpose program in a unified manner will is for BVPs with circular boundaries.
Several examples including the torsion bar, water wave and plate vibration problems
are given to see the validity of the present approach.

2 Methods of Solution

2.1 Problem Statements

Suppose a boundary value problem has a domain D which is enclosed with the
circular boundary Bk (k = 0, 1, 2, . . ., H )

B =
H⋃

k=0

Bk (1)

as shown in Fig. 1. For the infinite plane problem, the radius a0 in Fig. 1 is infinite.
The governing equation can be expressed by

Lu(x) = 0, x ∈ Ω, (2)

where u(x) is the potential function, Ω is the domain of interest and L denotes the
operator for the corresponding problems as shown below:

Lu(x) =

⎧⎪⎨
⎪⎩

∇2u(x) : Laplacian operator,

(∇2 + k2)u(x) : Helmholtz operator,

(∇4 − ζ 4)u(x) : biHelmholtz operator,

(3)

where ∇2 is the Laplacian operator, k is the wave number which is the angular
frequency over the speed of sound and ζ is the frequency parameter.
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32 J.-T Chen et al.

Fig. 1 Sketch of a circular
boundary with circular holes
and/or inclusions

2.2 Dual Null-Field Integral
Formulation – the Conventional Version

Based on the dual boundary integral formulation for the domain point, we have

2πu(x) =
ˆ

B
T (s, x)u(s)dB(s) −

ˆ
B

U (s, x)t(s) dB(s), x ∈ Ω, (4)

2π
�u(x)

�nx
=
ˆ

B
M(s, x)u(s) dB(s) −

ˆ
B

L(s, x)t(s) dB(s), x ∈ Ω, (5)

where s and x are the source and field points, respectively, B is the boundary, nx

denotes the outward normal vector at field point x , and the kernel function U (s, x)
is the fundamental solution which satisfies

L {U (x, s)} = δ(x − s), (6)

in which δ(x − s) denotes the Dirac-delta function. The other kernel functions are

T (s, x) ≡ �U (s, x)

�ns
, L(s, x) ≡ �U (s, x)

�nx
,

M(s, x) ≡ �2U (s, x)

�ns�nx
,

(7)

where ns denotes the outward normal vector of the source point s. By moving the
field point x to the boundary, the dual boundary integral equations for the boundary
point can be obtained as follows:
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A Semi-Analytical Approach for Boundary Value Problems with Circular Boundaries 33

πu(x) = C.P.V .

ˆ
B

T (s, x)u(s)dB(s)

− R.P.V .

ˆ
B

U (s, x)t(s)dB(s), x ∈ B, (8)

π
�u(x)

�nx
= H.P.V .

ˆ
B

M(s, x)u(s)dB(s)

− C.P.V .

ˆ
B

L(s, x)t(s)dB(s), x ∈ B, (9)

where the R.P .V . is the Riemann principal value, C .P .V . is the Cauchy principal
value and H .P .V . is the Hadamard (or called Mangler) principal value. The dual
null-field integral equations are

0 =
ˆ

B
T (s, x)u(s)dB(s) −

ˆ
B

U (s, x)t(s)dB(s), x ∈ Ωc, (10)

0 =
ˆ

B
M(s, x)u(s)dB(s) −

ˆ
B

L(s, x)t(s)dB(s), x ∈ Ωc, (11)

when the field point x is moved to the complementary domain, and the superscript
“c” denotes the complementary domain.

2.3 Dual Null-Field Integral
Formulation – the Present Version (Direct BIEM)

By introducing the degenerate kernels, the collocation point can be exactly located
on the real boundary free of facing singularity. Therefore, the representations of
integral equations including the boundary point can be written as

2πu(x) =
ˆ

B
T (s, x)u(s) dB(s) −

ˆ
B

U (s, x)t(s) dB(s), x ∈ Ω ∪ B, (12)

2π
�u(x)

�nx
=
ˆ

B
M(s, x)u(s) dB(s) −

ˆ
B

L(s, x)t(s) dB(s), x ∈ Ω ∪ B, (13)

and

0 =
ˆ

B
T (s, x)u(s)dB(s) −

ˆ
B

U (s, x)t(s)dB(s), x ∈ Ωc ∪ B, (14)

0 =
ˆ

B
M(s, x)u(s)dB(s) −

ˆ
B

L(s, x)t(s)dB(s), x ∈ Ωc ∪ B, (15)
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once the kernel is expressed in term of an appropriate degenerate form. Here, we
used the formulation of potential problem to illustrate our approach. The more
detailed formulation for plate can be consulted with (Lee et al., 2007a).

2.4 Indirect Boundary Integral Formulation

Based on the indirect boundary integral formulation, the potential and its derivative
can be represented by

u(x) =
ˆ

B
P(s, x)φ(s)dB(s), (16)

�u(x)

�nx
=
ˆ

B

�P(s, x)

�nx
φ(s)dB(s), (17)

where U (s, x) or T (s, x) is chosen as P(s, x), φ(s) is the unknown fictitious
density distribution. By matching the boundary condition, the unknown fictitious
density can be obtained. Therefore, the potential in the field can be determined
by using the Eq. (16). The extended application to plate problem can be found in
(Lee et al., 2007a). The comparison of direct and indirect approaches is shown in
Table 1. It must be noted that null-field equation is not available in the indirect
formulation.

Table 1 Comparison of direct and indirect BIEM

Direct BIEM Indirect BIEM

Null field © N. A.

Approach UT (singular equation)
LM (hypersingular equation)

(
U

L

)
(single layer)

(
T

M

)
(double layer)

Singularity Disappear Disappear

2.5 Expansions of the Fundamental Solution
and Boundary Density

The closed-form fundamental solutions as mentioned above are

U (s, x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2π

ln r for the Laplace problem
i
4 H (1)

0 (kr ) for the Helmholtz problem
1

8ζ 2 [Y0(ζr ) + i J0(ζr ) + 2
π

(K0(ζr ) + i I0(ζr ))] for the Helmholtz problem

(18)
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A Semi-Analytical Approach for Boundary Value Problems with Circular Boundaries 35

where r ≡ |s − x | is the distance between the source point and the field point,i is
the imaginary number (i2 = −1), H (1)

0 is the first kind Hankel function of zeroth
order, J0(ζr ) and Y0(ζr ) are the first kind and second kind Bessel functions of zeroth
order, respectively, I0(ζr ) and K0(ζr ) are the first kind and second kind modified
Bessel functions of zeroth order, respectively, To fully utilize the property of circular
geometry, the mathematical tools, separable kernel (or so-called degenerate kernel)
and Fourier series, are utilized for analytical integrals.

2.5.1 Degenerate (Separable) Kernel for Fundamental Solutions

By employing the separating technique for source point and field point, the kernel
function U (s, x) can be expanded in terms of degenerate (separable) kernel in a
series form as shown below:

U (s, x) =

⎧⎪⎪⎨
⎪⎪⎩

U I (s, x) =
∞∑
j=0

A j (s)B j (x), |x | ≤ |s| ,

U E (s, x) =
∞∑
j=0

A j (x)B j (s), |x | > |s| ,
(19)

where the superscripts “I ” and “E” denote the interior and exterior cases, respec-
tively. The other kernels in the boundary integral equation can be obtained by
utilizing the operators of Eq. (7) with respect to the kernel U (s, x). When the degen-
erate kernel is used, we choose two linearly independent sets of {A j} and {B j}. In
the computation, the degenerate kernel can be expressed as finite sums of products
of functions of s alone and functions of x alone. Equation (19) is valid for one,
two and three dimensional cases as shown in Fig. 2. In this paper, we focus on
two-dimensional problems. The degenerate kernels for the fundamental solutions
of the three operators are shown in Chen et al. (2005), Chen et al. (2007) and Lee
et al. (2007a) respectively.

Fig. 2 Degenerate kernel for the one, two and three dimensional problems
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2.5.2 Fourier Series Expansion for Boundary Densities

We apply the Fourier series expansion to approximate the boundary potential and
its normal derivative as expressed by

u(s) = a0 +
∞∑

n=1

an cos nθ + bn sin nθ, s ∈ B, (20)

t(s) = p0 +
∞∑

n=1

pn cos nθ + qn cos nθ, s ∈ B, (21)

where an , bn , pn and qn (n = 0, 1, 2, . . .) are the Fourier coefficients and θ is the
polar angle. In the real computation, the integrations can be analytically calculated
by employing the orthogonal property of Fourier series and only the finite M num-
ber of terms is used in the summation. The present method belongs to one kind
of semi-analytical methods since error only attributes to the truncation of Fourier
series.

2.6 Adaptive Observer System

After collocating points in the null-field integral equation of Eq. (14), the boundary
integrals through all the circular contours are required. Since the boundary integral
equations are frame indifferent (i.e. rule of objectivity), the origin of the observer
system can be adaptively located on the center of the corresponding boundary con-
tour under integration. Adaptive observer system is chosen to fully employ the
circular property by expanding the kernels into degenerate forms. Fig. 3 shows the
boundary integration for the circular boundaries in the adaptive observer system.
The dummy variable in the circular contour integration is the angle (θ ) instead of
radial coordinate (R). By using the adaptive system, all the boundary integrals can
be determined analytically free of principal value senses.

2.7 Linear Algebraic Equation

In order to calculate the Fourier coefficients, N (N = 2M + 1) boundary nodes
for each circular boundary are needed and they are uniformly collocated on each
circular boundary. From Eqs. (14) and (15), we have

0 =
H∑

j=0

ˆ
B j

T (s, x)u(s) dB(s) −
H∑

j=0

ˆ
B j

U (s, x)t(s) dB(s), x ∈ Dc ∪ B, (22)

0 =
H∑

j=0

ˆ
B j

M(s, x)u(s) dB(s) −
H∑

j=0

ˆ
B j

L(s, x)t(s) dB(s), x ∈ Dc ∪ B. (23)
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A Semi-Analytical Approach for Boundary Value Problems with Circular Boundaries 37

Fig. 3 The adaptive observer
system

It is noted that the integration path is clockwise. For the B j integral of the circu-
lar boundary, the kernels (U (s, x), T (s, x), L(s, x) and M(s, x)) are expressed by
degenerate kernel when the circle of observation located is same as that of integral
path. Otherwise, the bi-center expansion is utilized. The boundary densities (u(s)
and t(s)) are substituted by using the Fourier series. The linear algebraic system is
obtained

[U ] {t} = [T ] {u} (24)

where [U ] and [T ] are the influence matrices with a dimension of (H +1)×(2M+1)
by (H +1)×(2M+1), {u} and {t} denote the column vectors of Fourier coefficients
with a dimension of (H + 1) × (2M + 1) by 1. All the unknown coefficients can
be solved by using the linear algebraic equations. Then the unknown boundary data
can be determined and the potential is obtained by substituting the boundary data
into Eq. (12).

2.8 Transformation of Tensor Components

In order to determine the field of potential gradient, the normal and tangential deriva-
tives should be calculated with care. For the non-concentric case, special treatment
for the potential gradient should be taken care as the source and field points locate
on different circular boundaries. The detailed tensor transformation is shown in Lee
et al. (2007a).
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3 Illustrative Examples

Example 1: A circular bar with an eccentric inclusion
A circular bar of radius R0 with an eccentric circular inclusion of radius R1 is shown
in Fig. 4. The ratio of R1/R0 and ex/R0 are 0.3 and 0.6, respectively. The torsional
rigidity G of cross section is expressed as

G =
H∑

k=0

μk

[ˆ
Ω

(x2 + y2) dΩ −
ˆ

Bk

ϕ
�ϕ

�n
dBk

]
, (25)

where μk is shear modulus of kth inclusion and ϕ is the warping function. It is found
that the solution converges fast by using only fourteen number of terms of Fourier
series. The results of torsional rigidity for different values of μ1/μ0 are shown in
Table 2. For verifying our results, the exact solution of Muskhelishvili (1953) and

Fig. 4 Sketch of an eccentric
circular inclusion problem

Table 2 Torsional rigidity of a circular bar with an eccentric inclusion

2G/πμ0 R4
0

μ1

μ0
Muskhelishvili (1953) Tang (1996) Present (M=20)

0 0.82370 0.82377 0.82370

0.2 0.89180 0.89181 0.89180

0.6 0.96246 0.96246 0.96246

1.0 1.00000 1.00000 1.00000

5.0 1.10800 1.10794 1.10800

20.0 1.25224 1.25181 1.25224

1000 9.19866 N/A 9.19866
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Fig. 5 Interaction of an
incident water wave with four
cylinders

x

y 

2b

a

2b

α

1 2

34

the result of integral equation formulation by Tang (1996) are also shown in Table 2
for comparison. The present results match very well with the exact solution derived
by Muskhelishvil and are better those that of Tang (1996).

Example 2: Water wave impinging four cylinders
In this example, we consider water wave problem by an array of four bottom-
mounted vertical rigid circular cylinders with the same radius a located at the
vertices of a square (−b,−b), (−b, b), (b,−b), (b, b), respectively, as shown in
Fig. 5. Consider the incident wave in the direction of 45 degrees (α = 45◦). The
first-order force for four cylinders in the direction of the incident wave is shown in
Fig. 6. It is found that the force effect on the cylinder 2 and the cylinder 4 is identical
as expected due to symmetry. The maximum free-surface elevation amplitude is
plotted in Fig. 7. Also, the results of potentials at the north pole of each cylinder
are also compared well with the approximate series solution given by Linton and

Fig. 6 The first-order force
for four cylinders using the
proposed method

0 2 4 68 10
ka

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f(j)

Cylinder 1
Cylinder 2
Cylinder 3
Cylinder 4
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Fig. 7 Contour of the
maximum free-surface
elevation amplitude

Evans (1990) and the BEM data by Perrey-Debain et al. (2003) as shown in Table 3.
The results agree well with those of Perrey-Debain et al.

Table 3 Potential (φ) at the north pole of each cylinder (ka = 1.7)

Present method Perrey-Debain et al. Linton & Evan

Cylinder 1 −2.418395851
+0.753719467 i

−2.418395682
+0.753719398 i

−2.418395683
+0.753719398 i

Cylinder 2 2.328927362
−0.310367580 i

2.328927403
−0.310367705 i

2.328927400
−0.310367707 i

Cylinder 3 0.350612027
−0.198852116 i

0.350611956
−0.198852086 i

0.350611956
−0.198852086 i

Cylinder 4 −0.383803194
+1.292792513 i

−0.383803273
+1.292792457 i

−0.383803272
+1.292792455 i

Example 3: A circular plate with an eccentric hole
A circular plate weakened by an eccentric hole is considered. The offset distance e
of the eccentric hole is 0.45 m (e/a = 0.45) as shown in Fig. 8. The FEM model of
the ABAQUS used 8217 elements and 8404 nodes. The former six natural frequency
parameters and modes by using FEM (Khurasia and Rawtani, 1978) and the present
method are shown in Fig. 9. The results of the present method match well with
those of FEM using ABAQUS. In the results of Khurasia and Rawtani (1978), the
first mode was not reported while the second and fourth modes are lost. A little
deviation is also shown in the results reported by Khurasia and Rawtani due to the
coarse mesh. Owing to the lack of stiffness of the clamped boundary condition in
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Fig. 8 A circular plate with
an eccentric hole in
clamped-free boundary
condition

Fig. 9 The former six natural frequency parameters and modes of a circular plate with an
eccentric hole

reality, it is expected that the experimental data (Khurasia and Rawtani, 1978) are
less than those obtained by using the other methods (Khurasia and Rawtani, 1978).

4 Conclusions

For the boundary value problems with circular boundaries, we have proposed a null-
field BIEM formulation by using degenerate kernels, null-field integral equation
and Fourier series in companion with adaptive observer system and vector decom-
position. Three operators for Laplace, Helmholtz and biHelmholtz problems were
all considered. This method is a semi-analytical approach for the problems with
circular boundaries since only truncation error in the Fourier series is involved.
The method shows great generality and versatility for the problems with arbitrary
number, radii and positions of circular holes and/or inclusions. Not only the torsion
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problem but also the water wave as well as plate problems were solved. Five goals:
(1) free of calculating principal value, (2) exponential convergence, (3) well-posed
algebraic system, (4) elimination of boundary-layer effect and (5) meshless, of the
formulation are achieved. A general-purpose program for solving the problems with
arbitrary number, size and various locations of circular cavities and/or inclusions
was developed.
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