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Abstract 
In this paper, the method of fundamental solutions (MFS) for solving the eigenfrequencies of annular membrane is 

proposed. By employing the fundamental solution, the coefficients of influence matrices are easily determined. The 

spurious eigensolution in conjunction with the true eigensolution appears. It is found that the spurious eigensolution 

using the MFS depends on the location of the inner boundary where the sources are distributed. To verify this finding, 

the true and spurious eigenvalues in an annular domain are analytically studied using the degenerate kernel and 

circulant. In order to obtain the true eigensolution, the singular value decomposition (SVD) updating technique and the 

Burton & Miller method are utilized to filter out the spurious eigensolutions. One example is demonstrated analytically 

and numerically to see the validity of the present method. 
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1. Introduction 
The method of fundamental solutions (MFS) is a 

numerical technique as well as finite difference method 

(FDM), finite element method (FEM) and boundary 

element method (BEM). It is well known that the 

method of fundamental solutions can deal with many 

engineering problems when a fundamental solution is 

known. This method was attributed to Kupradze in 1964 

[1]. The method of fundamental solutions can be applied 

to potential [2], Helmholtz [3], diffusion [4], biharmonic 

[5] and elasticity problems [1]. The method of 

fundamental solutions can be seen as one kind of 

meshless method. The basic idea is to approximate the 

solution by a linear superposition of fundamental 

solution with source located outside the domain of the 

problem. Moreover, it has some advantages over 

boundary element method, e.g., no singularity, no 

boundary integrals and mesh-free model. 

In boundary element method, Tai and Shaw [6] 

first employed the complex-valued BEM to solve 

membrane vibration. De Mey [7], Hutchinson and Wong 

[8] employed only the real-part kernel to solve the 

membrane and plate vibrations, respectively. Although 

the complex-valued computation is avoided, they faced 

the occurrence of spurious eigenequations. One has to 

investigate the mode shapes in order to identify and 

reject the spurious ones. If we usually need to look for 

the eigenmode as well as eigenvalue, the sorting for the 
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spurious eigenvalues pay a small price by identifying 

the mode shapes. Chen et al. [9] commented that the 

detection of spurious modes may mislead the judgment 

of the true and spurious ones, since the true and 

spurious modes may have the same nodal line in case of 

different eigenvalues. This is the reason why Chen and 

his coworkers have developed many systematic 

techniques, e.g., dual formulation [9], domain partition 

[10], SVD updating technique [11], CHEEF method 

[12], for sorting out the true and the spurious 

eigenvalues. However, it is true only for the case of 

problem with a simply-connected domain. For 

multiply-connected problems, spurious eigenvalues still 

occurs even though the complex-valued BEM is utilized. 

This occurrence of spurious eigenvalues and their 

treatment have been studied in the membrane and 

acoustic problems [13, 14]. 

Although the MFS has been applied to solve many 

engineering problems, its validity for solving the 

eigensolutions of multiply-connected problems was not 

addressed in the literature to the authors’ knowledge. 

We may wonder whether the spurious solution occur or 

not as well as BEM does. For the purpose of analytical 

derivation, an annular case is considered to examine the 

appearance of spurious eigensolutions. 

In this paper, the method of fundamental solutions 

for solving the eigenfrequencies of annular membrane is 

proposed. The occurring mechanism of the spurious 

solution of an annular membrane is studied analytically 

and numerically. The degenerate kernels and circulants 

are employed to determine the spurious solution. In 

order to filter out the spurious eigenvalues, singular 

value decomposition updating technique and Burton & 

Miller method are utilized. An annular case is 

demonstrated analytically and numerically to see the 

validity of the present method. 

 

2. Formulation of annular problem using 
method of fundamental solutions 

The governing equation for an annular membrane 

vibration in Fig.1 is the Helmholtz equation as follows: 

Dxxuk ∈=+∇ ,0)()( 22 , (1)

where 2∇  is the Laplacian operator, D is the domain of 

interest and k is the wave number.  

The fundamental solution ),( xsU  which satisfies 

)(
2

),()( 22 sxxsUk −−=+∇ δπ , (2)

where )( sx −δ is the Dirac-Delta function. According 

to the dual formulation [15], we have the four kernels 
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where || xsr −≡  is the distance between the source 

and collocation points; in  is the ith component of the 

outnormal vector at s; in  is the ith component of the 

outnormal vector at x, mJ and mY  denote the first kind 

and second kind of the mth order Bessel function, 

respectively, and )( iii xsy −≡ , i= 1, 2, are the 

differences of the ith components of s and x, 

respectively. Based on the indirect method using the 

dual formulation, we can represent the field solution by 
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Single-layer potential approach 

∑=
j

jiji xsUxu φ),()( , (7)

∑=
j

jiji xsLxt φ),()( , (8)

Double-layer potential approach 

∑=
j

jiji xsTxu ψ),()( , (9)

∑=
j

jiji xsMxt ψ),()( . (10)

The matrix forms of Eqs.(7), (8), (9) and (10) are 

Single-layer potential approach 

}{][}{ jjii Uu φ= , (11)

}{][}{ jjii Lt φ= , (12)

Double-layer potential approach 

}{][}{ jjii Tu ψ= , (13)

}{][}{ jjii Mt ψ= . (14)

where }{ jφ  and }{ jψ  are the generalized 

unknowns by using the single and double-layer potential 

approaches, respectively. Here, we consider the problem 

with an annular domain. The radii of inner and outer 

circles are a and b for the real boundary, respectively. 

The source strengths are distributed on the inner and 

outer fictitious circular radii a′  and b′  in Fig.2, 

respectively. For simplicity, the boundary condition is 

the Dirichlet type, 0=u  on all the boundaries. We 

distributed 2N collocation points at each real boundary 

and 2N source points at each fictitious boundary. By 

matching the boundary condition, the equations can be 

obtained using the single-layer potential approach of 

Eq.(7) as shown below: 

[ ]{ } [ ]{ }212111}0{ jjijji UU φφ +=  (15)

[ ]{ } [ ]{ }222121}0{ jjijji UU φφ +=  (16)
where the first superscript “α” in ][ βα

jiU  denotes the 

position of collocation point (1 for B1 and 2 for B2), the 

second superscript “β” identifies the position of source 

point (1 for 1B′  and 2 for 2B′ ), { }1
jφ  and { }2

jφ  are 

the unknow coefficients on the inner and outer boundary, 

respectively. By assembling Eqs.(15) and (16) together, 

we have 
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The determinant of the matrix must be zero to obtain the 

nontrivial solution, i.e., 

0]det[ 1 =SM  (18)

By plotting the determinant versus the wave number, the 

curve drops at the positions of eigenvalues. 

 

3. Mathematical analysis of the true and 
spurious eigenvalues 

For the kernel function, we can express 

),( φρ=x and ),( θRs =  in terms of polar coordinate. 

The U kernel can be expressed in terms of degenerate 

kernels as shown below: 
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where the subscripts “I ” and “E ” denote the interior (R 

> ρ) and exterior domains (R < ρ), respectively. Since 

the rotation symmetry is preserved for a circular 

boundary, the four influence matrices, [U11], [U12], [U21] 

and [U22] are all symmetric circulants. By 

superimposing 2N lumped strength along each boundary, 

we have the influence matrices, 
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where the elements of the first row can be obtained by  

),(11
ijij xsUa =−

. (21)

The matrix [U11] in Eq.(20) is found to be a circulant 

since the rotational symmetry for the influence 
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coefficients is considered. By using the degenerate 

kernel and the orthogonal property, the eigenvalue of 

the matrix [U11] can be obtained as follows: 

)]()()[(2][ 11

kaYkaiJakNJ mmm
U
m −′=λ  (22)

where NNm ),1(,,2,1,0 −±±±= L . Similarly, 

the eigenvalue of matrices, [U12], [U21] and  [U22] are 

shown in below: 
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By using the similar transform, we can decompose the 
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where “H” is transpose and conjugate, and 
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Similarly, [U12], [U21] and [U22] can be decomposed. 

Equation (17) can be decomposed into 
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Since Φ is unitary, the determinant of [SM1] is 
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for the annular membrane with the Dirichlet-Dirichlet 

boundary conditions by using the single-layer potential 

approach. After comparing with the analytical solution 

[14], we can obtain the true and spurious eigenequations 

in Eq.(29). Since, the middle bracket 
[ )()( bkYbkiJ mm ′+′− ] of Eq.(30) is never zero, the 

spurious eigenequation of 0)( =′akJ m  and the true 

eigenequation )()()()( kbYkaJkaYkbJ mmmm −  0=  
and the spurious eigenequation of 0)( =′akJ m . 
Similarly, we can obtain the true and spurious 

eigenequation for different boundary conditions and 

using different formulations. All the results are derived 

analytically as shown in Table 1. The occurrence of 

spurious eigenvalues depends on the formulation and 

the location of inner source point instead of the 

specified boundary condition, while the true 

eigenequation is independent of the formulation and is 

relevant to the specified boundary condition. For the 

multiply-connected membrane, the singular-layer 

potential approach produces spurious eigenvalues which 

are associated with the interior natural frequency with 

essential homogeneous boundary conditions, while the 

double-layer potential approach produces spurious 

eigenvalues which are associated with the interior 

eigenfrequency with natural homogeneous boundary 

conditions. 

 

4. Treatment of spurious eigenvalues 
4.1 SVD updating technique 

In order to extract out the true eigenvalues, the 

SVD updating technique is utilized. In spite of the 

single-layer potential approach to obtain Eq.(17), we 

can also select the double-layer potential approach and 

obtain 
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By employing the relation in the degenerate kernels 

between direct and indirect method [16], the SVD 

updating document (Indirect method) to extract out the 
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true eigenequation is equivalent to the SVD updating 

document (Indirect method). We have 
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Since the rank of the matrix [C] must be smaller than 

4N. By using the property of Eq.(26), the matrix can be 

written as 
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Based on the equivalence between the SVD technique 

and the least-squares method, we can obtain the true 

eigenequation ( −)()( kaYkbJ mm  0)()( =kbYkaJ mm ). 

This indicates that only the true eigenvalues for annular 

membrane are imbedded in the SVD updating matrix. 

4.2 Burton & Miller method 

By employing the Burton a& Miller method for 

dealing with fictitious frequency, we extend this concept 

to suppress the appearance of the spurious eigenvalue of 

the annular membrane in the method of fundamental 

solutions. 

By assembling the Eqs.(17) and (31) with an 

imaginary number, we have 

[ ] }0{][][
2

1
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+
ϕ
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SMiSM , (34)

where the 1ϕ  and 2ϕ  are the mixed densities. Thus, 
the true eigenequation ( −)()( kaYkbJ mm  

0)()( =kbYkaJ mm ) is obtained by using the Burton & 

Miller method. 

 

5. Numerical example 
An annular membrane with the inner radius of 0.5 

meter and the outer radius of 2 meter are considered, 

respectively. The source points are distributed at 

4.0=′a m and 2.2=′b m. The outer and inner 

fictitious boundaries are both distributed 36 nodes as 

shown in Fig.2, respectively. Fig.3 and Fig.4 show the 

determinant versus wave number by using the 

single-layer potential approach and double-layer 

potential approach, respectively. The drop location 

indicates the possible eigenvalues. As expected, the 
spurious eigenvalue of k=6.01 ( 0)( =′akJ m ) for 

single-layer potential approach and k=4.61 
( 0)( =′′ akJ m ) for double-layer potential approach 

appear. Fig.5 shows the determinant versus wave 

number by using the SVD updating technique. Fig.6 

shows the determinant versus wave number by using the 

Burton & Miller method for annular membrane. It is 

found that the spurious eigenvalues are suppressed. The 

former five true eigenvalues using the method of 

fundamental solutions are compared with those using 

FEM and BEM as shown in Table 2. After comparing 

the result with the analytical solution, good agreement is 

made. 

 

6. Conclusions 
The mathematical analysis has shown that the 

spurious eigenvalues occur by using degenerate kernel 

and circulants when the method of fundamental 

solutions is used. The positions of spurious eigenvalues 

for the annular problem depend on the location of inner 

fictitious boundary where the sources are distributed. 

The spurious eigenvalues in the annular problem are 

found to be the true eigenvalues of the associated 

simply-connected problem boundary by inner boundary. 

We have employed the SVD updating technique and 

Burton & Miller method to filter out the spurious 

eigenvalues successfully. 
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Table 1 The true and spurious eigenequation for different boundary conditions by using single-layer 

and double-layer potential approaches. 
Inner-outer boundary Single-layer potential approach Double-layer potential approach

True 
0)()()()( =− kbYkaJkaYkbJ mmmm

 

0)()()()( =− kbYkaJkaYkbJ mmmm

 
Dirichlet-Dirichlet 

Spuriou

s 
0)( =′akJ m  0)( =′′ akJ m  

True 
0)()()()( =′−′ kbYkaJkaYkbJ mmmm

 

0)()()()( =′−′ kbYkaJkaYkbJ mmmm

 
Dirichlet-Neumann 

Spuriou

s 
0)( =′akJ m  0)( =′′ akJ m  

True 
0)()()()( =′−′ kbYkaJkaYkbJ mmmm

 

0)()()()( =′−′ kbYkaJkaYkbJ mmmm

 
Neumann-Dirichlet 

Spuriou

s 
0)( =′akJ m  0)( =′′ akJ m  

True 
0)()()()( =′′−′′ kbYkaJkaYkbJ mmmm

 

0)()()()( =′′−′′ kbYkaJkaYkbJ mmmm

 Neumann-Neuman
n Spuriou

s 
0)( =′akJ m  0)( =′′ akJ m  

Table 2 The former five true eigenvalues are compared with different methods 
 k1 k2 k3 k4 k5 

Analysis solution [14] 2.05 2.23 2.66 3.21 3.80 
FEM (ABAQUS) [14] 2.03 2.20 2.62 3.15 3.71 
BEM (CHIEF) [14] 2.05 2.23 2.67 3.22 3.81 

MFS (SVD updating technique) 2.05 2.22 2.65 3.20 3.79 
MFS (Burton & Miller) 2.04 2.20 2.64 3.20 3.78 

 

 

 

 

 

 

 

 

 

Fig. 1 An annular problem Fig. 2 Figure sketch for node distribution 
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Fig.3 The determinant versus the wave number by using the single-layer potential approach 
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Fig.4 The determinant versus the wave number by the using double-layer potential approach 
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Fig.5 The determinant versus the wave number by using the SVD updating technique 
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Fig.6 The determinant versus the wave number by using the Burton and Miller method 
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基本解法求同心圓薄膜之特徵解 
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摘要 

本文主要是用基本解法求解同心圓薄膜

之特徵值問題。利用基本解法，我們可以容

易地求得影響係數矩陣。在求解的過程中，

假根常常伴隨著真根出現，我們也發現到假

根產生的機制是受到內部源點分佈位置的影

響。為了證明這個發現，我們將以一個同心

圓薄膜為例進行解析探討及數值結果的比

較，其中我們將會使用退化核及循環矩陣這

兩個數學的工具來進行分析。為了獲得真

根，採用奇異值補充行及 Burton & Miller法
這兩個技巧來濾除假根。文中以一個例子來

論證我們這個方法的正確性。 
關鍵字：同心圓薄膜、基本解法、Helmholtz

方程、循環矩陣、退化核、奇異值

補充行、Burton & Miller法 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


