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Abstract
In this paper, the method of fundamental solutions (MFS) for solving the eigenfrequencies of annular membrane is

proposed. By employing the fundamental solution, the coefficients of influence matrices are easily determined. The

spurious eigensolution in conjunction with the true eigensolution appears. It is found that the spurious eigensolution

using the MFS depends on the location of the inner boundary where the sources are distributed. To verify this finding,

the true and spurious eigenvalues in an annular domain are analytically studied using the degenerate kernel and

circulant. In order to abtain the true eigensolution, the singular value decomposition (SVD) updating technique and the

Burton & Miller method are utilized to filter out the spurious eigensolutions. One example is demonstrated analytically

and numerically to see the validity of the present method.
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1. Introduction

The method of fundamental solutions (MFS) is a
numerical technique as well as finite difference method
(FDM), finite element method (FEM) and boundary
element method (BEM). It is well known that the
method of fundamental solutions can deal with many
engineering problems when a fundamental solution is
known. This method was attributed to Kupradze in 1964
[1]. The method of fundamental solutions can be applied
to potential [2], Helmholtz [3], diffusion [4], biharmonic
[5] and elasticity problems [1]. The method of
fundamental solutions can be seen as one kind of
meshless method. The basic idea is to approximate the

solution by a linear superposition of fundamental

solution with source located outside the domain of the
problem. Moreover, it has some advantages over
boundary element method, e.g., no singularity, no
boundary integrals and mesh-free model.

In boundary element method, Tai and Shaw [6]
first employed the complex-valued BEM to solve
membrane vibration. De Mey [7], Hutchinson and Wong
[8] employed only the rea-part kernel to solve the
membrane and plate vibrations, respectively. Although
the complex-valued computation is avoided, they faced
the occurrence of spurious eigenequations. One has to
investigate the mode shapes in order to identify and
reject the spurious ones. If we usually need to look for

the eigenmode as well as eigenvalue, the sorting for the
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spurious eigenvalues pay a small price by identifying
the mode shapes. Chen et al. [9] commented that the
detection of spurious modes may mislead the judgment
of the true and spurious ones, since the true and
spurious modes may have the same nodal line in case of
different eigenvalues. This is the reason why Chen and
his coworkers have developed many systematic
techniques, e.g., dual formulation [9], domain partition
[10], SVD updating technique [11], CHEEF method
[12], for sorting out the true and the spurious
eigenvalues. However, it is true only for the case of
problem with a simply-connected domain. For

multiply-connected problems, spurious eigenvalues still

occurs even though the complex-valued BEM s utilized.

This occurrence of spurious eigenvalues and their
trestment have been studied in the membrane and
acoustic problems[13, 14].

Although the MFS has been applied to solve many
engineering problems, its validity for solving the
eigensolutions of multiply-connected problems was not
addressed in the literature to the authors knowledge.
We may wonder whether the spurious solution occur or
not as well as BEM does. For the purpose of analytical
derivation, an annular case is considered to examine the
appearance of spurious eigensol utions.

In this paper, the method of fundamental solutions
for solving the eigenfrequencies of annular membrane is
proposed. The occurring mechanism of the spurious
solution of an annular membrane is studied analytically
and numerically. The degenerate kernels and circulants
are employed to determine the spurious solution. In
order to filter out the spurious eigenvalues, singular
value decomposition updating technique and Burton &
Miller method are utilized. An annular case is
demonstrated analytically and numerically to see the
validity of the present method.

Tainan,Taiwan,R.0.C., 12-13 December 2003

2. Formulation of annular problem using
method of fundamental solutions
The governing equation for an annular membrane
vibration in Fig.1 is the Helmholtz equation as follows:
(V2 +k*u(x)=0, xeD, DV
where V2 isthe Laplacian operator, D is the domain of

interest and £ is the wave number.
The fundamental solution U (s,x) which satisfies

(V2+k2)U(s,x)=—%5(x—s), @

whered (x — s) is the Dirac-Delta function. According

to the dual formulation [15], we have the four kernels

Ul(s,x) =i (kr) =Y, (kr), 3)
T(s,x) = oU (s,x)
on,
' (4)

_ iJ, (kr) =Y, (kr) "

r

L(s,x) = aU(s,x)
on, )
)
M(s,x) = 0%U (s, x)
On On,

k(—iJ, (kr) + Y, (kr))

N iJ, (kr) =Y, (kr) nii),
r

where r =|s—x| is the distance between the source

nn (6)

RV A

= k(

and collocation points; n, is the ith component of the
outnormal vector at s; 7, is the ith component of the
outnormal vector atx, J, and Y, denote the first kind
and second kind of the mth order Bessel function,
respectively, and y, =(s, —x,), i= 1, 2, are the
differences of the ith components of s and x,
respectively. Based on the indirect method using the

dual formulation, we can represent the field solution by
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Single-layer potential approach

u(x,) = ;U(S_;,xi)¢_; ' @)

t(x,) = ZL(S_, X8 (8)
Double-layer potentiél approach

u(x,) = ;T(sj,xi)w,- ’ ©)

t(x,) = ;M(s,,x,-)w,- : (10)

The matrix forms of Egs.(7), (8), (9) and (10) are
Single-layer potential approach

{u}=[U;;l{¢;} (1)

{t}=I[L,1{g;} (12
Double-layer potential approach

{u} =Ty} (13)

{t} =M ;{v,} (14)

where {¢} and {w,} ae the generalized

unknowns by using the single and double-layer potential
approaches, respectively. Here, we consider the problem
with an annular domain. The radii of inner and outer
circles are @ and b for the real boundary, respectively.
The source strengths are distributed on the inner and
outer fictitious circular radii a’ and &' in Fig.2,
respectively. For simplicity, the boundary condition is
the Dirichlet type, w =0 on &l the boundaries. We
distributed 2N collocation points at each real boundary
and 2N source points at each fictitious boundary. By
matching the boundary condition, the equations can be
obtained using the single-layer potential approach of
Eq.(7) as shown below:

-lrllel e e

o-pellekb2lel wo
where the first superscript “a ™ in [U%/] denotes the
position of collocation point (1 for B; and 2 for B,), the

second superscript “ 8 " identifies the position of source
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point (1 for B, and 2 for B}), g} and {p?] are

J J

the unknow coefficients on the inner and outer boundary,
respectively. By assembling Egs.(15) and (16) together,

we have

ot (UR UP| |4 0
[SM 1] { ]2 = 12/1 12/2 /2 = : a7
¢/’ U,.j U,.j ¢/ 0
The determinant of the matrix must be zero to obtain the
nontrivial solution, i.e.,
det[SM,]=0 (18)

By plotting the determinant versus the wave number, the

curve drops at the positions of eigenvalues.

3. Mathematical analysis of the true and
spurious eigenvalues
For the kernd function, we can express
x=(p,p)and s=(R,H) in terms of polar coordinate.
The U kernel can be expressed in terms of degenerate
kernels as shown below:

U 0.0)= 30, o), (bR -V, (kR)] cosm(@— ), R > p
U(s,x)= —e

Ut(0.9) = ij (kR)iT, (kp) = Y, (kp)l cos(m(0 - #)), R < p (19)
where the subscripts “/” and “E " denote the interior (R
> p) and exterior domains (R < p), respectively. Since
the rotation symmetry is preserved for a circular
boundary, the four influence matrices, [U"'], [U"], [U”]
and [U”] ae al symmetric circulants. By
superimposing 2N lumped strength along each boundary,

we have the influence matrices,

20 a4y ot Aoy, Oy
Aoya Qo ay r lyyg Aoy o
ul]_
[U ]— Aoy 2 doyg Qo 0 Uoyg4 dayo3 (20)
a, a; dz = Oy, )

where the elements of the first row can be obtained by
a/._,.:Un(s/.,x,.)- (21)
The matrix [U"'] in Eq.(20) is found to be a circulant

since the rotational symmetry for the influence
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coefficients is considered. By using the degenerate
kernel and the orthogonal property, the eigenvalue of
the matrix [U"'] can be obtained as follows:

AV Z2NJ (ka")[iJ, (ka) - Y, (ka)] (22)

whee m=0,£1,+2,---,+(N -1, N . Smilarly,
the eigenvalue of matrices, [U'’], [U”] and [U™] are

m

shown in below:

2,1 = 2N, (ka)lid,, (kD) =Y, (B (23)
AT = 2N, (ka)[iJ, (kD) - ¥, (KkD)] (9
A= 2N, (k)i (kb) =Y, (kb)) (25)

By using the similar transform, we can decompose the

[U"] matrix into

=0z, 0"

Ao 0o - 0 0 0

o A o .. o0 0 0

0 o M ... o 0 0

= B : 1 .. : B B D7 (26)

0 0 o - A o 0

0 0 o - o A, o

0o o 0 - 0 0 A

where“H” is transpose and conjugate, and

* 1z 02 2 %\ 1)

- ,7 (N -
1 sl )
1

0 1
2V -1, 27N
2N N

o 2Ny
) ] 2N
cos 2%y sn 2%y cog 22N -1y sn(2Y -1, cos 22Ny (27)
P 2N 2N 2N 2N 2N

2N 1 202N -2) 2(2N-2) AN AV -1) (AN 4N 1) (AN — 4(N),

2N 2N 2N 2N 2N
27(2N -1) 20N -1) (AN ~2)(N -1) Z(aN ~2)(N -1) (AN = 2(N)
2N 2N 2N 2N 2N

1

Similarly, [U"’], [U*] and [U*] can be decomposed.
Equation (17) can be decomposed into
H H
[s1,] DT, @7 DX @7 |
Yor 0" or o

[UZl] [UZZ]

H
= @ 0 Z[Uu] z:[Uu] @ 0 (28)
0 (D Z:[U 21] Z:[U 22] 0 (D

Since @ is unitary, the determinant of [SM,] is

dEt[SMl]z O_0(0102 '”O-N—l)ZO-N =0, (29)
where
P /,L[Uu]/lwzz] _ ﬂ'[UIZ]ﬂ'[UZI]
=4N?J, (ka)[-iJ,, (kb') + Y, (kb")] (30)
{J,,(kb)Y, (ka)—J, (ka)Y, (kb)}

for the annular membrane with the Dirichlet-Dirichlet

boundary conditions by using the single-layer potential
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approach. After comparing with the analytical solution
[14], we can obtain the true and spurious eigenequations

in Eq.(29). Since, the  middle  bracket
[ i, (kb")+Y,(kb') ] of EQ.(30) is never zero, the
spurious eigenequation of J (ka")=0 and the true
eigenequation  J, (kb)Y, (ka)—J, (ka)Y, (kb) =0
and the spurious eigenequation of J (ka')=0 .
Similarly, we can obtan the true and spurious
eigenequation for different boundary conditions and
using different formulations. All the results are derived
analytically as shown in Table 1. The occurrence of
spurious eigenvalues depends on the formulation and
the location of inner source point instead of the
specified boundary condition, while the true
eigenequation is independent of the formulation and is
relevant to the specified boundary condition. For the
multiply-connected membrane, the singular-layer
potential approach produces spurious eigenvalues which
are associated with the interior natural frequency with
essential homogeneous boundary conditions, while the
double-layer potential approach produces spurious
eigenvalues which are associated with the interior
eigenfrequency with natural homogeneous boundary

conditions.

4. Treatment of spurious eigenvalues
4.1 SVD updating technique

In order to extract out the true eigenvalues, the
SVD updating technique is utilized. In spite of the
single-layer potential approach to obtain Eq.(17), we
can aso select the double-layer potential approach and

obtain

‘//; B T 712 l//} B
[SMZ]{%?}{Tﬂ T”Hf/ff}_{()}' ey

By employing the relation in the degenerate kernels
between direct and indirect method [16], the SVD
updating document (Indirect method) to extract out the



THE 27TH CONFERENCE ON THEORETICAL. AND APPLIED MECHANICS

true eigenequation is equivalent to the SVD updating
document (Indirect method). We have
(sM,)"
Cl= ' 32
(€] [( )" (32)
Since the rank of the matrix [C] must be smaller than

4N. By using the property of Eq.(26), the matrix can be

written as
® 0 0 O0f|Z,u Z,x
0 ®© 0 0|2, 2 ,||®dr O
[C] = v v N EL)
0 0 @ 0|24 Zaull0 @
0 0 0 |2 X2

Based on the equivalence between the SVD technique
and the least-squares method, we can obtain the true
eigenequation (J, (kb)Y, (ka)— J, (ka)Y, (kb)=0).
This indicates that only the true eigenvalues for annular
membrane are imbedded in the SV D updating matrix.
4.2 Burton & Miller method

By employing the Burton a& Miller method for
dealing with fictitious frequency, we extend this concept
to suppress the appearance of the spurious eigenval ue of
the annular membrane in the method of fundamental
solutions.

By assembling the Egs.(17) and (31) with an
imaginary number, we have

[[saz,]+ z‘[SMZ]]{(”j ={0} (34)

where the ¢, and ¢, are the mixed densities. Thus,
J, (kb)Y (ka)—
J, (ka)Y, (kb)=0) is obtained by using the Burton &

the true eigenequation (

Miller method.

5. Numerical example
An annular membrane with the inner radius of 0.5
meter and the outer radius of 2 meter are considered,
respectively. The source points are distributed at
a'=04m and b'=22m. The outer and inner

fictitious boundaries are both distributed 36 nodes as
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shown in Fig.2, respectively. Fig.3 and Fig.4 show the
determinant versus wave number by using the
single-layer potential approach and double-layer
potential approach, respectively. The drop location
indicates the possible eigenvalues. As expected, the
spurious eigenvalue of k=6.01 ( J, (ka')=0) for

k=461
(J, (ka'y=0) for double-layer potentia approach

single-layer  potential  approach  and
appear. Fig.5 shows the determinant versus wave
number by using the SVD updating technique. Fig.6
shows the determinant versus wave number by using the
Burton & Miller method for annular membrane. It is
found that the spurious eigenvalues are suppressed. The
former five true eigenvalues using the method of
fundamental solutions are compared with those using
FEM and BEM as shown in Table 2. After comparing
the result with the analytical solution, good agreement is

made.

6. Conclusions

The mathematical analysis has shown that the
spurious eigenvalues occur by using degenerate kernel
and circulants when the method of fundamental
solutions is used. The positions of spurious eigenvalues
for the annular problem depend on the location of inner
fictitious boundary where the sources are distributed.
The spurious eigenvalues in the annular problem are
found to be the true eigenvalues of the associated
simply-connected problem boundary by inner boundary.
We have employed the SVD updating technique and
Burton & Miller method to filter out the spurious

eigenvalues successfully.
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Table 1 The true and spurious eigeneguation for different boundary conditions by using single-layer
and double-layer potentia approaches.

Inner-outer boundary

Single-layer potential approach

Double-layer potential approach

S, (kb)Y (ka) = J, (ka)Y, (kb) = O|J,, (k)Y (ka) - J, (ka)Y,, (kb) = O
True
Dirichlet-Dirichlet o
ot J (ka')=0 J' (ka') =0
N
J,,(kb)Y,, (ka)— J, (ka)Y,, (kb) = O| J|, (kb)Y,, (ka) - J, (ka)Y,, (kb) = O
True
Dirichlet-Neumann o
pUriot J (ka')=0 J' (ka') =0
N
; J, (kb)Y (ka)—J! (ka)Y, (kb) =0|J, (kb)Y (ka)—J| (ka)Y, (kb) =0
rue
Neumann-Dirichlet o
purton J (ka')=0 J' (ka') =0
N
; J! (kb)Y (ka) —J! (ka)Y) (kb) =0|J! (kb)Y (ka)—J| (ka)Y) (kb) =0
Neumann-Neuman e
Souri
n puriow J (ka') =0 J' (ka') =0
N
Table 2 The former five true eigenvalues are compared with different methods
K1 Ko Ks Kq ks
Analysis solution [14] 2.05 2.23 2.66 321 3.80
FEM (ABAQUS) [14] 2.03 2.20 2.62 3.15 371
BEM (CHIEF) [14] 2.05 2.23 2.67 3.22 3.81
MFS (SVD updating technique) 2.05 2.22 2.65 3.20 3.79
MFES (Burton & Miller) 2.04 2.20 2.64 3.20 3.78

Fig. 1 An annular problem

Fig. 2 Figure sketch for node distribution

Source point (36 nodes)

Collocation point (36 nodes)
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I
-16 | S: Spurious eigenvalue
-20 -
7 I
-24 S| J,(0.4k)=0
_ <6.01>
-28 T T T T
1 2 4 5 6 7

Fig.3 The determinant versus the wave number by using the single-layer potential approach

56 |
50 - S: Spurious eigenvalue I
7 |
48 . I
44 -
40 i < J(0.4k)=0
36 ‘ ‘ s46l> ‘
1 2 4 5 6 7
k
Fig.4 The determinant versus the wave number by the using double-layer potential approach
110
- S: Spurious eigenvalue ‘l‘
100
90
80 T T T 1
1 2 3 4 5 6

Fig.5 The determinant versus the wave number by using the SVD updating technique

52
7| S: Spurious eigenvalue
48 -
44 ~
40
36 T T T T
1 2 3 4 5 6

Fig.6 The determinant versus the wave number by using the Burton and Miller method
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