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ABSTRACT

In this paper, the degenerate kernels and Fourier
series expansions are adopted in the null-field integral
equation to solve the exterior Helmholtz problems with
alluvial valleys. The main gain of using degenerate
kernels in integral equations is free of calculating the
principal values for singular integrals when the null-field
point exactly locates on the real boundary. An adaptive
observer system is addressed to fully employ the
property of degenerate kernels for circular boundaries in
the polar coordinate. Image concept and technique of
decomposition are utilized for half-plane problems. After
moving the null-field point to the boundary and matching
the boundary conditions, a linear algebraic system is
obtained without boundary discretization. The unknown
coefficients in the algebraic system can be easily
determined. The present method is treated as a
“semi-analytical” solution since error only attributes to
the truncation of Fourier series. Earthquake analysis for
the site response of alluvial valley or canyon subject to
the incident SH-wave is the main concern. Numerical
examples including single and successive alluvial valleys
are given to test our program. Limiting cases of a single
canyon and two successive canyons are also addressed.
The validity of the semi-analytical method is verified.
Our advantages, well-posed model, principal value free,
elimination of boundary layer effect and exponential
convergence and mesh-free, by using the present method
are achieved.
Keywords: degenerate kernel, Fourier series, null-field
integral equation, Helmholtz problem, SH-wave, alluvial
valley.

1. INTRODUCTION

One of the major concerns of engineering seismology
is to understand and explain vibrational response of the
soil excited by earthquakes. The problem of the
scattering and diffraction of SH-waves by a
two-dimensional arbitrary number and location of
cavities and inclusions in full and half-planes is revisited
in this paper by using our unified formulation. In 1971,
Trifunac [1] has solved the problem of a single
semi-circular alluvial valley subject to SH-wave. Later,
Pao and Mao [2] have published a book on the stress

concentration in 1972. In 1973, Trifunac [3] has also
derived the closed-form solution of a single semi-circular
canyon subject to the SH-wave. The earliest reference to
a closed-form solution of the scattering and diffraction of
the incident SH-wave by an underground inclusion exists
in an article concerning an underground circular tunnel
by Lee and Trifunac [4]. In order to extend to arbitrary
shape inclusion problems, Lee and Manoogian [5] have
used the weighted residual method to revisit the problem
of scattering and diffraction of SH-wave with respect to
an underground cavity of arbitrary shape in a
two-dimensional elastic half-plane. In the following
years, they extended to the half-plane problem with a
inclusion of arbitrary shape [6,7]. According to the
literature review, it is observed that exact solutions for
boundary value problems are only limited for simple
cases, e.g. half-plane with a semi-circular canyon, a
cavity under half-plane, an inclusion under half-plane.
Numerical approach using boundary integral formulation
was employed to study diffraction of seismic waves in
half-plane [8]. Therefore, proposing a systematic
approach for solving exterior Helmholtz problems with
circular boundaries of various numbers, positions and
radii is our goal in this paper. Our approach can deal with
a cavity problem as a limiting case of an inclusion
problem with zero shear modulus.

In this paper, the boundary integral equation method
(BIEM) is utilized to solve the half-plane radiation and
scattering problems with circular boundaries. To fully
utilize the geometry of circular boundary after
introducing image concept, not only Fourier series for
boundary densities as previously used by many
researchers but also the degenerate kernel for
fundamental solutions in the present formulation is
incorporated into the null-field integral equation. The key
idea is that we can push the null-field point exactly on
the real boundary by using appropriate degenerates
kernel in real computation. All the improper boundary
integrals are free of calculating the principal values
(Cauchy and Hadamard) in place of series sum. In
integrating each circular boundary for the null-field
equation, the adaptive observer system of polar
coordinate is considered to fully employ the property of
degenerate kernel. For the hypersingular equation, vector
decomposition for the radial and tangential gradients is
carefully considered, especially in the nonfocal case. A
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scattering problem subject to the incident wave is
decomposed into two parts, incident plane wave field and
radiation field. The radiation boundary condition is the
minus quantity of incident wave function for matching
the boundary condition of total wave for a cavity.
Therefore, proposing a systematic approach for solving
BVP with various numbers of circular boundaries and
arbitrary positions and radii is our goal in this paper.
Following the success of torsion, bending and anti-plane
problems with circular holes [9,10,11,12], the
amplification of site response for alluvial valleys is
studied.

2. PROBLEM STATEMENT

Half-plane problems with alluvial to be analyzed is
shown in Figure 1. The matrix and alluvial are assumed
to be elastic, isotropic and homogenous, and the interface
between the alluvial and matrix is assumed to be perfect.
The governing equation of the anti-plane SH-wave
harmonic motion is

LV?W(X) + po’*W(x) =0, xeQ (1)
where ux, p and @ are the material properties of
shear modulus, the density and the frequency, V? and
Q are the Laplacian operator and the domain of interest,

respectively. The anti-plane displacement field is defined
as

u=v=0, w=w(x,Y), )
where w is the only nonvanishing component of

displacement with respect to the Cartesian coordinate
which is a function of x and y. The traction free

boundary condition at the ground surface of the
half-plane is defined as follows

ow
= —_— = O y = 0 y
TVZ H ay y (3)
or can be represented in the polar coordinate as
r =M 9_0and . )
r 00

The incident excitation of the half-plane, w", is defined
as a steady-state plane SH-wave, and motion in the z
direction. It is expressed as shown below:

Win :WOeik(XSiMHCOSv) , (5)
where W, is the constant amplitude, and » is the
angle of incidence.

‘[ Alluvial .

/ },——_\-Imnx <
7 77 v
[ |
\ /

\ /
i
SH-Wave

Figure 1 A half-plane problem with a semi-circular
alluvial valley subject to the SH-wave.

3. DUAL BOUNDARY INTEGRAL

FORMULATION

Regarding to the SH-wave problem, the integral
equation for the domain point can be derived from the
third Green’s identity [13], yields

2mu(9) = [ T*(5,X)u(s)dB(s)
— [ U (s 0t(9)dB(s)
27t() = [ M*(5,)u(s)dB(s)
~ [ L 0t6)0BG),

where the four kernels should be selected in a degenerate
form of exterior region with the superscript “e¢”, s and
x are the source and field points, respectively, B is
the boundary, and the kernel function, U(s,x), is the

fundamental solution which satisfies

(V2 +KkHU (x,5) = 276(X—Ss), (8)
where 6(x—s) denotes the Dirac-delta function. Then,
we can obtain the fundamental solution as follows

XEQUB,  (6)

XeQUB, (7

U0 =00, ©
T(s,%) = 8Ua(ns, X) L(s,x) = 6UaE]s,x) ,
s , X (10)
M (S, X) — L(S’X)
on,on,

where H®(kr) is the nth order Hankel function of
the first kind, r=|s-x|, n, denotes the outward normal
vector at the field point x. By collocating x outside

the domain (x € Q°) or on the boundary (B ), we obtain
the dual null-field integral equations as shown below

0= [ T'(s,xu(s)dB(s)
— [ U 9t(s)dB(s),

0= [ M'(s,X)u(s)dB(s)
— [ L 0ts)dB(s)

where Q° is the complementary domain and the four
kernels are chosen appropriately using degenerate
expression of interior region with the superscript “i ” in
the following section.

XxeQ UB, (11)

, XeQ°UB, (12)

4. EXPANSIONS OF FUNDAMENTAL
SOLUTIONS AND BOUNDARY

DENSITIES

In the present method, we adopt the mathematical
tools, degenerate kernels, for the purpose of analytical
study. The combination of degenerate kernels and
Fourier series plays the major role in handling problems
with circular boundaries. Based on the separable property,
the kernel function U(s,x) , T(s,x), L(s,x) and
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M(s,x) can be expanded into separable form by
dividing the source point (s=(R,#)) and field point

(x = (p,9)) in the polar coordinate [14].

U'(5.) = 203 5,3, (ko) HY (R)cosm(@- )R > p

U(s,x) = m ' (13)
U*(s:) =23 6, HE (kp)J,, (kR) cos(m(® — ) p > R
m=0
Ti(s,x) = %kiigm.]m(kp)Hr;(l)(kR)COS(m(H—¢)), R>p
T = i ! (14)
T*(5:0) =223 6, HE (k)3 (R) cos(m(9 ~ ). p > R
m=0
U500 =2 6,33, (IS (R) cos(m(@ — )R > p
L(s,X) = y e ’ (15)
(5.0 =25 3 8, Hi (k) (R) cos(m(0— g), p > R
m=0
27 w»
M (5,0 =50 S 5 37 (kp)H® (kR) cos(m(@- #).R > p
M (s, X) = kz'm:: : (16)
Me(5,X) = ot 3" 6, H (k) 3, (KR) cos(m(@ — #)). p > R
m=0
where i* = —1, the superscripts “i ” and “e ” denote the _[ZH(T‘(S X)—T°(s x))sin(ne) RdO
interior and exterior cases for the expressions of kernel, 0 , ) )
respectively, and &, is the Neumann factor =kRz*J, (kR)[ Y, (kR)—iJ; (kR)]sm(n¢). (20)

1, m=0 17
E. = .
" 2, m=12,..,00 17

It is noted that the larger argument is imbedded in the
complex Hankel function (H ) instead of real Bessel
function (J) to ensure the Hg(kr) singularity and
series convergence. Since the potential resulted from
T(s,x) and L(s,x) kernels are discontinuous cross the
boundary, the potentials of T(s,x) for R— p™ and

R — p~ are different. This is the reason why R=p is
not included in expressional degenerate kernels of
T(,x) and L(s,x) in Egs. (14) and (15). The
analytical evaluation of the integrals for each element in
the influence matrix can be found [9] and they are all
non-singular. Besides, the limiting case to the boundary is
also addressed. The continuous and jump behavior across
the boundary is well described by using the Wronskian

property of J., and Y,
W (3, (KR). Y, (KR))
=Y (R) 3, (KR) =Y (kR) 37, (KR) (18)
2

T kR
to display the jump behavior as shown below:

J:”(T‘ (5,X)=T°(s, x))cos(n&) Rd@

=kR7z*J, (kR)[ Y, (kR)-iJ; (kR) |cos(ng)
—kRﬂﬁag(kR)[Yn(kR)—dJn(kR)]cos(n¢)'
= 27 cos(ng)

(19)

—kR7z*J7 (KR)[Y, (kR) - iJ, (KR) ]sin(ng)

= 27xsin(ng)

The two functions, J and Y, are similar to the two
bases, 1 and x, for 1-D rod case where their Wronskian
can describe the jump behavior.

Since only circular boundary is considered in this
study, we employ the Fourier series expansions to
approximate the potential u and its normal derivative t
on the circular boundary, we have

u(s,) =as + E(aﬁ cosnd, + bl sinng,),
n=1 (21)

s, €B,, k=12,---,N,

t(s,) = p; + > (pk cosng, +qisinng,),
n=1 (22)

sc€B., k=12 N,
where t(s,) =0u(s,)/dn, in which n  denotes the
outward normal vector at the source point s, a*, b,

ps and g (n=0,12,---) are the Fourier coefficients
and 6, isthe polar angle for the kth circular boundary.

5. ADAPTIVE OBSERVER SYSTEM

Consider a boundary value problem with circular
boundaries of arbitrary locations as shown in Figure 2.
The rule of objectivity is obeyed since the boundary
integral equations are frame indifferent. An adaptive
observer system is addressed to fully employ the property
of degenerate kernels for circular boundaries in the polar
coordinate as shown in Figures 3 (a) and (b). For the
integration, the origin of the observer system can be
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adaptively located on the center of the corresponding
boundary contour. The dummy variable in the circular
boundary integration is the angle () instead of radial
coordinate (R). By using the adaptive system, all the
integrations can be easily calculated.

Figure 3 (a) Sketch of fhe null-field integral equation
in conjunction with the adaptive observer system

SH-Wave

3

fr—.;-‘xllm-‘ial

SH-Wave

M M_ [ = i
wh = — (£}

M =g — (1 1)

Figure 3 (b) Sketch of the boundary integral
equation for the domain point in conjunction with
the adaptive observer system.

6. IMAGE TECHNIQUE FOR SOLVING

HALF-PLANE SCATTERING PROBLEM
Image concept for half-plane problems

For the half-plane problem with an alluvial valley as
shown in Figure 4, we extend the problem into a full
plane with the scatter by using image concept such that
our formulation can be applied. By applying the concept
of even function, the symmetry condition is utilized to
satisfy the traction free (t =0) condition on the ground
surface. We merge the half-plane domain into the
full-plane problem by adding with the reflective wave. To
solve the problem, the decomposition technique is
employed by introducing two plane waves, one is incident
and the other is reflective, instead of only one incident
wave. After taking the free body of full-plane problem
through the ground surface, we obtain the desired solution
which satisfies the Helmholtz equation and all the
boundary conditions in the half-plane domain.

Matrix

Figure 4 Image concept and the decomposition of superposition of an alluvial valley

Decomposition of scattering problem into incident wave
field and radiation problems
For the scattering problem subject to the incident

wave, this problem can be decomposed into two parts.
One is the incident wave field and another is the radiation
field as shown in Figure 4. The relations between two
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parts are shown below:

M =u" +u o, (34)

t" =ttt (35)

where the “t" ” denotes the total field of matrix including
radiation and scattering. The subscripts “in” and “re”
are the incident and reflected waves and the “t" ” denotes

the radiation part of matrix and needs to be solved. To
match the boundary condition for the cavity case, the total

traction is defined as t" = 0. For the inclusion case, we
have the two constraints of the continuity of displacement

and equilibrium of traction along the kth interface
(B, k=1---,N) as shown below:
u' =u' on B, (36)
pMtM =—p't' on B,. (37

The radiation parts of matrix (u™ and t™) and inclusion
(u' and t') can be solved by employing our method.

7. LINEAR ALGEBRAIC SYSTEM AND
MATCHING OF INTERFACE
CONDITIONS FOR PROBLEMS OF

INCLUSION
According to the linear algebraic system, the two
systems of matrix and inclusion yield

(UM e =T J{u ) (38)
U J{t'} =T {u'} (39)

By employing the image concept, the decomposition and
superposition, the Eq. (38) can be rewritten as
[UM ]{ttM _ t|n+re} - [TM ]{UIM _ u|n+re} ) (40)
According to Figure 4, an alluvial valley problem can be
extended to a full-plane problem with a circular inclusion.
In order to satisfy the traction free condition on the
surface, the reflective wave is chosen to satisfy the
symmetry condition as
Wre :Woeik(xsinﬂ,r—ycosw) , (41)
and we have the two constraints of the continuity of
displacement and equilibrium of traction along the jth

interface (B;). We will employ the two constrains into
the formulation as shown below:

{u'}={u'} on B, (42)
W=} s
where [u"| and [u'| can be defined as follows:
g0 0 w0 - 0
L R O D
0 0 o u" 0 0 - u
where " and p' denote the shear modulus of the

matrix and the kth inclusion, respectively. By

assembling the matrices in Egs. (39), (40), (42) and (43),
we have

™ U™ 0o o0 ]fu u(x)"e
0 0 T -U'||t 0
| = ’ (45)
| 0 -1 0 ||u 0
o u" o p [t 0
where [I] is the identity matrix, and {u(x)‘””e} is
shown below
. in+ure
u(x intre TM -UM U- . 16
o f =

The analytical integrals for each element in the
influence matrix are all non-singular. Besides, the limiting
behavior to the boundary also exist. The direction of
contour integration should be taken care, i.e.,
counterclockwise and clockwise directions are for the
interior and exterior problems, respectively. By
rearranging the known and unknown sets, the Fourier
coefficients can be obtained. After obtaining the unknown
Fourier coefficients, the origin of observer system is set to

¢; in the B, integration as shown in Figure 3 (b) to

obtain the potential by employing Eq. (6).

8. CALCULATION OF SURFACE

DISPLACEMENT

In order to check the validity of the formulation, the
Manoogian [6] and Trifunac’s [1] problem with an
alluvial valley is revisited. We follow the same parameter,
n, for comparison purpose. The dimensionless frequency

n is defined as shown below:

_2a_k"a_ oa
A or oM
where a is the half-width of the alluvial valley, o is
the angular frequency, k" and c" are the shear wave
number and the velocity of shear wave for the matrix
medium, respectively, and the shear wave number k is
defined as

(47)

k=2,
C

(48)
Substituting Eq. (47) into Eq. (48), the wave number of
matrix field is rewritten as

kM =21 (49)

and the shear wave number for the inclusion field is
obtained by

I M M 1 \M?
S e R
Equation (50) indicates that various mediums vyield
different wave numbers. The surface amplitude is an
important index for the earthquake engineering. If the
amplitude of incident plane SH-wave is one, the
responses at different locations represent amplifications
of the incident wave. The resultant motion is defined by
the modulus
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(51) considered. The figures show the displacement amplitude
on the ground surface only. Displacements are plotted
where Re(w) and Im(w) are the real and imaginary with respect to the dimensionless distance x/a for a

parts of total displacement, respectively. specified parameter 7 = 2. In order to verify the limiting

Amplitude = \/Rez (w)+1Im?(w),

case of the general program, we set u'/u" =10"° to
9. ILLUSTRATIVE EXAMPLES AND reduce to the canyon cases. In Figures 5 and 6, good
DISCUSSIONS agreements are obtained after comparing with Lee and

In the section, we revisit the same problems of ~ Manoogian’s results [16] using various frequency
Manoogian and Lee [7], Trifunac [1] and Tsaur et al. [15] parameters of 7 for the alluvial valley and semi-circular
for the alluvial problem. In order to check the accuracy of canyon case.

the present method, the _Iimiting case is co_nducted. All the Another limiting case of the rigid alluvial is also of
numerical results are given below by using ten terms of  interest in the foundation engineering. For example, rigid
Fourier series. footing is a popular model in geotechnical engineering.

Case 1: Half-plane problem with an alluvial valley By setting ' /™ to be infinity, the limiting case of

SUbJe.Ct to the SH-wave rigid inclusion can be obtained. Figure 7 plots the surface
In the following examples, we choose the same ; ) LM 4 .
displacement by setting x /x" =10 and =2 in

parameters hia=15 , u'lu =1/6 and )
' oM — 273 which iouslv adopted in the Ph the real computation. In the range of x/a=-1 to 1, the
p P = which were previously adopted In the Fh. amplification is a constant as expected, because it is

D dissertation of Manoogian [6] , and four various undeformed due to the rigid alluvial.
incident angles (=0, 30°, 60° and 90° ) are

y=0 y=30° = 60° ¥ =90°
L s s P S S a2 4 o 1 2 s 4 a2 4 o
» » » » » » 2
L A B . L O N L L L L I
L O L ; 4 sl /C; s L s
. 1 o . o
3 3 E 3
2 2 2 2
20l o 2wl o 2wl o 2wl o
E £ 13 £
< < < <
5:/\/\_/\/\/\/\,\/\/\:5 - ] - | N |
N e e M T e B e \ Vo Ve AL A w— \ I
S s 2 4 0 1z 3 s PR o 2 PR o : s o T s
& xla / xla
. i i o
I
i 10
I.I
I | | PP 111}
W | VA ATATOh L |
o . 1 1 1 —_—
& i 3 2 1 o i H } 1

Figure 5 Surface amplitudes of the alluvial valley problem for 7 =2.0 (' /4™ =1/6,p' I p™ =2/3).
y=0 y =30° 7 =60° y =90

Amplitude
: Amp\ltufe

Lo - A'L“phtufe .
Amph(uge

Figure 6 Limiting case of acanyon (p' / p™ =2/3, u'/4" =10° and 7 =2).
@ y=0 (b) »=30° (c) y=60 (d) »=90

w i v f W i W

1 8 /

os

MM ''''' 9 “WW ''''' i

Flgure7 Limiting caseofarlgld alluvial valley (' =/ 1" ,p Ip™ =213 and 7 =2).
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3a
1 T
( ' ‘
\ Matrix All}l\-’lal
] -
Ne— - -
SH-Wave

Figure 8 A half-plane problem with two alluvial
valleys subject to the incident SH-wave.
Case 2: Half-plane problem with two alluvial valleys
subject to the SH-wave
Two semi-circular alluvial valleys subject to the
incident SH-wave of y angle are shown in Figure 8.

Figure 9 shows the surface displacements versus x/a
for various incident angles with «'/x™ =1/6 and
p' 1 p" =2/3 subject to the cases of 7 =2. By setting

y=0 7 =30°

u' 1™ =107, the limiting case of successive canyons is

obtained as shown in Figure 10. Tsaur et al. [15] and
Fang [17] have both solved the problem of two
semi-cylindrical alluvial valleys for the incident SH-wave.
Tsaur et al. [15] pointed out that the deviation by Fang
[17] is that Fang improperly used the orthogonal property.
Good agreement is made after comparing with the results
of Tsaur et al. [15]. For the incident angle of zero-degree,
the surface displacement amplitude is symmetric. By
increasing the incident angle, the displacement amplitude
is gradually smaller in the back side of the alluvial valley
or canyon due to the shield effect of two alluvial valleys
or canyons. As the incident angle approaches

ninety-degrees, the surface displacement amplitudes are
all smaller than the “free field” in the back of the second
alluvial. It indicates that two alluvial valleys can be the
wave trap for the incident wave.

" f " 7

8 8

7 .
i s 2 1 0 1 2 5 4 5 s 7

4 3 2 1 0o 1 2 3 4 5 6 7

—~ o7

Figure 9 Surface displacements of two alluvial valleys , p 1p" =213 and n=2).
y=0 y =30 y =60° y =90
' o ' o U B
- msf | 61— / L - L
1
o
2
o
=
;n..

Figure 10 Limiting case of two canyons (' / " =10 and 7 =2).

10. CONCLUSION

The first attempt to employ degenerate kernel in
BIEM for problems with circular boundaries subject to
the SH-wave was achieved. Not only canyon but also
alluvial valley problems were treated. We have proposed
a BIEM formulation by using degenerate kernels,
null-field integral equation and Fourier series in
companion with adaptive observer systems and vector
decomposition. This method is a semi-analytical approach
for problems with circular boundaries since only
truncation error in the Fourier series is involved. Two
limiting cases of inclusions, canyon and rigid footing,
was also addressed. Good agreements are obtained after
comparing with previous results. The surface motion of
half-plane problem with alluvial valleys was determined.
The analysis of amplification and interference effects for
valley and inclusions subject to SH-waves may explain
the ground motion either observed or recorded during
earthquake. The method shows great generality and

versatility for the problems with multiple circular cavities
and inclusions of arbitrary radii and positions. Five
advantages of singularity-free, no boundary-layer effect,
well-posed model, exponential convergence and
mesh-free approach are the main features of the proposed
approach.
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