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Abstract 
 
In this paper, the null-field boundary integral formulation in conjunction with the degenerate kernel 
and the Mathieu function in the elliptic coordinates is proposed to solve the hydrodynamic scattering 
problem by multiple circular and elliptical cylinders. Based on the adaptive observer system, the 
present method can solve the water wave problem containing circular and elliptical cylinders at the 
same time in a semi-analytical manner. The closed-form fundamental solution is expressed in terms of 
the degenerate kernel in the polar and elliptic coordinates for circular and elliptical cylinders, 
respectively. Several examples are demonstrated to see the validity of the semi-analytical approach. 
 
Keyword: null-field boundary integral equation, degenerate kernel, Mathieu function, hydrodynamic 

scattering, elliptical cylinders. 
 
1. Introduction 
The hydrodynamic scattering problems containing vertical cylinders subject to the incident plane wave 
become more interesting and important in the recent years. Based on the linearized wave theory for the 
constant depth of water depth, the study can be simplified to the two-dimensional Helmholtz problem. 
The exact solution of horizontal wave force on a single vertical circular cylinder was found by 
MacCamy and Fuchs [1]. For a single elliptical cylinder, the analytical solution of wave forces was 
derived by Goda and Yoshimi [2]. They used the method of separation variables to obtain the 
solutions in terms of the Mathieu and modified Mathieu functions. Au and Brebbia [3] used the 
boundary element method to revisit the water wave problem with a circular or an elliptical cylinder 
and made agreement with the analytical solutions [1, 2]. 
    The previous works [1, 2] focused on circular and elliptical vertical cylinder. Regarding the problem 
with multiple circular cylinders, Spring and Monkmeyer. [4] applied the method of multiple scattering 
(or so-called addition theorem for the Bessel function) to obtain a solution for two circular cylinders. 
Not only identical radius but also unequal cases were considered. Similarly, Linton and Evan [5] also 
employed the method of multiple scattering to deal with the problem with arrays of vertical circular 
cylinders. Chatjigeorgiou and Mavrakos [6] extended the method of multiple scattering to solve the 
hydrodynamic diffraction with two parallel identical elliptical cylinders by using the addition theorem 
for the Mathieu functions which was proposed by Særmark [7]. This idea is similar to the multipole 
Trefftz method by Chen’s group [8, 9], since the multipole concept and addition theorem are both used. 
    Recently, Chen et al. [10] applied the null-field boundary integral equation method (BIEM) in 
conjunction with the degenerate kernel and the Fourier series to solve the interaction of water wave 
problem containing multiple circular cylinders. The advantage of free of calculating principal values is 
gained. This approach is one kind of semi-analytical methods since errors only occur from the 
truncation of the number of the Fourier terms. Besides, it belongs to a meshless method since only 
collocation points on the boundaries are required, respectively.  
    However, Chen et al. [10] only dealt with the problem with circular cylinders. Accordingly, we aim 
to extend the null-field BIEM to solve the problem with elliptical cylinders in this paper. The closed-
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form fundamental solution is expanded to the degenerate kernel by using the elliptic coordinates [11]. 
Also, the unknown boundary densities are expanded by using the eigenfunction expansion. The 
advantage of free of calculating principal value is also reserved. Owing the complexity of addition 
theorem by expressing in different coordinates (polar to elliptic), the method of multiple scattering [4-
6] may have difficulty to solve the water wave problem containing circular and elliptical cylinders. To 
avoid this difficulty, an adaptive observer system is proposed to solve the water wave problem 
containing both circular and elliptical cylinders at the same time in a semi-analytical manner 

To demonstrate the validity of the present approach, three illustrative examples are given. One is 
a single elliptical cylinder that the analytical solution can be obtained by using the present approach. 
Another is two parallel identical elliptical cylinders. The other is the case containing one circular and 
one elliptical cylinder together. After comparing with the results of Au and Brebbia [3], 
Chatjigeorgiou and Mavrakos [6] and the BEM, agreement is made. 
 
2. Problem statement and the present approach 
 
2.1 Problem statement 
The typical water wave problem is governed by the Laplace equation 

2 ( , ; ) 0, ( , ) ,T z t z D   x x  (1)

where 2  is the Laplacian operator, ( , ; )T z t x  is the total velocity potential, ( , )x yx  and D  is the 

domain of interest. According to the linearized wave theory and the method of separation variables, the 
total velocity potential can be written as 

( , ; ) ( ) ( ) ,i t
T Tz t u f z e  x x  (2)

where  
( ) ( ) ( ),T I Ru u u x x x  (3)

in which the subscripts I and R denote the incident wave and radiative potential, respectively, and 

 cosh ( )
( ) ,

cosh( )

k z higA
f z

kh


  (4)

where i  is the imaginary number with 2 1i   , g is the gravity constant, A  is the amplitude of incident 

wave,   is the angular frequency, k  is the wave number and h  is the water depth. By substituting the Eq. (2) 
into Eq. (1) and using Eq. (4), we have 

2 2( ) ( ) 0, ,Tk u D   x x  (5)
where the incident wave potential is expressed by 

 cos( ) sin( )( ) ,ik x y
Iu e  x  (6)

where   is the incident angle. Since the cylinder are assumed to be rigid, impermeable and stationary, the 
boundary condition is the Neumann type as shown below: 

( )
( ) 0, ,T

T

u
t B

n


  

 x

x
x x  (7)

where nx  denotes the unit outward normal vector at the field point and B  is the boundary on the 
cylinder surface.  
 
2.2 Dual boundary integral formulations － the conventional version 
Based on the Green’s third identity, the dual boundary integral equations for the domain point are 
shown below: 

2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( ), ,R R RB B
u T u dB U t dB D    x s x s s s x s s x  (8) 

2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( ), ,R R RB B
t M u dB L t dB D    x s x s s s x s s x  (9) 

where s  is the source point, and ( , )U s x  is the fundamental function which satisfies  
2 2( ) ( , ) 2 ( ),k U    s x x s  (10)

where   is the Dirac-delta function. The other kernel functions ( , )T s x , ( , )L s x  and ( , )M s x  are 
defined by  
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( , )
( , ) ,

U
T

n




 s

s x
s x  (11)

( , )
( , ) ,

U
L

n




 x

s x
s x  (12)

2 ( , )
( , ) ,

U
M

n n




 s x

s x
s x  (13)

where ns  denotes the unit outward normal vector at the source point. By moving the field point x  to 
the boundary, the dual boundary integral equations for the boundary point can be obtained as follows: 

( ) . . ( , ) ( ) ( ) . . ( , ) ( ) ( ), ,R R RB B
u C PV T u dB R PV U t dB B    x s x s s s x s s x  (14)

( ) . . ( , ) ( ) ( ) . . ( , ) ( ) ( ), ,R R RB B
t H PV M u dB C PV L t dB B    x s x s s s x s s x  (15)

where R.P.V., C.P.V. and H.P.V. denote the Riemann principal value (Riemann sum), Cauchy 
principal value and Hadamard (or so-called Mangler) principal value, respectively. By collocating the 
field point x  on the complementary domain, we obtain the dual null-field boundary integral equations 
as shown below: 

0 ( , ) ( ) ( ) ( , ) ( ) ( ), ,c
R RB B

T u dB U t dB D   s x s s s x s s x  (16)

0 ( , ) ( ) ( ) ( , ) ( ) ( ), ,c
R RB B

M u dB L t dB D   s x s s s x s s x  (17)

where cD  denote the complementary domain. 
 
2.3 Dual null-field boundary integral formulations — the present version 
By introducing the degenerate kernels, the collocation point in Eqs. (8), (9), (16) and (17) can be 
located on the real boundary free of calculating principal value. Therefore, the boundary integral 
equations can be rewritten in two parts as given in the following formulation of Eqs. (18) and (20), 
instead of three parts using Eqs. (8), (14) and (16) in the conventional BEM, 

2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( ), ,R R RB B
u T u dB U t dB D B     x s x s s s x s s x  (18)

2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( ), ,R R RB B
t M u dB L t dB D B     x s x s s s x s s x  (19)

and 

0 ( , ) ( ) ( ) ( , ) ( ) ( ), ,c
R RB B

T u dB U t dB D B    s x s s s x s s x  (20)

0 ( , ) ( ) ( ) ( , ) ( ) ( ), .c
R RB B

M u dB L t dB D B    s x s s s x s s x  (21)

It is found that Eqs. (18)-(21) can contain the boundary point (x on )B  since the kernel functions are 
expressed in terms of the degenerate kernel. 
 
2.4 Expansions of fundamental solution, boundary density and incident plane wave using the 

polar and the elliptic coordinates 
The closed-form fundamental solution as previously mentioned is 

(1)
0 ( )

( , ) ,
2

i H kr
U


 s x  (22)

where r  x s  is the distance between the field point and the source point and (1)
0H  is the zeroth-

order Hankel function of the first kind.  To fully utilize the properties of circular and elliptic 
geometries, respectively, the degenerate (separable or finite-rank) kernel and the Fourier series or 
eigenfunction expansion are utilized for the analytical integration of boundary contour integrals. In the 
polar and elliptic coordinates, the field point x  is expressed as ( , )  x xx  and ( , ),  x xx  

respectively, while the source point s  is expressed as ( , )  s ss  and ( , ),  s ss  respectively. By 
employing the addition theorem [11] for separating the source point and field point in the kernel 
functions, ( , ),U s x ( , ),T s x ( , )L s x and ( , )M s x are expanded in terms of degenerate kernel in the polar 
(Eqs. (23)-(26)) [10, 11] and the elliptic coordinates (Eqs. (28)-(31)) [11] as shown below: 
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(1)

0

(1)

0

( ) ( )cos( ( )), ,
2

( , )

( ) ( )cos( ( )), ,
2

m m m
m

m m m
m

i
J k H k m

U
i

J k H k m

       

       









   
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





s x s x x s

x s s x x s

s x  (23)

(1)

0

(1)

0

( ) ( )cos( ( )), ,
2

( , )

( ) ( )cos( ( )), ,
2

m m m
m

m m m
m

ki
J k H k m

T
ki

J k H k m

       

       









    
   







s x s x x s

x s s x x s

s x  (24)

(1)

0

(1)

0

( ) ( )cos( ( )), ,
2

( , )

( ) ( )cos( ( )), ,
2

m m m
m

m m m
m

ki
J k H k m

L
ki

J k H k m

       

       









    
   







s x s x x s

x s s x x s

s x  (25)

2
(1)

0

2
(1)

0

( ) ( )cos( ( )), ,
2

( , )

( ) ( )cos( ( )), ,
2

m m m
m

m m m
m

k i
J k H k m

M
k i

J k H k m

       

       









     
    





s x s x x s

x s s x x s

s x  (26)

where mJ  is the mth order Bessel function of the first kind and m  is the Neumann factor 

1, 0,

2, 1, 2, ..., ,m

m

m



   

 (27)

and 

0 1

( , ) ( , )
2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) , ,

( ) ( )
( , )

( , ) ( , )
2 ( , ) ( , ) ( , )

( ) (

m m
m m m m m me o

m mm m

m m
m m me o

m m

Se q So q
i Se q Je q He q So q Jo q Ho q

M q M q
U

Se q So q
i Se q Je q He q

M q M q

         

    

 

 

    
            

 
  

 

 s s
x s x x s x x s

s s
x x s

s x

0 1

( , ) ( , ) ( , ) , ,
) m m m

m m

So q Jo q Ho q    
 

 






  
       

  x x s x s

 (28)

0 1

0

1 ( , ) ( , )
2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) , ,

( ) ( )
( , )

1 ( , )
2 ( , ) ( , ) ( , )

( )

m m
m m m m m me o

m mm m

m
m m me

m m

Se q So q
i Se q Je q He q So q Jo q Ho q

J M q M q
T

Se q
i Se q Je q He q

J M q

         

   

 

 





    
            

  
  

 

 



s s
x s x x s x x s

s

s
x x s

s

s x

1

( , )
( , ) ( , ) ( , ) , ,

( )
m

m m mo
m m

So q
So q Jo q Ho q

M q

     









         
 s

x x s x s

 (29)

0 1

0

1 ( , ) ( , )
2 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) , ,

( ) ( )
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1 ( , )
2 ( , ) ( , ) ( , )
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m m
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Se q So q
i Se q Je q He q So q Jo q Ho q

J M q M q
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Se q
i Se q Je q He q

J M q
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   
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 





    
            

  
  

 

 
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s s
x s x x s x x s

x
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x x s
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s x
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x x s x s

 (30)
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M q
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 
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  s

x x s x s

(31)

respectively, where 
2

2

ck
q

   
 

, c  is the half distance between two focuses of the elliptic coordinates, 

Js  and Jx  are the Jacobian terms for the source point s  and the field point x , respectively, as shown 
below: 

   2 2
sinh( )cos( ) cosh( )sin( ) ,J c     s s s s s  (32)

   2 2
sinh( )cos( ) cosh( )sin( ) ,J c     x x x x x  (33)
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mSe  and mSo  are the mth order even and odd Mathieu functions (angular Mathieu functions) 

respectively, mJe  and mJo  are the mthorder even and odd modified Mathieu functions (radial Mathieu 

functions) of the first kind, respectively, mYe  and mYo  are the mth order even and odd the modified 

Mathieu functions of the second kind, respectively, mHe  and mHo  are the even and odd mth order 
modified Mathieu functions (Mathieu-Hankel functions) of the third kind, respectively and are defined 
as 

,m m mHe Je iYe   (34)
,m m mHo Jo iYo   (35)

e
mM  and o

mM  are the normalized constants and can be obtained by 

 2
( ) ( , ) ,e

m mM q Se q d



  


   (36)

 2
( ) ( , ) .o

m mM q So q d



  


   (37)

It is noted that U  and M  kernels in Eqs. (23), (26), (28) and (31) contain the equal sign of    s  

and   s  while T  and L  kernels do not include the equal sign due to the discontinuity. For the 
unknown boundary densities, we apply the Fourier series and the eigenfunction expansion to 
approximate the boundary potential ( )u s  and its normal derivative ( )t s  along the circular and elliptic 
boundaries, respectively, as 

0 1

( ) cos( ) sin( ), ,n n
n n

u g n h n B 
 

 

   s ss s  (38)

0 1

( ) cos( ) sin( ), ,n n
n n

t p n q n B 
 

 

   s ss s  (39)

and 

0 1

( ) ( , ) ( , ), ,n n n n
n n

u g Se q h So q B 
 

 

   s ss s  (40)

0 1

1
( ) ( , ) ( , ) , ,n n n n

n n

t p Se q q So q B
J

 
 

 

 
   


 s s

s

s s  (41)

where ,ng  ,nh  np  and nq  are the unknown coefficients of the boundary densities. The Jacobian term 

Js  may occur in the kernels of Eqs. (28)-(31), boundary densities of the Eq. (41) and elliptical 

boundary contour integration ( ( ) )dB J d s ss . However, the Jacobian terms can be cancelled each 
other out and the orthogonal relations can be fully utilized in the elliptical boundary integration. The 
incident plane wave potential of Eq. (6) can be expressed in terms of the local polar and elliptic 
coordinates of the jth cylinder, respectively, as shown below [Morse]: 

0

( ) ( ) ( )cos( ( )),
j j

n
I j j n n

n

u i J k n   




   x xx  (42)

0 1

( , ) ( , )
( ) 8 ( ) ( , ) ( , ) ( ) ( , ) ( , ) ,

( ) ( )j j j j

n nn n
I j j n n n ne o

n nn n
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where  cos( ) sin( )
,j jik X Y

j e
    jX  and jY  are the Cartesian coordinates of the jth cylinder’s center by 

using the global observer. 
 
2.5 Adaptive observer systems and linear algebraic equations 
Since the boundary integral equations are frame indifferent, i.e. rule of objectivity is obeyed, an 
adaptive observer system is chosen to fully employ the property of degenerate kernels. Figure 1 shows 
the boundary contour integration for the circular and elliptical boundaries. It is worthy noted that the 
origin of the observer system can be adaptively located on the center of the corresponding circle or 
ellipse under integration to fully utilize the analytical properties of circular or elliptical boundaries, 
respectively. The dummy variable in the integration on the circular and elliptical boundaries are only 
the angle s  and s  instead of the radial coordinates s  and s , respectively. By using the adaptive 
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observer system, all the boundary integrals can be determined analytically free of principal value. In 
order to calculate the unknown coefficients, collocation of boundary nodes on circular and elliptical 
boundaries to match boundary conditions are needed. Therefore, we obtain the linear algebraic 
equations from Eqs. (20) and (21) as shown below [10]: 

{ } { }[ ] [ ] ,U t T u=  (44)

{ } { }[ ] [ ] .L t M u=  (45)

All the unknown coefficients can be obtained easily by using the linear algebraic equation of Eqs. (44) 
and (45). Then, the unknown boundary data can be determined and the interior potential is obtained by 
substituting the boundary data into Eq. (18). 
 
3. Illustrative examples 
Case 1 A single elliptical cylinder 
The first case is a single elliptical cylinder. The half lengths of major and minor axes are 1 10a   and 

1 1.5b  , respectively and the water depth is 10h  . The analytical solution was found by Goda and 
Yoshimi [2]. Au and Brebbia [3] used the BEM to revisit this problem and their results are consistent 
with ours. Regarding this problem, we can also obtain the analytical solution for the radiative field by 
using the present approach as shown below: 
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x x

x x

x

 (46)

where  1
1 1 1tanh b a   denotes the elliptical boundary using the elliptical coordinates. Figures 2 

shows the resultant force of the total potential from two different incident angles ( 30    and 60 ). 
After comparing with the Au and Brebbia’s data [3], our results are acceptable. 
 
Case 2 Two parallel identical elliptical cylinders 
In the second case, we revisit the problem of two parallel identical elliptical cylinders subject to the 
incident plane wave as shown in Fig. 3(a) which has been considered by Chatjigeorgiou and Mavrakos 
[6]. The half lengths of major and minor axes are 1 2 1a a   and 1 2 0.25,b b   respectively. The 
distance between the centers of two cylinders is 2d   and the water depth is 1.5h  . Figure 4 shows 
the wave force for the incident angle of 60    and the normalized parameter is 2

1( 2)w g A a  where 

w  denotes the density of water. To see the validity of present approach, we also used the 
conventional BEM to verify the present results. Agreement is made. 
 
Case 3 One circular and one elliptical cylinder 
Based on the adaptive observer system, the present approach is employed to solve the water wave 
problem containing one circular and one elliptical cylinder at the same time as shown in Fig. 3(b). The 
radius of the circular cylinder is 2 0.5a   and the other geometry data and normalized parameter are 

the same with the case 1. The resultant forces for incident angles ( 90    and 90  ) are shown in 
Figs. 5.  The present results are consistent with the data of the conventional BEM. 
. 
4. Conclusions 
In this paper, we have successfully extended the null-field BIEM to solve the water wave scattering 
problems containing multiple circular and elliptical cylinders together. By employing the adaptive 
observer system and the degenerate kernels for the fundamental solution in terms of the polar and 
elliptic coordinates, the water wave scattering problems containing circular and elliptical cylinders at 
the same time were solved in a semi-analytical way. This method also belongs to a meshless method 
since collocation points on the boundaries are only required.  
 
 



Null-field boundary integral equation approach for  
hydrodynamic scattering by multiple circular and elliptical cylinders 

 8-78th Asian Computational Fluid Dynamics Conference, Hong Kong SAR, China, 2010. 

References 
 
[1] MacCamy R. C. and Fuchs R. A. “Wave force on piles: A diffraction theory”, Technical Memorandum No. 

69, U. S. Army Coastal Engineering Research Center (formerly Beach Erosion Board), 1954. 
[2] Goda Y. and Yoshimura T., “Wave force on vessel tired at offshore dolphins”, Proceedings 13th Coastal 

Engineering Conference, Vancouver, B. C., Canada, Chap. 96, Vol. III, (1972), pp 1723-1742. 
[3] Au M. C. and Brebbia C. A., “Diffraction of water waves for vertical cylinders using boundary elements”, 

Applied Mathematical Modelling, Vol. 7, (1983), pp 106-114. 
[4] Spring B. H. and Monkmeyer P. L. “Interaction of plane waves with vertical cylinders”, Proceedings 14th 

Coastal Engineering Conference, Copenhagen, Denmark, Vol. III, (1974), pp 1828-1845. 

[5] Linton C. M. and Evans D. V. “The interaction of waves with arrays of vertical circular cylinders”, Journal 
of Fluid Mechanics, Vol. 215, (1990), pp 549-569. 

[6] Chatjigeorgiou I. K. and Mavrakos S. A., “Hydrodynamic diffraction by multiple elliptical cylinders”, 24th 
International Workshop on Water Waves and Floating Bodies, Zelenogorsk, Russia, (2009). 

[7] Særmark KA (1959) A note on addition theorems for Mathieu functions. ZAMP 10: 426-428. 
[8] Chen J. T., Kao S. K., Lee W. M. and Lee Y. T., “Eigenproblems of a multiply-connected domain with 

circular boundaries using the multipole Trefftz method”, Engineering Analysis with Boundary Elements, 
(2009), Accepted. 

[9] Lee W. M. and Chen J. T., “Free vibration analysis of a circular plate with multiple circular holes by using 
multipole Trefftz method”, Computer Modeling in Engineering Science, (2009), Accepted. 

[10] Chen J. T., Lee Y. T. and Lin Y. J., “Interaction of water waves with arbitrary vertical cylinders using null-
field integral equations”, Applied Ocean Research, Vol. 31, (2009), pp 101-110. 

[11] Morse P. and Feshbach H., “Method of Theoretical Physics”, McGraw-Hill, New York, (1953). 
 

                    
(a) Observer at the center of the elliptical 

boundary under integration using the 
elliptic coordinates. 

(b) Observer at the center of the circular 
boundary under integration using the 
polar coordinates. 

Figs. 1 An adaptive observer system.  
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(a) xF , 30    (b) yF , 60    

Figs. 2 Resultant forces of an elliptical cylinder.  
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(a) Two parallel identical elliptical cylinders, (b) One circular and one elliptical cylinder. 

Figs. 3 Sketch of the problems  
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(a) xF , 60   . (b) yF , 60   . 

Figs. 4 Resultant forces of two parallel identical elliptical cylinders.  
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Figs. 5 Resultant forces of two cylinders containing one circular and one elliptical cylinder. 
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