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a b s t r a c t

The scattering of water waves by bottom-mounted vertical circular cylinders is solved by using the
null-field integral equations in conjunctionwith degenerate kernels and Fourier series to avoid calculating
the Cauchy and Hadamard principal values. In the implementation, the null-field point can be exactly
located on the real boundary owing to the introduction of degenerate kernels for fundamental solutions.
An adaptive observer systemof polar coordinate is considered to fully employ the

∧
properties of degenerate

kernels. For the hypersingular equation, vector decomposition for the radial and tangential gradients
is carefully considered. This method can be seen as a semi-analytical approach since errors attribute
from the truncation of Fourier series. Neither hypersingularity in the Burton and Miller approach nor
the CHIEF concept was required to deal with the problem of irregular frequencies. Five advantages of
free of calculating principal value, well-posed algebraic system, convergence rate of exponential order,
meshfree, elimination of boundary-layer effect, are achieved by using the present approach. Numerical
results are given for the forces and free-surface elevation around the circular boundaries. Also, the
near-trapped behavior arisen from the physical resonance is detected. A general-purpose program
for water wave impinging several circular cylinders with arbitrary number, radii, and positions was
developed. Several examples of water

∧
wave structure interaction by vertical circular cylinders were

demonstrated to see the validity of the present formulation.
© 2009 Published by Elsevier Ltd

1. Introduction1

For designing the offshore platforms mounted on the sea2

bed, it is important to understand the interaction betweenQ13

the vertical cylinders and plane wave. There is considerable4

interest
∧
in this topic among countries with long coasts, e.g., USA,5

Japan and Taiwan. For the problem of plane waves impinging6

vertical cylinders, a closed-form solution of force on a single7

vertical cylinder was derived by MacCamy and Fuchs [1].
∧
A8

similar analysis extended to two cylinders was investigated by9

Spring and Monkmeyer [2]. They used the addition theorem10

to analytically derive the scattered-wave solution. Not only11

equal size but also unequal size of the cylinders subject to the12

incident wave of arbitrary angle was analyzed. They claimed13

that their method is a direct approach, since they formulated14

the problem by using a linear algebraic system and the solution15

is obtained easily from a single matrix inversion. A different16

method presented by Twersky [3] is called the multiple-scattering

∗ Corresponding author. Tel.: +886 2 24622192x6177; fax: +886 2 24632375.
E-mail address: jtchen@mail.ntou.edu.tw (J.-T. Chen).

approach. In his approach, he took one cylinder at a time and 17

the scattering coefficient was solved sequentially. Besides, the 18

boundary conditions which they solved are also different. One 19

is
∧
the Neumann-type boundary condition and the other is

∧
the 20

Dirichlet-type boundary condition. Chakrabarti [4] extended the 21

work of Spring and Monkmeyer
∧
to solve a complex matrix. In 22

his work, he saved a half computer storage space. Based on the 23

work of Simon [5], McIver and Evans [6] proposed an approximate 24

solution based on the assumption that the cylinders are widely 25

spaced. Later, in the work of Linton and Evans [7], they also used 26

the same approximate method as that proposed earlier by Spring 27

and Monkmeyer. The main contribution was to provide a simple 28

formula for the potential on the surfaces of the cylinders which 29

makes the computation of forces much more straightforward. 30

However, their results
∧
for four cylinders [7] were incorrect and a 31

corrigendumwas given in [8]. Nevertheless, it still deviated
∧
slightly 32

from those obtained by using the collocation boundary element 33

method as proposed by Perrey-Debain et al. [9]. 34

In the Fredholm integral equations, the degenerate kernel (or 35

the so-called separate kernel) plays an important role. However, 36

its applications in practical problems seem to have taken a back 37

seat to other methods. This method can be seen as one kind of 38

0141-1187/$ – see front matter© 2009 Published by Elsevier Ltd
doi:10.1016/j.apor.2009.06.004
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approximation
∧
method, and the kernel function is expressed as1

finite sums of products by two linearly independent functions as2

follows:3

K(x, s) =
n∑
k=1

Ak(x)Bk(s). (1)4

Sometimes, the degenerate kernel is called separable kernel since5

the source and field points are separated. This terminology is6

not
∧
coined by the authors, but follows the

∧
literature [10–12].7

The concept of generating ‘‘optimal’’ degenerate kernels has been8

proposed by Sloan et al. [13]. They also proved to it to be9

equivalent to the iterated Petrov–Galerkin approximation. Later,10

Kress [14] proved that the integral equations of the second kind11

in conjunction with degenerate kernels have the convergence rate12

of exponential order instead of the linear algebraic order. The13

convergence rate is better than that of conventional BEM. In the14

literature, it is observed that exact solutions for boundary value15

problems are only limited for simple cases. Therefore, proposing a16

semi-analytical approach for solving BVP with circular boundaries17

of various numbers, positions and radii is our goal in this article.18

It seems that the present formulation is more complex than the19

method proposed by Linton and Evans for researchers who are not20

familiar with boundary integral equation method. The Linton and21

Evans
∧
method can be seen as an improved Trefftz method [15,16]22

(or the so-called multipole Trefftz method) for the problem with23

multiply-connected domain. The method of Linton and Evans is24

an analytical approach but the solution is not exact or closed-form25

since the unknown coefficients can not be obtained in an explicit26

form. Although the solution representation of the Linton and Evans27

method is simpler than our approach, the convergence behavior28

is pointwise for the strong solution. However, the convergence29

behavior of our approach is superior to that of the Linton and30

Evans method. For the boundary integral solution, it converges31

to L2 energy sense in an exponential order. It is noted that we32

can deal with other shape of cross section in our approach, if33

the degenerate kernels corresponding to the special geometry are34

available. For example, degenerate kernel for the ellipse can be35

found in the book of Morse and Feshbach [17]. Also, the work of36

the elliptic case using the method of Linton and Evans is given37

in
∧
Martin’s book [18], and the numerical results are implemented38

by Chatjigeorgiou and Mavrakos [19]. On the other hand, some39

formulae are not found in the mathematical handbook or were not40

derived bymathematicians for the special geometry. That is to say,41

we have a challenging work in deriving the degenerate kernel for42

a special geometry case.
∧
Besides, our approach can be applied to43

problems containing both circular and elliptical cylinders since we44

introduce adaptive coordinate and vector decomposition. For the45

Linton and Evans
∧
approach, it may have difficulty to implement46

since the addition theorem for translating the polar coordinates47

to the elliptical coordinates and vice versa is not available to the48

authors’ best knowledge. Simply speaking, the addition theorem49

is not available to transform Bessel to Mathieu functions when a50

problem contains circle and ellipse together.51

For the problems of multiple cylinders, Martin as well as52

Linton and Evans have proposed an analytical model to deal with53

these problems. Since double summations due to the use of the54

addition theorem are contained in the solution representation, the55

numerical implementation is sometimes not computer-friendly56

due to ill-posedness of the Bessel function. For the problems with57

two close-cylinders, a larger number of series terms are required58

to ensure the accuracy. However, ill-posed behavior in double59

summations may deteriorate the numerical solution. Martin [10]60

also addressed this point in his book (p. 132) as quoted follows:61

‘‘Linton and Evans found that taking M = 6 gave result accurate62

to four significant figures, except when the cylinders were very63

close together’’. Based on collocation technique of the null-field64

Fig. 1. Problem statement of water waves with an array of vertical cylinders.

BIEM, no difficulty occurs since we use the addition theorem only 65

one series sum in conjunction with adaptive coordinate and vector 66

decomposition. Two advantages of our approach are summarized 67

below: A higher number of series terms to simulate a close- 68

cylinders problem can be implemented in real computations. Also, 69

our approach can deal with a problem containing circular and 70

elliptical cylinders at the same time. A comparison table between 71

the Linton and Evans
∧
method and the present approach is given in 72

Table 1. 73

In this paper, the null-field boundary integral equation method 74

(BIEM) is employed to solve the scattering problems of water wave 75

across an array of circular cylinders. To fully utilize the geometry 76

of circular boundary, not only Fourier series for boundary densities 77

as previously used by many researchers but also the degenerate 78

kernel for fundamental solutions in the present formulation is 79

incorporated into the null-field integral equation. All the improper 80

boundary integrals are free of calculating the principal values 81

(Cauchy and Hadamard) in place of series sum. In order to 82

analytically integrate each circular boundary for the null-field 83

equation, the adaptive observer system of polar coordinate is 84

considered to fully employ the property of degenerate kernel. To 85

avoid double integration in the Galerkin sense, point collocation 86

approach is considered. Free of worrying how to choose the 87

collocation points, uniform collocation along the circular boundary 88

yields a well-posed matrix. For the hypersingular equation, vector 89

decomposition for the radial and tangential gradients is carefully 90

considered, especially for the eccentric case. Trapped modes 91

are also examined. Finally, problems of water
∧
wave structure 92

interaction by arbitrary number of vertical circular cylinders 93

mounted on the sea bed are solved to demonstrate the validity of 94

the present method. 95

2. Problem statement and integral formulation 96

2.1. Problem statement 97

Now we assume N vertical cylinders mounted at z = −h 98

upward to the free surface as shown in Fig. 1. The governing 99

equation of the water wave problem is the Laplace equation 100

∇
2Φ(x, y, z; t) = 0, (x, y, z) ∈ D, (2) 101

where ∇2 and D are the Laplacian operator and the domain of 102

interest, respectively, and Φ(x, y, z, t) is the velocity potential 103

which satisfies the boundary conditions of
∧
sea bed, kinematic 104

boundary condition at free surface and dynamic boundary 105

condition at free surface as shown below: 106

−
∂Φ

∂n
= 0, z = −h(x, y), (3) 107

−Φz = Ht − ΦxHx − ΦyHy, z = H(x, y, t), (4) 108

−Φt + gz +
1
2
(Φ2x + Φ

2
y + Φ

2
z ) = B(t), z = H(x, y, t), (5) 109

Please cite this article in press as: Chen J-T, et al. Interaction of water waves with vertical cylinders using null-field integral equations. Applied Ocean Research (2009),
doi:10.1016/j.apor.2009.06.004
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Table 1
Comparison of the present approach and the Linton and Evans

∧
method.

Present approach (BIE) Method of Linton and Evans

Formulation Green’s third identity Potential superposition
Solution representation Integral representation

u(x) =
∫
B T (s, x)u(s)dB(s)−

∫
B U(s, x)t(s)dB(s)

Trefftz series solution
u(r, θ) =

∑N
j=1
∑
∞

n=−∞ A
j
n
J ′n(kaj)
H ′n(kaj)

Hn(krj)einθj

Unknown coefficients Fourier coefficient Weighting Ajn
Addition theorem H0(kr) Hm(kρ)eimφ ,m = 0, 1, 2, . . .
Linear algebraic system [B]{x} = {c} [B̄]{Ajn} = {c̄}
Extension to general geometry containing circle and ellipse Yes No
Domain type Interior and exterior Exterior only
Solution behavior Weak Strong
Convergent behavior L2 energy sense in an exponential order Pointwise

in which g is the gravity acceleration, H(x, y, t) is the free-surface1

elevation and B(t) is the Bernoulli constant. Based on the linear2

water wave theory and using the technique of separation variable3

for space and time, we have4

Φ(x, y, z, t) = Re{φ(x, y)f (z)e−iωt} (6)5

where6

f (z) =
−igA
ω

cosh k(z + h)
cosh kh

(7)7

in whichω is the angular frequency, k represents the
∧
wavenumber8

and equals to ω over wave speed, H(x, y, t) can be defined by9

H(x, y, t) = Re{η(x, y)e−iωt} (8)10

where11

η(x, y) = Aφ(x, y) (9)12

and A represents the amplitude of incident wave of angle β as13

shown below:14

φI(x, y) = eik(x cosβ+y sinβ) ≡ eikr cos(θ−β). (10)15

Substituting Eq. (6) into Eq. (2), we have16

(∇2 + k2)φ(x, y) = 0, (x, y) ∈ D. (11)17

Rigid cylinders yield the Neumann boundary conditions as shown18

below:19

∂φ(x, y)
∂n

= 0, (x, y) ∈ B. (12)20

The dispersion relationship is21

k tanh kh =
ω2

g
. (13)22

The dynamic pressure can be obtained by23

p = −ρ
∂Φ

∂t
= ρgA

cosh k(z + h)
cosh kh

φ(x, y)e−iωt . (14)24

The two components of the first-order force X j on the jth cylinder25

are given by integrating the pressure over the circular boundary as26

shown below:27

X j = −
ρgAaj
k
tanh kh

∫ 2π

0
φ(x, y)

{
cos θj
sin θj

}
dθj (15)28

where aj denotes the radius of the jth cylinder.29

2.2. Dual null-field integral equations — the conventional version30

The integral equation for the domain point can be derived from31

∧
Green’s third identity [20], we have32

2πu(x) =
∫
B
T (s, x) u(s) dB(s)−

∫
B
U(s, x) t(s) dB(s), 33

x ∈ D, (16) 34

2π t(x) =
∫
B
M(s, x) u(s) dB(s)−

∫
B
L(s, x) t(s) dB(s), 35

x ∈ D, (17) 36

where s and x are the source and field points, respectively, D is 37

the domain of interest, t(s) = ∂u(s)
∂ns
, ns and nx denote the outward 38

normal vectors at the source point s and field point x, respectively. 39

The kernel function, U(s, x) = −π i
2 H

(1)
0 (kr), is the fundamental 40

solution which satisfies 41

∇
2U(s, x) = 2πδ(x− s) (18) 42

where δ(x − s) denotes the Dirac-delta function, H(1)n (kr) = 43

Jn(kr)+ iYn(kr) is the n
∧
th order Hankel function of the first kind, Jn 44

is the n
∧
th order Bessel function of the first kind, Yn is the n

∧
th order 45

Bessel function of the second kind, r = |x− s|, i2 = −1. The other 46

kernel functions, T (s, x), L(s, x), andM(s, x), are defined by 47

T (s, x) =
∂U(s, x)
∂ns

, (19) 48

L(s, x) =
∂U(s, x)
∂nx

, (20) 49

M(s, x) =
∂2U(s, x)
∂ns∂nx

. (21) 50

Bymoving the field point to the boundary, Eqs. (15) and (16) reduce 51

to 52

πu(x) = C .P.V .
∫
B
T (s, x) u(s) dB(s) 53

− R.P.V .
∫
B
U(s, x) t(s) dB(s), x ∈ B, (22) 54

π t(x) = H.P.V .
∫
B
M(s, x) u(s) dB(s) 55

− C .P.V .
∫
B
L(s, x) t(s) dB(s), x ∈ B, (23) 56

where R.P.V ., C .P.V . and H.P.V . denote the Riemann principal 57

value (Riemann sum), the Cauchy principal value and the 58

Hadamard principal value (or Hadamard finite part), respectively. 59

Once the field point x locates outside the domain (x ∈ Dc), we 60

obtain the dual null-field integral equations as shown below 61

0 =
∫
B
T (s, x) u(s) dB(s)−

∫
B
U(s, x) t(s) dB(s), x ∈ Dc, (24) 62

0 =
∫
B
M(s, x) u(s) dB(s)−

∫
B
L(s, x) t(s) dB(s), x ∈ Dc, (25) 63

where Dc is the complementary domain. Eqs. (16), (17), (24) and 64

(25) are conventional formulations where the point can not be

Please cite this article in press as: Chen J-T, et al. Interaction of water waves with vertical cylinders using null-field integral equations. Applied Ocean Research (2009),
doi:10.1016/j.apor.2009.06.004
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located on the real boundary. Singularity occurs and concept of1

principal values is required once Eqs. (22) and (23) are considered.2

The flux t(s) is the directional derivative of u(s) along the outer3

normal direction at s. For the interior point, t(x) is artificially4

defined. For example, t(x) = ∂u(s)/∂x1, if n = (1, 0) and t(x) =5

∂u(x)/∂x2, if n = (0, 1)where (x1, x2) is the coordinate of the field6

point x.7

2.3. Dual boundary integral formulation — the present version8

By introducing the degenerate kernels, the collocation point9

can be located on the real boundary free of facing principal value10

using bump contours. Therefore, the representations of integral11

equations including the boundary point for the interior problem12

can be written as13

2πu(x) =
∫
B
T I(s, x)u(s)dB(s)−

∫
B
U I(s, x)t(s)dB(s),14

x ∈ D ∪ B, (26)15

2π t(x) =
∫
B
M I(s, x)u(s)dB(s)−

∫
B
LI(s, x)t(s)dB(s),16

x ∈ D ∪ B, (27)17

and18

0 =
∫
B
T E(s, x)u(s)dB(s)−

∫
B
UE(s, x)t(s)dB(s),19

x ∈ Dc ∪ B, (28)20

0 =
∫
B
ME(s, x)u(s)dB(s)−

∫
B
LE(s, x)t(s)dB(s),21

x ∈ Dc ∪ B, (29)22

once the kernels are expressed in term of an appropriate23

degenerate forms (denoted by subscripts I and E) instead of the24

closed-form fundamental solution without distinction. It is noted25

that x in Eqs. (26)–(29) can exactly be located on the real boundary.26

For the exterior problem, the domain of interest is in the external27

region of the circular boundary and the complementary domain is28

in the internal region of the circle. Therefore, the null-field integral29

equations are represented as30

2πu(x) =
∫
B
T E(s, x)u(s)dB(s)−

∫
B
UE(s, x)t(s)dB(s),31

x ∈ D ∪ B, (30)32

2π t(x) =
∫
B
ME(s, x)u(s)dB(s)−

∫
B
LE(s, x)t(s)dB(s),33

x ∈ D ∪ B, (31)34

and35

0 =
∫
B
T I(s, x)u(s)dB(s)−

∫
B
U I(s, x)t(s)dB(s),36

x ∈ Dc ∪ B, (32)37

0 =
∫
B
M I(s, x)u(s)dB(s)−

∫
B
LI(s, x)t(s)dB(s),38

x ∈ Dc ∪ B, (33)39

Also, x in Eqs. (30)–(33) can exactly be located on the real boundary.40

For various problems (interior or exterior), we used different41

kernel functions (denoted by superscripts ‘‘I ’’ and ‘‘E’’) so that42

jump behavior across the boundary can be captured. Therefore,43

different expressions of the kernels for the interior and exterior44

observer points are used and they will be elaborated on latter. For45

the impermeable cylinders, only exterior case is considered here.46

2.4. Expansions of fundamental solution and boundary density 47

Based on the separable property, the kernel functionU(s, x) can 48

be expanded into degenerate form by separating the source points 49

and field points in the polar coordinates. Since degenerate kernels 50

candescribe the fundamental solutions in two regions (interior and 51

exterior domains), the BIE for the domain point of Eqs. (26)–(27) 52

and Eqs. (30)–(31) and null-field BIE of Eqs. (28)–(29) and 53

Eqs. (32)–(33) can be directly employed for the boundary point. 54

In the real implementation, the null-field point can be exactly 55

pushed on the real boundary since we introduce the expression 56

of degenerate kernel for fundamental solutions. By using the polar 57

coordinates, we can express x = (ρ, φ) and s = (R, θ). The four 58

kernels U , T , L and M can be expressed in terms of degenerate 59

kernels as shown below [21]: 60

U(s, x) =



U I(R, θ; ρ, φ) =
−π i
2

∞∑
m=0

εmJm(kρ)H(1)m (kR)

× cos(m(θ − φ)), R ≥ ρ,

UE(R, θ; ρ, φ) =
−π i
2

∞∑
m=0

εmH(1)m (kρ)Jm(kR)

× cos(m(θ − φ)), R < ρ,

(34) 61

T (s, x) =



T I(R, θ; ρ, φ) =
−πki
2

∞∑
m=0

εmJm(kρ)H ′(1)m (kR)

× cos(m(θ − φ)), R > ρ,

T E(R, θ; ρ, φ) =
−πki
2

∞∑
m=0

εmH(1)m (kρ)J
′

m(kR)

× cos(m(θ − φ)), R < ρ,

(35) 62

L(s, x) =



LI(R, θ; ρ, φ) =
−πki
2

∞∑
m=0

εmJ ′m(kρ)H
(1)
m (kR)

× cos(m(θ − φ)), R > ρ,

LE(R, θ; ρ, φ) =
−πki
2

∞∑
m=0

εmH ′(1)m (kρ)Jm(kR)

× cos(m(θ − φ)), R < ρ,

(36) 63

M(s, x) =



M I(R, θ; ρ, φ) =
−πk2i
2

∞∑
m=0

εmJ ′m(kρ)H
′(1)
m (kR)

× cos(m(θ − φ)), R ≥ ρ,

ME(R, θ; ρ, φ) =
−πk2i
2

∞∑
m=0

εmH ′(1)m (kρ)J ′m(kR)

× cos(m(θ − φ)), R < ρ,

(37) 64

where εm is the Neumann factor 65

εm =

{
1, m = 0,
2, m = 1, 2, . . . ,∞. (38) 66

Eqs. (34)–(37) can be seen as the subtraction theorem instead of 67

the addition theorem since we care |x− s| not |x+ s|. Mathe- 68

matically speaking, the expressions of fundamental solutions in 69

Eqs. (34)–(37) are termed degenerate kernels (or separable ker- 70

nels) which can expand the kernel to sums of products of function 71

of the field point x alone and functions of the source point s alone. 72

If the finite sum of series is considered, the kernel is finite rank. As 73

we shall see in the later sections, the theory of boundary integral 74

equations with degenerate kernel is nothing more than the linear 75

algebra. Since the potentials resulted from T (s, x) and L(s, x) are 76

discontinuous across the boundary, the potentials of T (s, x) and 77

L(s, x) for R → ρ+ and R → ρ− are different. This is the reason 78

why R = ρ is not included in the expression for the degen- 79

erate kernels of T (s, x) and L(s, x) in Eqs. (35) and (36). The 80

Please cite this article in press as: Chen J-T, et al. Interaction of water waves with vertical cylinders using null-field integral equations. Applied Ocean Research (2009),
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degenerate kernels simply serve as the means to evaluate regular1

integrals analytically and take the limits analytically. The reason2

is that integral equation for the domain point of Eq. (26) and null-3

field integral equation of Eq. (28) yield the same algebraic equation4

when the limit is taken from the inside or from the outside of the5

region. Both limits represent the same algebraic equation that is an6

approximate counterpart of the boundary integral equation, that7

for the case of a smooth boundary has in the left-hand side term8

πu(x) or π t(x) rather than 2πu(x) or 2π t(x) for the domain point9

or 0 for the point outside the domain. Besides, the limiting case to10

the boundary is also addressed. The continuous and jump behavior11

across the boundary is well captured by theWronskian property of12

Bessel function Jm and Ym bases13

W (Jm(kR), Ym(kR)) = Y ′m(kR)Jm(kR)− Ym(kR)J
′

m(kR)14

=
2
πkR

(39)15

as shown below16 ∫ 2π

0

(
T I(s, x)− T E(s, x)

)
cos(mθ)Rdθ = 2π cos(mφ),17

x ∈ B, (40)18 ∫ 2π

0

(
T I(s, x)− T E(s, x)

)
sin(mθ)Rdθ = 2π sin(mφ),19

x ∈ B. (41)20

After employing Eqs. (40) and (41), Eqs. (30) and (32) yield the21

same linear algebraic equation when x is exactly pushed on the22

boundary from the domain or the complementing domain. A proof23

for the Laplace case can be found [22].24

In order to fully utilize the geometry of circular boundary, the25

potential u(s) and its normal flux t(s) can be approximated by26

employing the Fourier series. Therefore, we obtain27

u(s) = a0 +
∞∑
n=1

(an cos nθ + bn sin nθ), (42)28

t(s) = p0 +
∞∑
n=1

(pn cos nθ + qn sin nθ), (43)29

where a0, an, bn, p0, pn and qn are the Fourier coefficients and θ30

is the polar angle which is equally discretized. Eqs. (32) and (33)31

can be easily calculated by employing the orthogonal property of32

Fourier series. In the real computation, only the finite P terms are33

used in the summation of Eqs. (42) and (43).34

2.5. Adaptive observer system35

Since the boundary integral equations are frame indifferent, i.e.36

rule of objectivity is obeyed. Adaptive observer system is chosen to37

fully employ the property of degenerate kernels. Fig. 2 shows the38

boundary integration for the circular boundaries. It isworthy noted39

that the origin of the observer system can be adaptively located on40

the center of the corresponding circle under integration to fully41

utilize the geometry of circular boundary. The dummy variable42

in the integration on the circular boundary is just the angle (θ)43

instead of the radial coordinate (R). By using the adaptive observer44

system, all the boundary integrals can be determined analytically45

free of principal value.46

2.6. Vector decomposition technique for the potential gradient in the47

hypersingular formulation48

Since hypersingular equation plays an important role for49

dealing with fictitious frequencies, potential gradient of the field50

quantity is required to calculate. For the eccentric case, the field51

point and source point may not locate on the circular boundaries

Fig. 2. The adaptive observer system.

Fig. 3. Vector decomposition technique for the potential gradient in the
hypersingular equation.

with the same center except the two points on the same circular 52

boundary or on the annular cases. Special treatment for the normal 53

derivative should be taken care. As shown in Fig. 3 where the 54

origins of observer system are different, the true normal direction 55

ê1 with respect to the collocation point x on the Bj boundary 56

should be superimposed by using the radial direction ê3 and 57

angular direction ê4. We call this treatment ‘‘vector decomposition 58

technique’’. According to the concept, Eqs. (36) and (37) can be 59

modified as 60

L(s, x) =



LI(s, x) =
−πki
2

∞∑
m=0

εmJ ′m(kρ)H
(1)
m (kR)

× cos(m(θ − φ)) cos(ζ − ξ)

−
πmi
2ρ

∞∑
m=0

εmJm(kρ)H(1)m (kR)

× sin(m(θ − φ)) sin(ζ − ξ), R > ρ,

LE(s, x) =
−πki
2

∞∑
m=0

εmH ′(1)m (kρ)Jm(kR)

× cos(m(θ − φ)) cos(ζ − ξ)

−
πmi
2ρ

∞∑
m=0

εmH(1)m (kρ)Jm(kR)

× sin(m(θ − φ)) sin(ζ − ξ), R < ρ,

(44) 61

Please cite this article in press as: Chen J-T, et al. Interaction of water waves with vertical cylinders using null-field integral equations. Applied Ocean Research (2009),
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M(s, x) =



M I(s, x) =
−πk2i
2

∞∑
m=0

εmJ ′m(kρ)H
′(1)
m (kR)

× cos(m(θ − φ)) cos(ζ − ξ)

−
πmki
2ρ

∞∑
m=0

εmJm(kρ)H ′(1)m (kR)

× sin(m(θ − φ)) sin(ζ − ξ), R ≥ ρ,

ME(s, x) =
−πk2i
2

∞∑
m=0

εmH ′(1)m (kρ)J ′m(kR)

× cos(m(θ − φ)) cos(ζ − ξ)

−
πmki
2ρ

∞∑
m=0

εmH(1)m (kρ)J
′

m(kR)

× sin(m(θ − φ)) sin(ζ − ξ), R < ρ,

(45)1

2.7. Linear algebraic equation2

In order to calculate the 2P + 1 unknown Fourier coefficients,3

2P + 1 boundary points on each circular boundary are needed to4

be collocated. By collocating the null-field point exactly on the kth5

circular boundary for Eqs. (32) and (33) as shown in Fig. 2, we have6

0 =
N∑
j=1

∫
Bj
T E(s, xk)u(s)dB(s)−

N∑
j=1

∫
Bj
UE(s, xk)t(s)dB(s),7

xk ∈ Dc ∪ B, (46)8

0 =
N∑
j=1

∫
Bj
ME(s, xk)u(s)dB(s)−

N∑
j=1

∫
Bj
LE(s, xk)t(s)dB(s),9

xk ∈ Dc ∪ B, (47)10

where N is the number of circles. It is noted that the path is11

anticlockwise for the outer circle. Otherwise, it is clockwise. For12

the Bj integral of the circular boundary, the kernels of U(s, x),13

T (s, x), L(s, x) and M(s, x) are respectively expressed in terms of14

degenerate kernels of Eqs. (34), (35), (44) and (45) with respect to15

the observer origin at the center of Bj. The boundary densities of16

u(s) and t(s) are substituted by using the Fourier series of Eqs. (42)17

and (43), respectively. In the Bj integration, we set the origin of the18

observer system to collocate at the center cj of Bj to fully utilize19

the degenerate kernel and Fourier series. By moving the null-field20

point exactly on the real boundary Bk from outside of the domain21

DE in the numerical implementation, a linear algebraic system is22

obtained23

[U]{t} = [T]{u}, (48)24

[L]{t} = [M]{u}, (49)25

where [U], [T], [L] and [M] are the influence matrices with a26

dimension of N × (2P + 1) by N × (2P + 1), {t} and {u} denote the27

vectors for t(s) andu(s)of the Fourier coefficientswith a dimension28

of N × (2P + 1) by 1, in which, [U], [T], [L], [M], {u} and {t} are29

defined as follows:30

[U] = [Uαβ ] =


U11 U12 · · · U1N
U21 U22 · · · U2N
...

...
. . .

...
UN1 UN2 · · · UNN

 , (50)31

[T] = [Tαβ ] =


T11 T12 · · · T1N
T21 T22 · · · T2N
...

...
. . .

...
TN1 TN2 · · · TNN

 (51)32

[L] = [Lαβ ] =


L11 L12 · · · L1N
L21 L22 · · · L2N
...

...
. . .

...
LN1 LN2 · · · LNN

 (52) 33

[M] = [Mαβ ] =


M11 M12 · · · M1N
M21 M22 · · · M2N
...

...
. . .

...
MN1 MN2 · · · MNN

 (53) 34

{u} =


u1
u2
...
uN

 , {t} =


t1
t2
...
tN

 (54) 35

where the vectors {uk} and {tk} are in the form of {ak0 a
k
1 b
k
1 · · · a

k
p 36

bkp}
T and {pk0 p

k
1 q

k
1 · · · p

k
p q

k
p}
T ; the first subscript ‘‘α’’ (α = 37

1, 2, . . . ,N) in the [Uαβ ] denotes the index of the αth circle 38

where the collocation point is located and the second subscript 39

‘‘β ’’ (β = 1, 2, . . . ,N) denotes the index of the βth circle 40

where the boundary data {uk} or {tk} are routed. The number 41

of circular holes is N and the highest harmonic of truncated 42

terms is P . The coefficient matrix of the linear algebraic system is 43

partitioned into blocks, and each diagonal block (Upp) corresponds 44

to the influence matrices due to the same circle of collocation and 45

Fourier expansion. After uniformly collocating points along theαth 46

circular boundary, the sub-matrix can be written as given in Box I. 47

It is noted that the superscript ‘‘0s’’ in
∧
the first equation in Box I Q2 48

disappears since sin(0θ) = 0, and the element of [Uαβ ], [Tαβ ], 49

[Lαβ ] and [Mαβ ] are defined as 50

Uncαβ =
∫
Bk
U(sk, xm) cos(nθk)Rkdθk, (55) 51

Unsαβ =
∫
Bk
U(sk, xm) sin(nθk)Rkdθk, (56) 52

T ncαβ =
∫
Bk
T (sk, xm) cos(nθk)Rkdθk, (57) 53

T nsαβ =
∫
Bk
T (sk, xm) sin(nθk)Rkdθk, (58) 54

Lncαβ =
∫
Bk
L(sk, xm) cos(nθk)Rkdθk, (59) 55

Lnsαβ =
∫
Bk
L(sk, xm) sin(nθk)Rkdθk, (60) 56

Mncαβ =
∫
Bk
M(sk, xm) cos(nθk)Rkdθk, (61) 57

Mnsαβ =
∫
Bk
M(sk, xm) sin(nθk)Rkdθk, (62) 58

where n = 1, 2, . . . , P , φm(n = 1, 2, . . . , 2P+1) is the polar angle 59

of the collocating point xm along the boundary. After obtaining the 60

unknown Fourier coefficients, the origin of observer system is set 61

to cj in the Bj integration as shown in Fig. 4 to obtain the interior 62

potential by employing Eq. (30). The flowchart of the present 63

method is shown in Fig. 5. 64

3. Illustrative examples 65

For the third example, we consider water wave structure 66

problem by an array of four bottom-mounted vertical rigid circular 67

cylinders with the same radius a located at the vertices of a 68

square (−b,−b), (b,−b), (b, b), (−b, b), respectively, as shown

Please cite this article in press as: Chen J-T, et al. Interaction of water waves with vertical cylinders using null-field integral equations. Applied Ocean Research (2009),
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[Uαβ ] =



U0cαβ(φ1) U1cαβ(φ1) U1sαβ(φ1) · · · UPcαβ(φ1) UPsαβ(φ1)

U0cαβ(φ2) U1cαβ(φ2) U1sαβ(φ2) · · · UPcαβ(φ2) UPsαβ(φ2)

U0cαβ(φ3) U1cαβ(φ3) U1sαβ(φ3) · · · UPcαβ(φ3) UPsαβ(φ3)
...

...
...

. . .
...

...

U0cαβ(φ2P) U1cαβ(φ2P) U1sαβ(φ2P) · · · UPcαβ(φ2P) UPsαβ(φ2P)

U0cαβ(φ2P+1) U1cαβ(φ2P+1) U1sαβ(φ2P+1) · · · U
Pc
αβ(φ2P+1) UPsαβ(φ2P+1)



[Tαβ ] =



T 0cαβ(φ1) T 1cαβ(φ1) T 1sαβ(φ1) · · · T Pcαβ(φ1) T Psαβ(φ1)

T 0cαβ(φ2) T 1cαβ(φ2) T 1sαβ(φ2) · · · T Pcαβ(φ2) T Psαβ(φ2)

T 0cαβ(φ3) T 1cαβ(φ3) T 1sαβ(φ3) · · · T Pcαβ(φ3) T Psαβ(φ3)
...

...
...

. . .
...

...

T 0cαβ(φ2P) T 1cαβ(φ2P) T 1sαβ(φ2P) · · · T Pcαβ(φ2P) T Psαβ(φ2P)

T 0cαβ(φ2P+1) T 1cαβ(φ2P+1) T 1sαβ(φ2P+1) · · · T
Pc
αβ(φ2P+1) T Psαβ(φ2P+1)



[Lαβ ] =



L0cαβ(φ1) L1cαβ(φ1) L1sαβ(φ1) · · · LPcαβ(φ1) LPsαβ(φ1)

L0cαβ(φ2) L1cαβ(φ2) L1sαβ(φ2) · · · LPcαβ(φ2) LPsαβ(φ2)

L0cαβ(φ3) L1cαβ(φ3) L1sαβ(φ3) · · · LPcαβ(φ3) LPsαβ(φ3)
...

...
...

. . .
...

...

L0cαβ(φ2P) L1cαβ(φ2P) L1sαβ(φ2P) · · · LPcαβ(φ2P) LPsαβ(φ2P)

L0cαβ(φ2P+1) L1cαβ(φ2P+1) L1sαβ(φ2P+1) · · · L
Pc
αβ(φ2P+1) LPsαβ(φ2P+1)



[Mαβ ] =



M0cαβ(φ1) M1cαβ(φ1) M1sαβ(φ1) · · · MPcαβ(φ1) MPsαβ(φ1)

M0cαβ(φ2) M1cαβ(φ2) M1sαβ(φ2) · · · MPcαβ(φ2) MPsαβ(φ2)

M0cαβ(φ3) M1cαβ(φ3) M1sαβ(φ3) · · · MPcαβ(φ3) MPsαβ(φ3)
...

...
...

. . .
...

...

M0cαβ(φ2P) M1cαβ(φ2P) M1sαβ(φ2P) · · · MPcαβ(φ2P) MPsαβ(φ2P)

M0cαβ(φ2P+1) M1cαβ(φ2P+1) M1sαβ(φ2P+1) · · · M
Pc
αβ(φ2P+1) MPsαβ(φ2P+1)


Box I.

Fig. 4. Sketch of the boundary integral equation for the domain point.

in Fig. 6. By considering the incident wave in the direction of1

45
∧
degrees, the first-order force for four cylinders in the direction2

of the incident wave determined by Perrey-Debain et al. and the3

result of the present method are shown in Fig. 7. It is found4

that the force effect on cylinder 2 and cylinder 4 is identical as5

expected due to symmetry. After comparing with the result of6

Perrey-Debainet al. [9], good agreement is made. The maximum 7

free-surface elevation amplitude is plotted in Fig. 8. It agrees well 8

with that of the plane wave BEM by Perrey-Debain et al. [9]. 9

However, the results of our approach and Perrey-Debainet al. do 10

not agree well with those of Linton and Evans [8]. Nevertheless, 11

the potentials at the north pole of each cylinder are compared well 12

with the BEM data given by Perrey-Debain et al. [9] as shown in 13

Table 2. We also used the four north poles to test the convergence 14

behavior as shown in Fig. 9. It is found the results converge very 15

fast. Eight number of truncation terms (P) is adopted to have the 16

accuracy of five figures. It may be noted that in Table 2 the results 17

of Linton & Evans and Perrey-Derbain et al. agree to within 8 or 9 18

significant figures, while the present results agree to within 5 or 19

6 figures. For the numerical viewpoint, the different codes of the 20

Bessel and Hankel functions may be used in both sides, Perrey- 21

Debain et al. and our group. We could not confirm that which 22

one is better. The main difference may stem from the package of 23

Bessel and Hankel functions. The two agreeable results to 8 or 24

9 significant figures were both provided by Perrey-Debain et al. 25

from their computer system and software. If we implement the 26

Linton and Evans method, we also obtain agreeable results after 27

comparing our data using the BIEM. However, the relative error of 28

our approach is much less than 0.5%. The result is acceptable from 29

the engineering point of view. 30

For detecting the near-trapped behavior, we changed the ratio 31

of a/b to 0.8. It means that the four cylinders are close to each 32

Please cite this article in press as: Chen J-T, et al. Interaction of water waves with vertical cylinders using null-field integral equations. Applied Ocean Research (2009),
doi:10.1016/j.apor.2009.06.004
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Fig. 5. Flowchart of the present method.

y

a

x2b
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2b

1 2

34

Fig. 6. Interaction of an incident water wave with four cylinders.

other. Fig. 10 shows the forces in the direction of wave advance1

versus the wavenumber (ka). It can be found that the peak force on2

cylinders 1 and 3 is about 54 times force of an isolated cylinder at3

the wavenumber ka = 4.08482. This phenomenon is the physical4

resonance. We also found that peak does not appear on cylinders5

ka

Present approach (Cylinder 1)

Present approach (Cylinder 2)

Present approach (Cylinder 3)

Perrey-Debain et al. (Cylinder 1)

Perrey-Debain et al. (Cylinder 2)

Perrey-Debain et al. (Cylinder 3)
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Fig. 7. The first-order force for four cylinders by using the proposed method.
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Fig. 8. Contour of the maximum free-surface elevation amplitude.

2 and 4. After comparing with the work of Evans and Porter
∧
[23] 6

whichwas implemented by using the Linton and Evans
∧
formula [7], 7

Fig. 10 shows good agreements on cylinders 1 and 3. However, 8

some deviations are found on cylinders 2 and 4. 9

In this example,we agree that themethod of Linton and Evans is 10

an analytical approach but the solution is not exact or closed-form 11

since the unknown coefficients must be determined by a linear 12

algebraic equation. We also used the Linton and Evans
∧
result to 13

verify the validity of our approach. However, the results are not 14

consistent. Although Linton and Evans have corrected once in [8], 15

they pointed out that their figure is incorrect owing to insufficient 16

points being used to represent them. However, some incorrect 17

results still exist. When ka is in the range of 1.5 to 2.0, the forces in 18

the direction of wave advance on cylinders 1 and 3 are very similar 19

to the results of Linton and Evans, but the force on cylinder 2 is 20

different from their result (cylinder 1 in [8]). Fortunately, we found 21

that the result of Perrey-Debainet al. [9] by using plane wave BEM 22

and our results match. We may wonder that the points they used 23

are still insufficient. 24
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Fig. 9. Amplitude of potentials at north poles versus number of truncation terms on (a)
∧
cylinder 1, (b) cylinder 2, (c)

∧
cylinder 3 and (d) cylinder 4.

Table 2
Potential (φ) at the north pole of each cylinder (ka = 1.7).

Present method Perrey-Debain et al. [9] Linton and Evans [8]

Cylinder 1 −2.418395851
+0.753719467i

2.418395682
+0.753719398i

−2.418395683
+0.753719398i

Cylinder 2 2.328927362
−0.310367580i

2.328927403
−0.310367705i

2.328927400
−0.310367707i

Cylinder 3 0.350612027
−0.198852116i

0.350611956
−0.198852086i

0.350611956
−0.198852086i

Cylinder 4 −0.383803194
+1.292792513i

−0.383803273
+1.292792457i

−0.383803272
+1.292792455i

4. Conclusions1

For
∧
water wave scattering problems with circular cylinders,2

we have proposed a null-field BIEM formulation by using3

degenerate kernels, null-field integral equation and Fourier4

series in companion with the adaptive observer system and5

vector decomposition. This method is a semi-analytical approach6

for Helmholtz problems with circular boundaries since only7

truncation error in the Fourier series is involved. The present8

formulation belongs to the direct method, and is different from9

the indirect method proposed by Spring and Monkmeyer. Our10

method may provide a choice for people who are familiar with11

BIEM to solve
∧
water wave problems. The originality of the method12

is the use of the null-field integral equation to cope with irregular 13

frequencies in conjunction with the introduction of degenerate 14

kernels instead of the classical Green’s function. This allows 15

an easier treatment of the singular and hypersingular integrals. 16

Besides, our approach shows great generality and versatility for 17

the problemswith arbitrary radii, number and positions of circular 18

cylinders. Not only themaximum free-surface elevation amplitude 19

but also the first-order forcewas calculated. Also, the near-trapped 20

behavior arisen from physical resonance was detected. A general- 21

purpose program for solving water wave problem impinging by 22

arbitrary number, size and various locations of cylinders was 23

developed. The results were compared well with solutions of 24

Please cite this article in press as: Chen J-T, et al. Interaction of water waves with vertical cylinders using null-field integral equations. Applied Ocean Research (2009),
doi:10.1016/j.apor.2009.06.004



UN
CO

RR
EC

TE
D
PR

OO
F

APOR: 678

ARTICLE  IN  PRESS
10 J.-T. Chen et al. / Applied Ocean Research xx (xxxx) xxx–xxx

ka

Cylinder 1

Cylinder 2

Cylinder 3

Evans & Porter (Cylinder 1)

Evans & Porter (Cylinder 2)

Evans & Porter (Cylinder 3)

Cylinder 1: 54.078
Cylinder 2: 1.0000
Cylinder 3: 54.111

||
||

F
X

j

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7

Fig. 10. The force ratio in the direction of wave advance versus wavenumber.

Spring and Monkmeyer, the result of Linton and Evans and the1

plane wave BEM data by Perrey-Debain et al.2
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