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Abstract In this paper, the Laplace problem with a free surface is solved by using the

hypersingular equation. In the conventional boundary element method, only sin-

gular integral equation was used. The boundary of free surface can be determined

by trial and error after initial guess and iterations. By introducing the hyper-

singular equation, the convergence rate of free surface can be accelerated. It is

found that the result by using a higher-order singularity approach for the kernel is

more accurate than introducing a higher-order element for the boundary density.

Finally, numerical examples were demonstrated to show the validity of the present

method.
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1. INTRODUCTION

The analysis of seepage problems is strongly influenced by porous media,
hydraulic gradient and pore pressure. In order to study these problems, accu-
rately defining the position of free surface is very important and necessary.
In this decade, many researchers utilized boundary element method (BEM) to
determine the free surface but only the conventional BEM of singular equation
was used. Since the dual boundary integral equation method has been proposed
for the Laplace equation by Chen and Hong [1], the hypersingular equation can
be considered as an alternative to solve the free-surface seepage problems.
Based on the theory of dual boundary integral equations, a BEPO2D program
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was developed by Chen and Hong [1] to solve the Laplace equation. In this
paper, the dual BEM was used to determine the location of free surface by
iteration.

In the past decades, several methods were used to determine the location
of free surface. For example, Aitchison [2], Liggett and Liu [3] and Westbrook
[4] etc. used FDM, BIEM and FEM, to solve the position of the free surface,
respectively. Regarding to these methods, free surface can be determined by
using all of these methods but with different rates of convergence. Compar-
ing with these methods, domain-based approach spends much time on mesh
generation. In particular, it needs to remesh in the domain for each iteration.
Therefore, BEM was proposed to analyse the problem with easier mesh gen-
eration. Higher-order element of B-spline [5] as well as linear element [6] was
employed to study the problem. In this study, hypersingular formulation in con-
junction with constant element scheme was considered and free surface was
initially guessed before iteration. The main purpose of this paper is to employ
the hypersingular equation for determining the location of free surface.

2. PROBLEM STATEMENT AND
HYPERSINGULAR FORMULATION

The steady state flow through the homogeneous dam is considered. The
problem is to find the potential φ which satisfies the Laplace equation ∇2φ = 0.

Referring to Figure 1, the boundary conditions are
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Figure 1. Flow through a rectangular dam.
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where y(
˜
x) is the free-surface curve to be determined. We solve the problem

by using the hypersingular formulation which can be written as

π
∂φ (x)

∂nx
= H.P.V.

∫
B

M(s, x)φ(s)dB(s)

−C.P.V.

∫
B

L(s, x)
∂φ(s)

∂ns
dB(s), x ∈ B,

where L(s, x) = ∂U (s, x)

∂nx
, M(s, x) = ∂2U (s, x)

∂ns∂nx
, U (s, x) = ln(r ) and r de-

notes the distance between source point s and collocation point x, ns is the
unit outer normal at point s on the boundary and nx is the unit outer normal at
point x on the boundary. C.P.V. and H.P.V. are the Cauchy principal value and
Hadamard principal value, respectively.

3. NUMERICAL EXAMPLES

Two cases of the free surface of the homogeneous rectangular dam are
considered in Figure 1. (Case 1: h1 = 24, h2 = 4 and b = 16. Case 2: b =
1, h1 = 1 and h2 = 0.) By using the BEPO2D program, the iteration for the
location of free surface stops by checking the criterion of convergence
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√∑M
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< 10−4,

where the symbol M is the number of elements on the free surface, φ
(N+1)
i is the

location of free surface for the (N + 1)th number of iteration, and the allowable
tolerance used in this paper is 10−4. Table 1 shows the results of free surface
of case 1 solved by using different methods. The number of iterations and el-
ements of case 1 by using different methods are shown in Table 2. Although
Polubarinova-Kochina [7] developed an analytical solution for the rectangular
dam, it was adjusted by Cryer [8] later. Ozis [9] used Cryer’s formulation and
improved the integrals by using Gaussian quadrature with 64 integration points.
Then, Bruch used linear boundary elements and an iterative technique to de-
termine the separation point [6]. Now, singular and hypersingular equations by
using constant elements are both employed to solve the problem. The separation
point of case 1 by using different methods is shown in Table 3 which indicates
the accuracy of the hypersingular formulation. Tables 4 and 5 also present the



Table 1. Free surface obtained by using different methods (case 1).

Present Present

x Aitchison [2] Westbrook [4] (singular equation) (hypersingular equation)

1 23.74 23.64 23.76 23.74

2 23.41 23.32 23.42 23.40

3 22.12 22.12 22.12 22.09

4 21.60 21.55 21.60 21.57

5 21.04 21.07 21.04 21.00

6 20.43 20.36 20.43 20.39

7 22.12 22.12 22.12 22.09

8 21.60 21.55 21.60 21.57

9 19.78 19.81 19.78 19.73

10 19.08 19.07 19.07 19.02

11 18.31 18.26 18.30 18.24

12 17.48 17.45 17.47 17.39

13 16.57 16.54 16.56 16.45

14 15.54 15.51 15.50 15.39

15 14.39 14.33 14.15 14.09

16 12.79 – 12.61 12.68

Table 2. Number of iterations by using different methods (case 1).

Method Mesh Number of iterations

FEM [4] 17 × 25 49

Singular equation 39 14

Hypersingular equation 39 13

Table 3. Final position of separation point using different methods (case 1).

Reference Height

Polubarinova-Kochina [7] 12.95

Cryer [8] 12.7132

Ozis [9] 12.7070

Westbrook [4], FEM NA

Bruch [6], BEM, Linear element 12.98

Cabral and Wrobel [5], BEM, B-spline 12.74

Present (2004), BEM, constant element, singular equation 12.61

Present (2004), BEM, constant element, hypersingular equation 12.68

Table 4. Free surface obtained by using different methods (case 2).

x 0.2 0.4 0.6 0.8 1.0

Polubarinova-Kochina [7] 0.938 0.850 0.738 0.595 0.368

Singular equation 0.939 0.850 0.737 0.590 0.368

Hypersingular equation 0.937 0.847 0.732 0.584 0.379
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Table 5. Iteration number by using the present methods (case 2).

Method Mesh Number of iterations

Present (singular equation) 25 12

Present (hypersingular equation) 25 9

results of case 2. In Tables 2 and 5, the number of iterations and elements by
using the hypersingular equation is fewer than that by using singular equation
and FEM.

4. CONCLUSIONS

Free-surface seepage problems were solved by using the hypersingular equa-
tion and the results were compared with other solutions. It is found that the
convergence rate of the present method as well as its accuracy is superior to
the other methods. It is suggested that increasing the order of kernel singularity
can obtain more accurate results than increasing the order of boundary element.
Two examples were demonstrated to check the accuracy and efficiency of the
present method.
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