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ABSTRACT

In this paper, we employ the regularized meshless
method (RMM) to solve antiplane shear and antiplane
piezoelectricity problems with a multiple inclusions and
acoustic eigenproblem with multiply-connected domain.
The solution is represented by a distribution of
double-layer potentials. The subtracting and adding-back
technique is used to regularize the singularity and
hypersingularity of the kernel functions. Only boundary
nodes on the real boundary are required by using the
proposed technique in a different way of conventional
MFS by distributing singularities on fabricated boundary.
Finally, the numerical results demonstrate the accuracy of
the solutions after comparing with analytical solutions
and those of BEM, FEM and PM. Good agreements are
obtained.
Keywords: regularized meshless method, subtracting
and adding-back technique, method of fundamental
solutions, piezoelectricity, multiple inclusions, multiple
holes, spurious eigenvalue, acoustics.

1. INTRODUCTION

Bleustein (1968) [1] investigated the antiplane
piezoelectric dynamics problem and discovered the
existence of Bleustein wave. Pak (1992) [2] has
considered a more general case by introducing a
piezoelectric inclusion which, in the limiting case of
vanishing elastic and piezoelectric constants, become a
permeable hole containing free space with electric fields.
He obtained an analytical solution by using the
alternative method. Later, Honein et al. (1995) [3] have
visited the problem of two circular piezoelectric fibers
subjected to out-of-plane displacement and in-plane
electric field. In 1997, Chen and Chiang [4] solved for
2D problems of an infinite piezoelectric medium
containing a solitary cavity or rigid inclusion of arbitrary
shape, subjected to a coupled anti-plane mechanical and
in-plane electric load at the matrix by using the
conformal mapping techniques. In recent years, Chao and
Chang [5] studied the stress concentration and tangential
stress distribution on double piezoelectricity inclusions
by using the complex variable theory and the method of
successive approximations. The antiplane shear problem
[6, 7] is a limiting case of antiplane piezoelectricity

problem, when electric fields and piezoelectric modulus
approximate to zero.

For the acoustic eigenproblem  with a
multiply-connected domain, spurious eigensolutions
always appear, even when the complex-valued BEM is
employed to solve the eigensolutions [8]. In Chen et al.
work of [8], the problem of spurious eigensolutions of
the singular and hypersingular BEMs was studied by
using circulant for an annular case and treated by using
the Burton & Miller approach in a discrete system. Chen
et al. [9] studied spurious and true eigensolutions for a
multiply-connected problem by using BIE, BEM and
dual BEM. Also, spurious eigensolutions were examined
in the MFS for annular eigenproblems [10]. In this study,
we propose a meshless method to solve engineering
problems.

To simplify complexity of numerical methods in the
preprocessor of data preparation, meshless methods were
developed to accelerate the speed of model creation. The
mesh reduction techniques possess a great promise to
replace the FEM and BEM as a dominant numerical
method. Because of neither domain nor surface meshing
are required for the meshless method, it is very attractive
for engineering communities. In this study, we solve
antiplane shear and antiplane piezoelectricity problems
with multiple inclusions and acoustic eigenproblem with
a multiply-connected domain by using proposed
meshless method. Spurious eigenvalues are extracted out
by employing SVD updating term technique. The method
of fundamental solutions (MFS) is one of the meshless
methods and belongs to a boundary method for boundary
value problems, which may be viewed as a discrete type
of indirect boundary element method. In the MFS [11],
the solution is approximated by a set of fundamental
solutions which are expressed in terms of sources located
outside the physical domain. The unknown coefficients
in the linear combination of the fundamental solutions
are determined by matching the boundary condition. The
method is relatively easy to implement. It is adaptive in
the sense that it can take into account sharp changes in
the solution and in the geometry of the domain and can
easily treat with complex boundary conditions. A survey
of the MFS and related method over the last thirty years
has been found [11]. However, the MFS is still not a
popular method because of the debatable artificial
boundary distance of source location in numerical
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implementation especially for a complicated geometry.
The diagonal coefficients of influence matrices are
divergent in the conventional case when the fictitious
boundary approaches the physical boundary. In spite of
its gain of singularity free, the influence matrices become
ill-posed when the fictitious boundary is far away from
the physical boundary. It results in an ill-posed problem
since the condition number for the influence matrix
becomes very large.

Recently, we developed a modified MFS, namely
regularized meshless method (RMM), to overcome the
drawback of MFS for solving the Laplace and Helmholtz
problems [12, 13, 14]. The method eliminates the
well-known drawback of equivocal artificial boundary.
The subtracting and adding-back technique [12, 13, 14] is
implemented to regularize the singularity and
hypersingularity of the kernel functions. This method can
simultaneously distribute the observation and source
points on the physical boundary even using the singular
kernels instead of non-singular kernels. The diagonal
terms of the influence matrices can be extracted out by
using the proposed technique.

In this study, the RMM is extended to solve three
engineering problems. The results are compared with
analytical solutions [3, 6, 9] to show the validity of our
method.

2. Formulation

2.1 Governing Equation and Boundary Conditions

(1) Acoustic eigenproblem with a multiply-connected
domain

Consider an eigenproblem with an acoustic pressure
field u(x), which satisfies the Helmholtz equation as
follows:

(V2+kHu(x)=0, xeD, (1)
subject to boundary conditions,

u(x):G:O, xeBy, p=1 2 3., m 2
t(x):f:O, XEB;, q=1 2, 3, m 3)

where V2 is the Laplacian operator, k is the wave
number, D is the domain of the problem,
t(x)=ou(x)/on,, m is the total number of boundaries

including m-1 numbers of inner boundaries and one outer
boundary (the mth boundary), Bg is the essential
boundary (Dirichlet boundary) of the pth boundary in
which the potential is prescribed by u and Bg is the
natural boundary (Neumann boundary) of the qth
boundary in which the flux is prescribed by t . Both Bg

and Bg construct the whole boundary of the domain D

as shown in Fig. 1(a).
(2) Antiplane shear and antiplane piezoelectricity
problems with multiple inclusions

Consider piezoelectric inclusions embedded in an
infinite domain as shown in Fig. 2(a). The inclusions and
matrix have different material properties. The matrix is
subjected to a remote antiplane shear, o, =7, and a

remote inplane electric field, E,=E, . A uniform

electric field can be induced in piezoelectric material by
applying a potential field E=E,_ .

For this problem, the out-of-plane elastic displacement
W and the electric potential ¢ are only functions of x
and y, such that
w=w(xy), ¢=¢(x.y). 4

The equilibrium equations for the stresses and the
electric displacements are
00, 1 0x+00, /oy=0, 0D, /ox+0dD,/dy=0, (5)
where o, and o, are the shear stresses, while D,
and D, are the electric displacements. For linear
piezoelectric materials, the constitutive relations are
written as
O =Caa¥ s —€15Ex s Oy =Caa?y _eLSEy ' (6)
Dy =€y + énEy Dy =€55Yy + gllEy ’
in which y,, and y, are the shear strains, E, and
E, are the electric fields, c,, is the elastic modulus,
e denotes the piezoelectric modulus and &
represents the dielectric modulus. The shear strains y,,
and y, and the electric fields E, and E, are
obtained by taking gradient of the displacement potential
w and the electric potential ¢ by the following
relations:

Y =OWIOX, y, =owldy,
E,=-04/0x, E,=-0¢/dy. Y

Substituting Eqgs. (6) and (7) into (5), we obtain the
following governing equations:

ClVeW+e, V=0
s V2W—g,V2$=0"

From Eg. (8), we can obtain the equations as
viw=0, V%=0, (9)
where V2 is the Laplacian operator. The continuity
conditions across the matrix-inclusion interface are
written as
w=w", ol=0on, (10)
¢'=¢", D=D, (11)
where the superscripts i and m denote the inclusion and
material, respectively. The loading is remote shear.

For the antiplane shear problem, we consider
inclusions embedded in an infinite matrix as shown in
Fig. 2(b). The inclusions and matrix have different elastic
properties. When electric field and piezoelectric modulus

approximate to zero, we can obtain governing equation
and continuity conditions as
o*w/lox? +0*wloy? =viw=0, (12)
w=w", ol =0ol. (13)
2.2 Conventional Method of Fundamental Solutions
(1) Acoustic eigenproblem with a multiply-connected
domain

By employing the RBF technique [10], the
representation of the solution for a multiply-connected
problem as shown in Fig. 1(a) can be approximated in

terms of the «; strengths of the singularities at s; as

(®)
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N
U(Xi):jaT(sj'Xi)aj

Ny N1+Nj
=X T(sp %)+ = T(s;%)aj+ (14)
j=1 j=Ng+1
N
+ z T(sj X)ej,

j=Np+No+-+Np_1+1
N
t(Xi)=J§1M(5pXi)0‘j
Ny N +Nj
=X M(s;,%)a;+ X M(sj, %)+ (15)
j=1 j=Np+1
N
+ > M (s, Xi)a; ,
j=Ng+No+-+Np_4+1
where x and s; represent the ith observation point
and the jth source point, respectively, «; are the jth

unknown coefficients (strength of the singularity),
N;,N,,---,N,,_, are the numbers of source points on m-1

numbers of inner boundaries, respectively, N, is the

number of source points on the outer boundary, while N
is the total numbers of source points
(N=N;+Ny+--+Np) and  M(s;,x)=0T(s;,%)/on, .
After matching boundary conditions, the coefficients
{aj }?‘:1 are determined. The distributions of source points
and observation points are shown in Fig. 1(a) for the

MFS. The chosen bases are the double-layer potentials
for the Helmholtz problem [14] as

T(sj.%) = ~(izk 1 2)H{ (k) (% = ;).n)) /1y (16)
M (s;, %) =ik / 2{kH S (kry)
(06 =5;)n)(06 =5 n) /6 (17)

- Hl(l)(krij)nkal i},
where (, ) is the inner product of two vectors, H{"(kr;)

is the second-order Hankel function of the first kind,

i =[s;=%|, n; is the normal vector at s;, and n; is

the normal vector at x; .

It is noted that the double-layer potentials have both
singularity and hypersingularity when source and field
points coincide, which leads to difficulty in the
conventional MFS. The fictitious distance between the
fictitious (auxiliary) boundary (B’) and the physical
boundary (B), defined by d, shown in Fig. 1(a) needs
to be chosen deliberately. To overcome the above

mentioned shortcoming, s; is distributed on the real

boundary, as shown in Fig. 1(b), by using the proposed
regularized technique as stated in the following Section
2.3. The rationale for choosing double-layer potential as
the form of RBFs instead of the single-layer potential in
the RMM is to take the advantage of the regularization of
the subtracting and adding-back technique, so that no
fictitious distance is needed when evaluating the diagonal
coefficients of influence matrices which will be
explained in Section 2.4. The single-layer potential can
not be chosen because the following Eq. (23) in Section
2.3 is not provided. If the single layer potential is used,
the regularization of subtracting and adding-back

technique can not work [12].
2.3 Regularized Meshless Method
(1) Acoustic eigenproblem with a multiply-connected
domain

When the collocation point x; approaches the source
point s;, the potentials in Eqgs. (16) and (17) are
approximated by:

lim T(s;,%) =T(s;,%) =Ny, /17, (18)

XS]

lim M(s;, %) =M(s;, %) +ik?/ 4

Xj—Sj
= (204 =5;)n)(0 =5;).n) /1 (19)
—(nj,n) /) +ik? /4,
by using the limiting form for small arguments and the

identities from the generalized function as shown below
[15]

r!jiTo H® (key) = ke / 2+ 2i /(akry) (20)
r!jiTo H (kry) = (kry )2 18+ 4i [(z(kry)?) . 21)

The kernels in Egs. (18) and (19) have the same
singularity order as the Laplace equation. Therefore, Egs.
(14) and (15) for multiply-connected domain problems
can be regularized by using the above mentioned
regularization of subtracting and adding-back technique
[12, 13] as follows:

o N Ni+Np .
u(x)= < T(sj, % )aj+ + > T(sj, X )a;
j=1 j=Np+-+Np_g+1
Ny+-+Np_;
etz T(s) e

j=Ng++Np_o+1
N
+ > T(sY.x)e; (22)
j=Ng+-+Np_g+1
Np+-+Np  — | |
- b3 T(sj, X% )a
Jj=Ng+-+Np_4+1
X €B,, p=1 2 3., m-1,

where % is located on the inner boundary

(p=1 2, 3., m-1) and the superscripts 1 and O

denote the inward and outward normal vectors,

respectively, and
N1+-~-¢-Np

) 'F(s},xi'):o, x €B,,

j=Np+-+N g+l (23)
p=1 2, 3,---, m-1.
Therefore, we can obtain
N i-1
u )= Tl v+ Tl
j=1 j=Np+-+N patl
N1+»~+Np | |
+ 2 TS5 % )ay
j=i+l
Ny+-+Npp_
+ g T(s), % )a;
Jj=Ni+-+Np_o+1 (24)

N
+ Y T(sY. % )e;
j=Ny+-+Npg+1

N1+~~+Np —
—[ z T(S}rxil)_T(sillXil )}“i )

Jj=Ng+-+Np_3+1

X eB,, p=1 2 3., m-1.
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When the observation point x° locates on the outer
boundary (p=m), Eq. (24) becomes

Ny Np+Njp
ux) = ST, D)+ X T(s),x))a +o
j=1 j=Np+1

Np+-+Npg
T x)a;
j=Ng++Np_o+1

i-1 o .0
+ ) T(S7, %)

. jo j
Jj=Ng++Np_g+1

N o 0
+ X T(sj VX )aj
j=i+1

—[ Y T(shx)-T(s2 X0 }ai, (25)
j=Ng++Np g+
Xil and OEBp, p=m.
Similarly, the boundary flux is obtained as
N i
t4) = % M(s},x)a; ++- + T M (s % )z,
j=1 J=Np N g+
N1-¢-«-»+Np | |
+ X M(sj,xi )aj e
j=i+1
N+ +Np,_
+ o MG )e;
j=Ng++Np_o+1 (26)

N
+ > M(sS %)
J=Ng++Np g+

Np+-+Np  —
_{ > 1M(s},xi')—M(si',xi')}ai,

j=Np+-+Np_y+

x €B,, p=1 2 3., m-1.
N N1+N

t(x°) = .leM(s},xio)aj + .1;2 le(s},xio)aj oo
= j=Ny +

Ny+-+Np_1
+ v M (s}, x)a;
j=Ng++Np_o+1
i-1
+ z

J=Np++Np g +1

| b MM 0
J=Np++Np_g+1

M(s$,x)a; + EMM (s7.%x7)a; 27

x> eB,, p=m.
The detailed derivations of Eq. (23) can be found in the
reference [12]. According to the dependence of normal
vectors for inner and outer boundaries [12], their
relationships are

T(s)x)=-TE2,x0),  i#]j
{f(s},xi')ﬁ(s?,xf’), i= ] @)
M) =M. x0), iz
{Ws} K)=ME0 ), =] @)

where the left and right hand sides of the equal sign in
Egs. (28) and (29) denote the kernels for observation and
source points with the inward and outward normal
vectors, respectively.
(2) Antiplane shear and antiplane piezoelectricity
problems with multiple inclusions

When k approaches to zero, the above-mentioned
formulation can be also applied to the Laplace problem
with multiple holes, because of the same double-layer
potentials for Helmholtz and Laplace problems.
2.4 Derivation of Influence Matrices

(1) Acoustic eigenproblem with a multiply-connected
domain

By collocating N observation points to match with the
BCs from Egs. (24) and (25) for the Dirichlet problem,
the linear algebraic equation is obtained

)= lop =it
WA

[Tn]leNl
0y = : " :
Nxl [Tml]meN1 ’ [Tmm]meNm NxN

For the Neumann problem, Egs. (26) and (27) yield

t=t)=MJa} =
A,

[M ll]leNl
0 = : . :
NxL [M ml]meNl : [M mm]meNm NxN

For the mixed-type problem, a linear combination of Egs.
(30) and (31) is required to satisfy the mixed-type BCs.
(2) Antiplane shear and antiplane piezoelectricity
problems with multiple inclusions

The antiplane piezoelectricity problem with multiple
inclusions is decomposed into two parts as shown in Fig.
3. One is the exterior problem for matrix with hole
subjected to the far-displacement field and far-electric
field, the other is the interior problem for each inclusion.
The two boundary data of matrix and inclusion satisfy
the interface conditions in Egs. (10) and (11).
Furthermore, the exterior problem for matrix with holes
subjected to a far-displacement field and far-electric field
can be superimposed by two systems as shown in Fig. 4.
For an interior problem, the linear algebraic system can
be obtained as:

L R e R

HEE R

where w and ¢ denote the out-of-plane elastic

displacement and in-of-plane electric  potential,
respectively.
For an exterior problem, we have

SR ] e

M:MH e [

oo i1, gewor . (35)
_[MIEIJI] [Mr(u)N] }

ay
Substituting Egs. (32), (33), (34) and (35) into Egs. (10)
and (11), the linear algebraic system for antiplane
piezoelectricity problem is obtained as:

[Tlm ]N1><Nm

S LY
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The unknown densities ({al}, @o}, {2}, fer}) in Eq.
(36) can be obtained by implementing the linear
algebraic solver and the stress concentration can be
solved by using Eg. (6).

For the antiplane shear problem with multiple
inclusions, we obtain

] Rl Ty (b
;mi[MJv] —[Mﬁ]{tﬁﬁz{ﬂw ! 37)

on

where 4 and ™ are equal to ¢, and cf ,
respectively.
2.5 Extraction of the Eigenvalues
(1) Acoustic eigenproblem with a multiply-connected
domain

In order to sort out the eigenvalues, the SVD technique
is utilized [9]. We obtain Egs. (30) and (31) by using the
double-layer potentials approach for the Dirichlet and
Neumann problems, respectively. Form Egs. (30) and
(31), we can obtain eigenvalues by using the SVD
technique as follows:

[r]=lor [z Jer I (38)
M=oy Jzm Ieu ] (39)
where the superscript H denotes the transpose and
conjugate, = and =, are diagonal matrices with
diagonal elements of positive or zero singular values and
[©:], [®v], [¥] and [¥,] are the left and right
unitary matrices corresponding with [r] and [M],
respectively. Thus the minimum singular value of [T] or
[M] as a function of k can be utilized to detect the
eigenvalue and eigenmodes by using unitary vectors.
However, spurious eigenvalues are present for a
multiply-connected domain eigenproblem. Spurious
eigenvalue can be extracted out by using SVD updating
term techniques as shown in the next section.
2.6 Treatments of Spurious Eigenvalues
(1) Acoustic eigenproblem with a multiply-connected
domain

In order to sort out the spurious eigenvalues, the SVD
updating term is utilized [9]. We can combine Egs. (30)
and (31) by using the SVD updating term as follows:
Pl e (40)

[M ]N><N
The rank of the matrix [P] must be smaller than 2N to

have a spurious mode [9]. By using the SVD technique,
the matrix in Eq. (40) can be decomposed into

nfy Al AT w

(36)

Based on the equivalence between the SVD technique
and the least-squares method, we extract out the spurious
eigenvalue by detecting zero singular values for [pP]
matrix.

3. Numerical examples

In order to show the accuracy and validity of the
proposed method, four numerical examples are
considered.
Case 1 Antiplane shear problem

Fig. 5 shows the matrix imbedded three inclusions
under antiplane shear. The geometry conditions is d =2r .
It is interesting to note that a uniform stress field results
when the shear modulus is the same for the inclusion and
the matrix. Therefore, the stress concentrations o, in

the matrix around the interface of the first inclusion are
shown in Fig. 6 (a)~(d), respectively. From Fig. 6 (a), it
is obvious that the case of holes
(1 1y = 1yl g = 1131 11 =0.0) leads to the maximum stress

concentration at ¢=0°. Because of the interaction effects,
it is larger than 2 of a single hole [6]. The stress
component o,, Vanishes in the case of approximation
to rigid inclusions ( u/ug=py! =3l iy =50 ). The
results are compared with those of the Laurent series
expansion method [7].
Case 2 Antiplane piezoelectricity problem

The single piezoelectric inclusion in a piezoelectric
matrix is shown in Fig. 7. In this case, the remote shear,
shear modulus, piezoelectric modulus, dielectric modulus
and elastic modulus are r=5x10" Nm? el =100 Cm?,
el =gl =151x10°  CV'm? and ¢l =ci, =353x10°
Nm, respectively. Stress concentrations versus different
piezoelectric modulus ratio are shown in Fig. 8 (a)~(b)
for the case of E=-10°V/m. When E-=-10°V/m and
el/el. =-10 for the negative poling direction, the
negative maximum stress concentration occurs in the
matrix of ¢=0 as shown in Fig. 8 (a). However, the
positive maximum stress concentration occurs in the
matrix of #=z/2 as shown in Fig. 8 (b). Good
agreement is made after comparing with the analytical
solution [3].
Case 3 Acoustic eigenproblem

The inner and outer radii of domain are r, =05 and
r, =2.0 , respectively. All the boundary conditions are the
Dirichlet type (u=0) and Neumann type (t=0) as shown
in Fig. 9. The analytical solutions of true eigenequations
[9] for Dirichlet and Neumann types, respectively, are
shown below:
Jn k)Y, (krp) = 3, (kr,)Y, (ki) =0, (Dirichlet) (42)
3, (kn)Y, (kp) = 3, (krp)Y, (kn) =0, (Neumann). (43)
The analytical solutions of spurious eigenequations [9]
for both types are the same as:
Jn(kr)=0. (44)
The minimum singular value versus wave number by

using our proposed method for the Dirichlet and
Neumann BCs are shown in Fig. 10(a) and (b),
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respectively. Good agreement is obtained after
comparing with analytical solutions. The spurious
eigenvalues for the Dirichlet and Neumann problems are
found out by employing SVD updating term as shown in
Fig. 10(c). From Fig. 10(c), we find that one spurious
eigenvalue appear at k,=3.68 (J;') in the range of

0<k<5. This spurious eigenvalue is found to be the true
eigenvalue of Neumann eigenproblem of an interior
circular domain with a radius 0.5.
Case 4 Acoustic eigenproblem with four equal holes

In this case, the eigenvalues were obtained by Chen
and his coworkers [16]. The radius R of outer boundary
is 1.0 and the eccentricity e and radius c of the
inner circular boundaries are 0.5 and 0.1, respectively.
Dirichlet problem is considered as shown in Fig. 11. The
former five eigenvalues by using the RMM, BEM, FEM
and PM are listed in Table 1, where the results of PM
miss the eigenvalues of k, and k;. In this case, no

spurious eigenvalue is found in the range of 0<k<6
sine the first spurious eigenvalue is 18.412 (J;*). The
eigenvalues of k, and k, are roots of multiplicity two

by finding the second successive zero singular value in
SVD when using RMM and BEM. Besides, the
symmetry of the fourth mode shape by using the PM is
quite different from the results of RMM and BEM. The
former five eigenmodes of the RMM and the BEM are
shown in Fig. 12. Agreeable results of the RMM are
obtained by comparing with the BEM data.

4. CONCLUSION

In this study, we employed the RMM to solve three
engineering problems. Only the boundary nodes on the
physical boundary are required. The major difficulty of
the coincidence of the source and collocation points in
the conventional MFS is then circumvented. Furthermore,
the controversy of the fictitious boundary outside the
physical domain by using the conventional MFS no
longer exists. Although it results in the singularity and
hypersingularity due to the use of double-layer potential,
the finite values of the diagonal terms for the influence
matrices have been determined by employing the
regularization technique. The numerical results were
obtained by applying the developed program to solve
antiplane shear and antiplane piezoelectricity problems
and acoustic eigenproblems through four examples.
Numerical results agreed very well with the analytical
solution and those of BEM, FEM and PM.
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Fig. 1 The distribution of the source points and Fig. 6 Stress concentration factor of,/r along the
observation points and definitions of r.,p.¢ by using boundaries of both the left inclusion and matrix for
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Fig. 2 Problem sketch for (a) antiplane piezoelectricity f=1 1 1 1 1
and (b) antiplane shear problems with multiple Fig. 7 Problem sketch of a single piezoelectric inclusion.
inclusions.
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Fig. 10 The result of RMM and analytical solution for the

(a) Dirichlet BC, (b) Neumann BC, (c) SVD updating
term.

Fig. 11 Problem sketch for an acoustic eigenproblem with
four equal holes.

Method
RMM BEM FEM PM
Eigenvalue
ke, 4.50(55) 4.47(58) 4.443 4.655(S5)
k, 5.38(A8) 5.37(AS) 5316 N/A
k, 5.38(5A) 5.37(SA) 5.320 N/A
k, 5.55(AA) 5.54(AA) 5.486 5.561(5A)
ks 5.95(58) 5.95(58) 5.884 5.868(58)

Table 1 The former five eigenvalues for a circular domain
with four equal holes by using different approaches.
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Fig. 12 Eigenmodes of the RMM and BEM for the case 4.
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