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Abstract

In this paper, it is proved that the two approaches for biharmonic equation, known in the literature as the method of

fundamental solutions (MFS) and the Trefftz method, are mathematically equivalent in spite of their essentially minor

and apparent differences in the formulation. In deriving the equivalence of the Trefftz method and the MFS for plate
problem, it is interesting to find that the T-complete set in the Trefftz method for 1-D, 2-D, 3-D Laplace and Helmholtz

problems are imbedded in the degenerate kernels of the MFS. The unknown coefficients of each method for plate

problems correlate by a mapping matrix after considering the degenerate kernels for the fundamental solutions in the

MFS and the T-complete function in the Trefftz method. The mapping matrix is composed of a rotation matrix and a

geometric matrix which depends on the source location. Also, the occurring mechanism of the degenerate scale for the

plate problemsis examined in this paper.

Keywords: biharmonic equation, method of fundamental solutions, Trefftz method, T-complete set, degenerate kernel,

mapping matrix, degenerate scale

1. Introduction

Since 1926, the Trefftz method was introduced for
solving boundary value problems by the superposition of
the functions satisfying the governing equation, although
various versions of Trefftz method, e.g., direct and
indirect formulations have been developed. The
unknown coefficients are determined so that the
approximate solution matches the boundary condition.
Many applications to the Helmholtz equation [6], the
Navier equation [10,12] and biharmonic equation [11]
were done.

In potential theory, it iswell known that the method

of fundamental solution (MFS) can solve potential
problems when a fundamenta solution is known. This
method was attributed to Kupradze [12], extensive
applicationsin solving a broad range of problems such as
potential problems [6,13], acoustics [15], biharmonic
problems [11] have been studied. The MFS can be seen
as an indirect boundary element method with
concentrated sources. The initial idea is to approximate
the solution by a linear combination of fundamental
solution with sources located outside the domain of the
problem. Moreover, it has certain advantages over BEM,

e.g., no singularity and no boundary integrals. It can also
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be applied to acoustics [6], elasticity [10,12] and plate
problems[11].

However, the link between the Trefftz method and the
MFS was not discussed in detail to the authors' best
knowledge. A similar case to link the DRBEM and the
method of particular integral was done by Polyzos et al.
[16]. In this paper, we will construct the relationship of
the two methods through the T-complete functions and
the degenerate kernel. Then, we will examine the bases
in the two methods for the Laplace and the Helmholtz
equations and extend it to biharmonic equation. By
designing a biharmonic circular problem, we will prove
the mathematical equivalence between the Trefftz
method and MFS. Two mathematical tools are required.
One is the degenerate kernel for the closed-form
fundamental solution, the other is the Fourier series
expansion for the boundary density. The occurring
mechanism of the degenerate scale [1,2,3,4] using the
MFS will be addressed in this paper.

2. On theindependent basesin the Trefftz
method and the MFS
2.1 Trefftz method
In the Trefftz method, the field solution u(x) is
superimposed by the T-complete functions, u;(x) as

follows:

u(x)=2 g,u,(x) )

where N, is the number of T-complete functions, g
is the unknown coefficient, u,(x) is the T-complete
function which satisfies the governing equation. The
solution of the problem can be approximated by the
superposition of the functions satisfying the governing
equation.

2.2 Method of fundamental solutions (MFS)

In the method of fundamental solutions, the field
solution u(x) issuperimposed by U(x,s;) asfollows:
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u(x) = %ﬂ:vju(x, s), s €D’ 2)

where N, isthe number of source points in the MFS,
v; is the unknown coefficient, s and x are the

source point and collocation point, respectively, D° is

the complementary domain and U(xs) is the

corresponding fundamental solution.

2.3 On the complete set of the Trefftz method and the
MFSusing the degenerate ker nel
By expanding the fundamental solution in the MFS,

we have the general form as follows shown in Fig. (1),

and
U'(x9) =3 AMB(S), xco
T U((x9) = ! 3)
UE(xs) =D A(9)B;(x), xeQf
i
where the superscripts of “I” and “E” denote the

interior and exterior domains, respectively. It is

interesting to find that al the T-complete sets in the
Trefftz method are imbedded in A (%) and B, (X) for
the interior and exterior problems, respectively. To
demonstrate this point, we summarize the T-complete
sets in the Trefftz method and degenerate kernels for
MFS in Table 1 for 1-D, 2-D and 3-D Laplace and

Helmholtz problems.

3. Connection between the Trefftz method
and the MFSfor plate problem
3.1 The statements of the problem
Consider a clamped plate of radius a under
uniformly distributed load w(x) as shown in Fig.(2),

the governing equation is:

V“u(x):%, XeQ 4

where U(X) is the deflection of the circular plate, D is

the flexure rigidity of the plate, Q is the domain of
interest. For simplicity, we set W(X) is constant w. For
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the clamped case, the boundary condition is

ux)=0, 9(x)=0, xeB (5
where B is the boundary of the domain. Since Eq.(4)
contains the body source term, the problem can be

reformulated as
ViU (x)=0, xeQ (6)

and the boundary condition is changed to

—wa* . —wa®

u'(x) = 0 (x) = 160"

xeB- @)

This new problem of Eq.(6) subject to essential
boundary conditions of Eq.(7) is a biharmonic equation
with the new boundary conditions. For the general form
of boundary conditions,

U (ag)=po + pycosmp)+ 3 g, sn(mg)-  (8)

m=1 m=1

wz ro+irmcos(m¢)+ismsin(m¢) 9

we have an anaytical solution for biharmonic equation

U (p.d) = 2 + Y. a,0" coSmg) + Y-, "Sin(mg) + ()

Ny Ny (10)
+ Y c,p™ 2 cos(mg) + Y d, o™ sin(mg)
m=1 m=1
where
a
& =Py~ 5 fo (11)
a,= m+ 2a’mpm —lal’mrn’ m=123,.... (12)
2 2
b, = m;‘ zafmqm _%alfmsn, m=123,.... (13)
1
G = 5 o (14)
qﬂ:;rna‘m'zpn +}a‘m'lrm, m= 1, 2, 3, ..... (15)
2 2
qn=%“amqn%amsn, m=123,... (16)
3.2 Trefftz method

By using the Trefftz method for biharmonic
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equation, we choose 1,

p™? cos(mg)
complementary set. Eq.(1) can be expressed by

p"cos(mg), p™sin(mg) ,
p™?sin(mg) to be the bases of the

/(9 = 2, + Y. 30" cos(mf) + D-byo"sin(mg) + (o)

Ny Ny (17)
+ 3 6,0" cosmg) + Y. dp™ sin(my)
0 ()= a,mp™ cosmg) + Y bmo™ sinmg) + ¢, (20)
m=1 m=1 ( 18)

£, +2)p™ cogmg) + 3 d, (m+2) o™ sir(my)

where a,, a ., b, , ¢. C, ad d_  ae the

coefficients of the Trefftz method. By matching the
boundary conditions of Egs.(8) and (9) a p=a, we

(19)

have
[ -a
10 0o - 0 0 -5 0 o 0 0
0o 3ar o . 0 0 o 2t oo 0 0
a, 2 3, 2 _1 Po
al [0 0 Jal o 0 0 o o — 0 o |lp
b | |i : n 2 : R 15 : q,
! + - K
: 0 o0 0 2 a 0 0o o0 0 ?a] 0 :
a, _ P,
bl 0 0o o o M™Zin o o o o Zan|”
m | _ 2 2 A
Gl o o 0 0 0 19 0 0 0 fo
c » a n
d| [0 =a®* o 0 0 0 Za® o 0 0 s
. 2 2 :
o o Za 0 0 0o o la 0 0 ’
G . . 2. . . . .2 . . T
. : : . : Pols,
0o o 0 .. “Mgme 0 0 0 0 - Zamr o |
2 2 .
0o o o - o Mgm2 9 o o0 . 0 Za™
2 2

Eq.(19) is found to be the same as Egs.(11)-(16).
Therefore, we can construct the analytical solution
through the Trefftz method.
3.3 Method of fundamental solutions

We use the method of fundamental solutions to
solve the same problem. According to the Eq.(2), the

slopefield can be obtained as

ou S oU(x,s;)
—=0(X)=> Vv !
an ) ,Zi " on,

Ny (20)
= ZVJL(S,X), s, e D°®

The fundamental solution can be expressed by using

degenerate kernel asfollows:



U'(p.iRO) =r"Inr
{7 +R ~24Ro0%- AL [INR- 3 (2)" cosf{0- )]
= p*(1+INR)+ R InR-2RINRcosy cosp— 2pRInRsin675in¢

— pRcosgcosp— pRsmHsmgﬁf}ﬂcochogﬁ
,z F"
—Z

and

51 n(m+])R2 rr(m D]cosm&cosmﬁ

R n(m+J)R2 —_— D]smmesnmqﬁ R>p

oo ' (p#hRO)
L(ogRO)=

(n#iRO) :
=2p(1+InR) — 2RInRcosdcosp — 2RINRsIndsing

2

2
— Rcos#cosp — Rsindsing 7§p—cosecos¢ - g%sinesi ng

0 m+1
) o m+2 m+2 sinm@sinmg
e R“ rr(m+l) R“ mm-+1
o 1 Ly L |
—comﬂcosmﬂ —smm%m R>
anRTFZ anRTFZ I'Tw p

7—smesm¢
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(21)

(22)

By subtituting Egs.(21), (22) into Egs.(2), (20),

respectively, and matching the boundary conditions of

Eqgs.(8), (9), we have

Ny a
Y V{RINR =p,-—t,
=) 2
v 3 1
- V{R1+2InR} coss} :Ea‘lpﬁir1
j=1

Ny . s 1
_ZI:VJ{R1+2|I’IR)}sng :Ealq_éﬁ
=

Ny
- 1 nlﬂcosmej_erza’mprn 1 a"r,
~mm-1) R 2 2
11 me2 nq _Lgen
< m(m-1) R™? ! 2 m =38 S
Ny 1
V{l+InR=—
JZ; {+InR =6
-1 1
V, —cose =—a’p+=anx
Z S mroa
Zvj—sne ::—la”*pﬁ}a’zr1
<" 2R 2 2
Ny _
> J—: 1 me, = a’m’zper}a’m’lrm
<R m(m+1) 2 2

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)
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Ny

. -m 1
9. = —— -m-2 = a—m-1
Z; R"‘ m(m +l)SmmJ 2 a qm+2a Sin (32)

Eq.(23)-(32) can be rewritten as

»

0 —a 0 0 0 s ;1 0 0 0
2 Po
0 0 Zat 0 0 0 0 — 0 0 P
.2 . . .. 2 . .
S A
) 0 20 m;z,m 0o 0 o 0 %la’"‘ gm
[K]{V}:o 0 0 ] ] ER 0 o || (33)
Oile'a’3 0 0 0 0 Za> o0 0 0 :
0 0 ’71373 0 0 0 0 izla2 0 0 n
o 0 0 . Mt o oo 0wl oo |7
o 0o o o%“a'”ooo 0o Zam™
where
(w)
(we)
K= (34)
<VVNM> Ny xNy

V=% %Y S (35)
in which
(w) = R®EIn(R)[L, 1......., 1,

(w,) = —R(1+ 2In R)[cos( 6,), cos(6,)..., cos( by, )],
(W,) = —R(L+ 2InR)[SIN(8,), Sn(0,)..., sin(8,,_ )],

1 N-2
<WNZM> m(R) [cos(N@,), cos(N8,)..., cos(N&y )],

1 N2 .
<WN2M+1> N(N 1)(R) [Sin(N&,), SN(NE,)..., in(N&y )],
<WNM+> 1+ In(R))[1,1......., 1], (36)

-1
<WN2M+3> E[oos(el), cos(8,)..., cos( Gy, ),
<WN2M+4> ;—;[gn(el), Sn(0,).... Sn(0 )],

1
(W, ) = N(Nﬂ)ﬁloos(we)cos(Ne) , cos(N&,,, )],

1 .
<WNM> N(N+1)W[sm(N6’)sm(N9) . sin(N6 ),

Therefore, we can compare the Eq.(19) in the
Trefftz method with Eq.(33) in the MFS. By setting
4N; +2=N,, =4N+2 under the request of the same
number of degrees of freedom, the relationship between
the coefficients in the Trefftz method and the MFS can
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be connected by

Po vy
P, Vv,
a, Vg

: v,
Py :
dn :

= |K ;

ro [ ](4N +2)x(4N +2) : (37)
rl

Sl

I'N V4N+1
SN V4N+2

(4N +2)x1 (4N +2)x1

where the left-hand side is the coefficient vector of the
Trefftz method and the right-hand side is the coefficient
vector of the MFS. The [K] matrix in Eq.(37) can be

decomposed to
[K]=[T:I[T,] (39)
where
[RIrR
-Ri+arR
-Ri+2m
1
RNN-)
1
RNN-D
= R
3 4 (39)
R
ey
_1
R'NN+)
1
RINN+D)|
and
1 1 e 1 1
cos 6, cosf, o - COS G, 11 CoS O,y
sin 6, sng, - - SN O,y Sin Q,y.,
cosN@, cosN@, - - cos N@,y,, CcosNb,,.,
snNg, sinN@g, - - sin N@ sin N@
T — 1 2 4N+1 4N +2
(T] 1 1 e 1 1 (40)
cos 6, cosf, - - COS 0,4 11 CoS @4y,
sin 6, sn@g, - - SN O,y Sin O,y
cos Ng, cosN@, --- - cos N@,,,, cosNb,,.,,
[N N, snNg, - - SN N&,y,, sSnNG,,., |

It isinteresting to find that T is an diagonal matrix of
dimension (4N+2) by (4N+2) and T, is an orthogonal
matrix. The determinant of [T,] can be obtained

det[T,] = 2(2N +1)*** (41)
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due to the orthogonal property as shown below:

4N+2 0 0 O 0 0 0 0]
0O 2N410 0 0 O 0 ©
o o0 - 0 0 0 O
0O 0 O2N+4 0 O 0 O©

u —
1= 0O 0 0 0 4N+2 0 0 O0 (42)

0O 0 0 0 0 2N410 ©
0O 0 0 0O 0 O0 . O©

| 0 0 0 O 0 0 0 N+, g

If the [K] matrix is nonsingular, the equivalence
between the two methods is proved. The singular [K]
matrix results in the problem of solvability using the
MFS since [K] can not be invertible. This is numerically
reliable instead of physical phenomenon. The degenerate

-1

scale occurs a the three locations R=¢°, e2, e*

since InR, 1+InR and 1+2InR in Eq.(39) are
zeros. A detailed study for the degenerate scale due to the
phenomenon of the numerical nonuniqueness was

elaborated onin[1,2,3,4].

4. Conclusions

In this paper, the mathematical equivalence for
biharmonic equations between the Treffz method and the
MFS was proved. It is interesting to find that the
T-complete set in the Trefftz method for 1-D, 2-D, 3-D
Laplace, Helmholtz and biharmonic equations are
imbedded in the degenerate kernels of MFS. The
degenerate scale occurs when the fictitious sources are

-1

located at €°, e2 and € for circular case.
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(a): closed form

X: variable s fixed

(b): degenerate
kernel

Fig. (1) Expression of fundamental solution
(a) closed form (b) degenerate kernel

W(X) = W =constant

Fig.(2) A clamped plate under uniform load



Method of Fundamental Solution

Trefftz Method

ém

[Fundamental Solution] IDegener ate kernel] Interior basis Exterior basig
; %Zzla,(x)b‘(s), x>s %ia‘(x)b"(s), x>'s %ia{(x)h(s), x>s %fa((x)b,’(s), x>s a’((x);xl One dimensional coor dinate
L1 - R Tes =17 Lixg={ "7 Mx9={2"7 her azlef
2 E;a,(s)b‘(x), X<s E;a{(s)b‘(x), X<s %gg(s)q’(x), X<s %ga;(s)b((x), X<s Z‘Z((z));s 1 , X 1 , X
|n(r) e B o N Two dimensional coordinate
b g, s U‘(xszlnﬁ—grfn(g)mco(ﬂﬁ—@)yp<27 oo T(x9= ;+Z <cosi(G-0), p<p u(xs):_z%ms@@_g)),pq, M‘(x,s):i%cosﬁ(@—g)),p<ﬁ —
s=(p, x9= P B $%= Lix9= . M(x 9= A Mmglm "oosmd o "'sin
UE(XS):|”P-§%(£)m005(7('9_®)'p>2’ Te(xs):le“%coqr@f@),p>p E(XS):TI)+Z%OOS(T(§-$)~P>E Me(xs):znp, oSG0, p> 5 p € P P nmy
x=(p.,0) m=0,1, 2, m=1,2,.
U, S),j_zz":(n m) Cos[m(¢ #)IPr (cosd)P™ (cosd) iil (9= ( )2 zz(n m) cos[n(¢ ¢)]Pm(wsg)Pm(c059)(n+J?p Three dimensional coordinate
T B 1 U(xs) = P ol . T(X,S)f Lm0
D - US(x8)= —1-22("+m) cosm(g - F)]P™ (cosd) P (cosd) "M xs)—-zzz (n- m’ TR s (o) "
g Ll Pl E p"P."(cos 8) cos( mg) p ™YP™(cos @) cos( mg)
=< s=(p.0,.4) p"P."(cos @) sin( mg) p "R (cos 0) sin(mg)
% xs)f-zzz(” m)'cos[m(qﬁ PPN (cost) P (cosh) L T M (x9) = 222(" m) o = PIRT (co) P (cosd) ”(mnlff m-012 m— 012
X=(p,0,¢) L(x,9) = o M%) = o ( 1,2..... 12....
) L(x9 = Zz(" ™! cosimig - 7P (cost) P (cosd) DL (”"Dp M9 =233 0™ codinp aPncos)Rr (o) I | N =01,2,..... n=012,.
8 e (n+m)! o (n+m)! P
© . L&, L&y Onedimensional coordinate
b o) e i Za ()b (s), x>s Lza (Ob(s), x> s e a;é\(x)b‘(s), x>sM(X . ﬂ;%(x)b.(s), x>s e (9 e
& HI1 2 ki Uoes =1 T =1 A s aeno x<s AT a0on, x<s b(s)=e"
Pyt m;a‘(s)b‘(x), X<s Zl—ki;a((s)b‘(x), X<s 2ki ‘:]a’ s 2ki ‘:]a’ e e ikx e — ikx e ikx e — ikx
c
o
c —izH @ (k) U'(x,s) = Z % w(kp)H {7 (kp) cos( m(9 - 0)) T'(x,8)=-3 %wm(kp)Hg‘l’(kﬁ)oos( m@ - 6)) Two dimensional coordinate
> 7 o0 Y/ U(x,s) = N T(X,8) = e
E 2 Ucxs) == % n (kPYH  (kp) cos( m(7 - 0)) TE(8) = = 3 Tk (kp)H Y (ko) cos( m(@ - )
a| [H]? , 35(kp) HE (kp)
s=(7.0) Lo =-3 % 37 (kp)H @ (kp) cos( m(F - 0)) Mi(x,s)=-Y %‘k?J’m(kp)Hg(“(kﬁ)cos( m@ - 0)) J . (kp) cos( m@) H P (kp) cos( mo)
L(x.s) = i M (x,s) = ne 2 J,,(kp)sin(mé) & i
x=(p.0) L'(x,8) == 3 20k, (kp)H (k) oo m(F - 0) M (x,5) = = 3 k70 (kp)H i (ko) cos( m(@ - 0)) g Ho" (kp)sin(mo)
f 2 (n m! m m @ H i H
ki -ik?Y (n Three dimensional coordinate
- e v lkz<zn+1)zg (: rn:;loos{nw PIRICOSOIR(osD) (kNP (D), £<B  T(xg)= I Z( +1)25 ( "‘))'m[w PIR (R COTKONTD: 1P
r V9= . . -|kZZ(2n+1)25 M=oy - F)IR] (cost) P (cosd) (N (ko). >
Hl3 - |kZ(2n+1)Z€ o+ m)|Cos[m(¢ #)IR (cosH)Pr" (cos) j, (ko)h{? (ko), p>p o n)])‘ jo(kp)Pn(COStg) hél)(kp)Pn(COSH)
s=(p,0,9) o Lik? Z 2n+l)Za (: g.‘m[m(‘é PP (cost)P" (cosD) . (ko)h® (KB), p<7 . - k3Z(2n+J)Zg m)|oos[m(¢ PP (cosh)Ry"(cos0) ji, (k)P (kp), p<p i (kp) P (cos 8) cos( mg) hn(l)(kp)an(COS 0) cos( m¢)
X9 \S) =
x=(p.,0,9) R Cn DY, (: Ei.ww PP (Cost)PY (0080) , (DI o), p> 7 -'kSZ@””JZg (: 3.“’5[”’” PIR (0BT (o)L KN (). =7 | (kp) P (cos @) sin( mg) h® (kp)P." (cos ) sin( mg)
5B 0. 1-D VU (x,8) = 8(x-s) 1-D (V2 +K2U (x,5) = 5(x-5) V2u(x) =0 (VZ+k*)u(x) =0
BRETO
%gg g | 2-D V2 (X,8) = 275 (X - S) Helmholtz 2-D (V2 + kU (x,8) = 275 (X — S) Laplace | vV 2u(p,¢) = Helmholtz | (v2 4+ k?)u(p,0) = 0
v.=LC > Laplace
v+
E= 3-D VU (X,S) = 476 (x - S) 3-D (V2 +k*)U (x,8) = 475 (x - s) VZiu(p,0,4)=0 (V2 +Kk*)u(p,0,4) =0
Notg: where r = \x— isthe Neumann Factor Table 1 The T-complete functions of the Trefftz method and degenerate kernels of the MFS




