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ABSTRACT 
The multipole Trefftz method is proposed to solve the 

scattering of flexural wave by multiple circular 
inclusions in an infinite thin plate. The near-field 
dynamic moment concentration factor (DMCF) and the 
far-field scattering amplitude are determined theoretically. 
Owing to the addition theorem, the solution represented 
by multiple coordinates centered at each circle can be 
transformed into one coordinate centered at one circle 
where continuity conditions are required. In this way, a 
coupled infinite linear algebraic system is derived as an 
analytical model for an infinite thin plate with multiple 
inclusions subject to incident flexural wave. The 
formulation is general and is applicable to dealing with 
the problem containing multiple circular inclusions. 
Some numerical results are presented in the truncated 
finite system. The effects of the incident wave number, 
the thickness of inclusion and the central distance 
between inclusions on the DMCF and the far-field 
scattering amplitude are examined. Numerical results 
show that the DMCF of two inclusions is larger than that 
of one, when two inclusions are close to each other. The 
effect of the space between inclusions on the near-field 
DMCF is different from that on the far-field scattering 
amplitude. 

Keywords: scattering, plate, inclusion, flexural wave, 
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1. INTRODUCTION 
Thin plates with multiple circular inclusions are 

commonly observed in engineering structures. These 
inclusions, or inhomogeneous materials, usually take 
place in terms of discontinuity such as thickness 
reduction due to corrosion, or strength degradation 
resulted by delamination. The deformation and 
corresponding stresses induced by dynamic loading are 
propagated throughout the structure by means of wave. 
At the near field of inclusion (or scatterer), flexural wave 
scattered in all directions recursively interacts with the 
incident wave. It turns out that the scattering of the stress 
wave induces dynamic stress concentration [1] which 
results in fatigue failure and reduces the loading capacity. 

On the other hand, certain applications of the far-field 
scattering flexural response can be found in vibration 
analysis or structural health-monitoring system such as 
the non-destructive inspection. 

Nishimura and Jimbo [2] are two pioneers for the 
analytical study of the dynamic stress concentration. Pao 
[3] studied the scattering of flexural waves and dynamic 
stress concentrations around a circular hole, and 
proposed an analytical solution. Since then, most 
research work has focused on the scattering of elastic 
wave and the resulted dynamic stress con- centration and 
has led to a rapid development of ana- lytical or 
numerical approach [1]. 

Norris and Vemula [4] considered the scattering of 
flexural waves by circular inclusions with different plate 
properties. Squire and Dixon [5] applied the wave 
function expansion method to study the scattering 
properties of a single coated cylindrical anomaly located 
in a thin plate on which flexural waves propagate. Wang 
[6] presented a theoretical and experimental investigation 
of the scattering behavior of extensional and flexural 
plate waves by a cylindrical inhomogeneity. Peng [7] 
investigated flexural wave scattering and dynamic stress 
concentration in a heterogeneous plate with multiple 
cylindrical patches by using acoustical wave propagator 
technique. The predicted result of the principal stress was 
compared with the exact solution in a thin plate without 
patches. Nevertheless, predicted results of dynamic stress 
concentration were not verified by any independent 
method. From literature reviews stated previously, few 
papers except [7] have been published to date reporting 
the scattering of flexural wave in plate with more than 
one inclusion. 

The Trefftz method was first presented by Trefftz [8]. 
By using boundary nodes, this method was proposed to 
construct the solution space using trial complete 
functions which satisfy the given governing equation [9]. 
Apparently, Trefftz method is categorized as the 
boundary-type solution such as the boundary element 
method (BEM) or boundary integral equation method 
(BIEM) which can reduce the dimension of the original 
problem by one and thus the number of the unknowns is 
much less than that of the domain type methods such as 
FDM or FEM. Moreover, the Trefftz formulation is 
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regular and free of calculating improper boundary 
integrals. However, almost all the problems solved by 
using Trefftz method are limited in the simply-connected 
domain. An extension to problems with multiple 
inclusions, i.e. multiply-connected domain, is our con- 
cern in this paper. 

The concept of multipole method to solve multiply 
scattering problems was firstly devised by [10] and used 
for the interaction of waves with arrays of circular 
cylinders by Linton and Evans [11]. Recently, one 
monograph by Martin [12] used these and other methods 
to solve problems of the multiple scattering in acoustics, 
electromagnetism, seismology and hydrody- namics. 
However, the biHelmholtz problem with the fourth order 
differential equation was not mentioned therein.  

This paper proposed the multipole Trefftz method to 
solve flexural waves scattered by multiple circular 
inclusions in an analytical way. A coupled infinite system 
of simultaneous linear algebraic equations is derived as 
an analytical model for the problem considered here. 
Some numerical results are presented in the truncated 
finite system. Once the displacement fields of both 
infinite plate and inclusions are solved, the near-field 
DMCF and the far-field scattering amplitude can be 
determined theoretically. The effects of the central 
distance, the incident wave number and the thickness of 
flexible inclusion on the near-field DMCF and the 
far-field scattering amplitude are examined in this paper. 

2. PROBLEM STATEMENT OF 
SCATTERING OF FLEXURAL WAVE 
An infinite thin plate with H nonoverlapping circular 

inclusions subjected to the incident flexural wave is 
shown in Figure 1, where H+1 observer coordinate 
systems are used: (x1, x2) are the global plane Cartesian 
coordinates centered at O, ( , )p p� � , p=1,…,H, are 
local plane polar coordinates centered at Op, The radius 
of the pth circular hole is denoted by Rp and Bp is its 
corresponding boundary.  

Figure 1 Problem statement for an infinite thin plate 
with multiple circular inclusions subject to an 
incident flexural wave 

For time-harmonic motion, the governing equation of 
motion for the plate is 

4 4( ) ( ) 0, ew k w    � , � � � �x x x (1)
where x is the field point, e�  is the unbounded exterior 

region occupied by the infinite plate, 4�  is the bihar- 
monic operator, 4 2

0 0 /k � � h D� , k is the wave num- 
ber, 0�  is the volume density, h0 is the plate thickness, 

( )3 2
0D Eh /12 1 �� � �is the flexural rigidity of the plate, 

E  denotes the Young’s modulus and �  is the 
Poisson’s ratio. 

The solution of Eq. (1) in the plane polar coordinates 
can be represented as 

( , ) ( ) ,im
m

m
w w e �� � ��

�

���

� � (2)

where ( )mw ��  is defined by 

1 2 3 4( ) ( ) ( ) ( ) ( ),m m m m mw c J k c Y k c I k c K k� � � � �� � � � �� 	 	 	 (3)
in which ic�  (i=1-4) are the coefficients, Jm and Ym are 
the mth order Bessel functions; and Im and Km are the mth
order modified Bessel functions. Based on the 
characteristics of functions at 0�� and ��� , the 
appropriate Bessel function and the modified Bessel 
function are chosen to represent the transverse 
displacement field for the infinite plate and finite 
inclusion. 

An incident flexural wave with an incident angle 

with respect to the x1 axis is represented by 

cos( )( )
,( ) ,            ,...,p piki

p p 0 pw w c e p 1 H� � 
� � �� � (4)
where 1 2( cos sin )p pik x x

pc e 
 
	�  is a phase factor associated 

with the pth circular inclusion [11] of which the 

coordinates of the center are ( 1 2,p px x ). From the Jacobi’s 
expansion [13], Eq. (4) can be expanded in a series form 

( ) ( )
,( ) ( ) ,            ,...,pimi i

p p m p
m

w a k e p 1 H�� � �
�

���

� �� (5)

where ( )
0( )= ( )i m im

m p p m pa k w c i J k e 
� � � .

Based on the displacement field, the normal bending 
slope, normal bending moment, tangential bending 
moment and effective shear force can be derived by 
applying the following operators with respect to the field 
point, 

( )( )=K ,� �
� 




� (6)

2
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nmK D � �
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� �� 
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�
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 � � � 
 	 �� ��� �
, (8)

� �2 1 1 ( )( ) ( ) (1 ) .vK D �
� � � � � �

� �� �� � � �� � � � 


 � � � 
 	 �� �� �� � � �� � � �� �� � � �� �� �

, (9)

3. ANALYTICAL DERIVATIONS FOR 
FLEXURAL WAVE SCATTERED BY 
MULTIPLE CIRCULAR INCLUSIONS  
Assume that a time harmonic incident flexural wave 

impinges on an infinite thin plate containing H circular 
inclusions as shown in Figure 1. The problem of flexural 
wave scattered by H circular inclusions is to solve Eq. (1) 
subject to the continuity conditions along each interface 
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between the plate and inclusions and a radiation 
condition at infinity, i.e. the scattered field equaling to 
zero when � � � . Based on Eq. (2), the scattered field 
of plate can be expressed as an infinite sum of multipole 
at the center of each circular inclusion as follows: 

( )

1

( ; , ,..., , )

        ( ) ( )k k

sc
1 1 H H

H
im imk 1 k

m m k m m k
k m

w

a H k e b K k e� �

� � � �

� �
�

� ���

� �
� 	� �� �
� �

x
(10)

where ( ,1 1� � ), …, ( ,H H� � ) are the polar coordinates of 
the field point x with respect to each center of circular 
inclusion. The Hankel function (J+iY) and the modified 
Bessel function K are chosen to represent an infinite plate 
due to their values being finite as ��� . Considering 
the incident wave, the displacement field of the plate is 
defined by  

( )( ) ( )+ ( )i scw w w�x x x (11)
Similarly, from Eq. (2), the displacement field of the 

pth inclusion is expressed as, p=1,…, H,

� �( ; , )= ( ) ( )p pim imi p p
p p p m m p m m p

m
w c J k e d I k e� �� � � �

�

���

	�x (12)

The Bessel function J and the modified Bessel 
function I are chosen to represent a finite inclusion due to 
their values being finite at 0�� . The coefficients of 

k
ma , k

mb , k
mc  and k

md , k=1,…, H; m=0, ±1, ±2, …, can be 
determined by the following continuity conditions, 

= ,    0 2 ,    1,...,p p pR p H� � �� � � ,

( , ) ( , ),i
p p p p pw w� � � �� (13)

( , ) ( , ),i
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( , ) ( , ),i
p p p p pm m� � � �� (15)

( , ) ( , ).i
p p p p pv v� � � �� (16)

For the pth circular interface, substituting both Eq. (11) 
and Eq. (12) into Eq. (13) yields  
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To determine these unknown coefficients, the other 
three equations (14)-(16) are required by applying three 
operators of Eqs.(6), (7) and (9) to Eq.(17). For one thing, 
this procedure involves the higher order derivatives. For 
another thing, Equation (17) consists of several different 
variables. Therefore, it is difficult to put into practice. 
This question can be answered by using the addition 
theorem [13] which will be described in the following. 

Based on the Graf's addition theorem for the Bessel
functions, we can express the theorem in the following 
form,  
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where ( ,p p� � ) and ( ,k k� � ) as shown in Figure 1 are the 
polar coordinates of the field point x with respect to Op
and Ok, respectively, which are the origins of two polar 
coordinate systems and (

kp kpr  , ) are the polar coordinates 
of Op with respect to Ok.

By substituting the addition theorem for the Bessel 
functions (1)( )m kH k� and ( )m kK k�  into Eq. (17), only the 
pth coordinate system is involved and then the 
displacement continuity condition in the circular 
boundary Bp (p=1,…, H) for the case of 

p kpr� "  is given 
by 
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Furthermore, it can be rewritten as 
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where 
( )(1)( ) ( )e ( )kpi n mk
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�� (24)
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By applying Eq. (6) to Eq. (23), the normal slope 

continuity condition in the circular boundary Bp (p=1,…,
H) is given by 
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� � �( (29)
By using Eq. (15), the normal bending moment 

continuity condition in the circular boundary Bp (p=1,…,
H) yields 
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in which the moment operator ( )X
m k
 � from Eq. (7) is 

defined as 
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2
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where the upper (lower) signs refer to X = J, Y, H, (I, K), 
respectively. The differential equations for the Bessel 
functions have been used to simplify ( )X

m k
 � .
Similarly, the effective shear operator ( )X

m k, �
derived from Eq. (9) can be expressed as, 
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and the effective shear force continuity condition in the 
circular boundary Bp (p=1,…, H) is given by 
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where ( )k
mn pG k� , ( )k

mn pH k�  and ( ) ( )i
m pd k�  are deter- 

mined by replacing ( )X
m pk
 �  in Eqs. (31)-(33) with 
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m pk, � , respectively. 
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for m=0, ±1, ±2, …, n=0, ±1, ±2, …, and p = 1, …, H.
Equation (37) is a coupled infinite system of 
simultaneous linear algebraic equations which is the 

analytical model for the flexural scattering of an infinite 
plate containing multiple circular inclusions. In order to 
present the numerical results in the following section, the 
infinite system of Eq. (37) is truncated to a (4H)(2M+1)
system of equations for (4H)(2M+1) unknown 
coefficients, i.e. m=0, ±1, ±2, …., ±M. Once the 
coefficients k

ma , k
mb , k

mc  and k
md (k=1,…, H; m=0, ±1, 

±2,…, ±M) are determined, the displacement fields of an 
infinite plate and inclusions can be both determined by 
substituting them into Eqs. (11) and (12). 

3.1 Dynamic moment concentration factors 
In the polar coordinates, bending slope, the normal 

bending moment, tangential bending moment and 
effective shear force of an infinite plate and each 
inclusion induced by the incident wave can be 
determined by substituting Eqs. (11) and (12) into Eqs. 
(6)-(9), respectively. By setting the amplitude of incident 
wave to be one ( 10w � ), the amplitude of normal bending 
moment produced by the incident wave is 

.2
0M Dk� (38)

The dynamic moment concentration factor (DMCF) 
at any field point x is defined as 

DMCF( ) ( ) /t 0x m x M� (39)
where the tangential bending moment ( )tm x  is deter- 
mined by the following equations. 
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where ( )k
mn pE k� , ( )k

mn pF k�   and ( ) ( )i
m pf k�  are obtain- 

ed by replacing ( )X
m pk
 �  in Eqs. (31)-(33) with 

( )X
m pk. � , respectively, and the tangential bending 

moment operator ( )X
m k. � derived from Eq. (8) is given 

by 
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3.2 Scattered far-field amplitude 
For the most part of scattering applications, it is 

interesting to measure the scattered field far away from 
the scatter. On the other hand, the asymptotic behavior or 
uniqueness of fundamental solutions is an important 
issue for the numerical computation. Therefore, we 
examine the behavior of the scattered response in the far 
field. In this paper, the scattered far-field ampli- 
tude ( )f � [4] is defined as 

( ) lim 2 ( ) ,scf w x
�

� �
��

� 
 (42)
where the radius of the field point � is taken 90m 
because ( )f �  converges a steady value when this 
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radius is more than about 90m.  

4. NUMERICAL RESULTS AND 
DISCUSSIONS 
To verify the proposed method, the FORTRAN code 

was implemented to solve the flexural wave scattered by 
multiple circular inclusions in an infinite thin plate. The 
DMCF as well as the far-field scattering amplitude is 
theoretically derived and numerically determined in this 
paper. In all cases, the thickness of plate h0 is 0.002m 
unless otherwise specified. The following dimensionless 
variables are utilized in the computation: the incident 
wave number is ka, the space between inclusions is L/a
and the thickness of flexible inclusion is h/h0, where a is 
the radius of a circular inclusion and L is the central 
distance between inclusions. For the special case of a 
hole, it can be modeled by using h/h0 to be 0.0005 in the 
numerical computation. To obtain the more accurate 
results in the case of one inclusion, the required number 
of M truncated in the finite system is taken 10. For the 
case of two inclusions, numerical experiments show that 
the required number of M mainly depends on the space 
between inclusions to be considered. Only when does its 
value become large such as 4.0, the required number of 
M can be reduced when the incident wave number is 
small. It shows that the required number of M can be 
taken from 20 to 10 for the dimensionless central 
distance L/a ranged from 2.1 to 4.0. 

Case 1: An infinite plate with one circular inclusion [4] 
An infinite plate with one circular inclusion of radius 

R1=1 subject to the incident flexural wave with 0
 �
was firstly considered. For the case of ka = 0.005 and 
h/h0=0.0005, Fig. 2 shows the distribution of DMCF on 
the circular boundary. The maximum of DMCF occurs at 

2/� �� , 2/��  and its value is 1.8514 which agrees 
with the analytical solution of an infinite plate with one 
hole[1]. 

Figure 3 shows the distribution of DMCF on the 
circular boundary when the different incident wave 
numbers (ka=0.5, 1.0 and 3.0) and the different 
thicknesses of inclusion (h/h0=0.0005, 0.5 and 0.75) are 
considered. Since the angle of incident wave is zero, 

0=
 , its distribution is symmetric to the x-axis. When 
ka is small, the distribution of DMCF has the symmetry 
of the y-axis. But this phenomenon is not observed as ka
increases. In addition, the distribution of DMCF 
gradually changes to backward scattering from forward 
scattering as h/h0 decreases, especially when ka is large 
as shown in Fig.3 (a). In general, the magnitude of 
DMCF increases as the h/h0 decreases. But it is not the 
case for some azimuthal coordinates as ka increases i.e. 
the dynamic behavior is obvious. Figure 4 shows the far 
field backscattering amplitude versus the dimensionless 
wave number. As h/h0 decreases, the ka occurred at first
trough decreases, the far-field amplitude increase and its 
curve becomes gently eventually. The proposed results 
match well with those reported in [4]. It can be found that 
the amplitude for the scattering response in the far field is 
O ( 1/ 2�� ) to satisfy the radiation condition. 

Case 2: An infinite plate with two circular inclusions
The case of two identical flexible inclusions was 

considered in Fig. 5. For L/a = 2.1, Fig. 6 shows the 
distribution of DMCF on the circular boundary B1 when 
the different incident dimensionless wave numbers 
(ka=0.5, 1.0 and 3.0) and the different dimensionless 
thicknesses of inclusion (h/h0=0.0005, 0.5 and 0.75) are 
considered. It is observed that the distribution of DMCF 
of two circular inclusions is different from that of one, 
where the maximum of DMCF increases nearly three 
times since the two inclusions are close to each other. In 
addition to the large magnitude, the symmetry of axis is 
not observed and the variation along the azimuthal 
coordinate is significant when ka increases. Figure 7 
shows the far field backscattering amplitude versus the 
dimensionless wave number. Except the case of the hole, 
the scattering amplitude is similar to that of one. But the 
amplitude becomes large in this case.  

For L/a =4.0, Fig. 8 shows the distribution of DMCF 
on the circular boundary B1 when the different incident 
dimensionless wave numbers (ka=0.5, 1.0 and 3.0) and 
the different dimensionless thicknesses of inclusion 
(h/h0=0.0005, 0.5 and 0.75) are considered. Comparing 
Fig. 3(a) with Fig. 8(a), the central distance is large 
enough so that the DMCF distribution of two inclusions 
is similar to that of one. But the characteristics of 
far-field are not the case. From Figs. 4, 7, and 9, the 
far-field amplitude for L/a=4.0 is similar to that for 
L/a=1.0 other than that of one. 

It is observed that the effect of the space between 
inclusions on the near-field DMCF is different from that 
on the far-field scattering amplitude. Only when 
concerning the DMCF, the multiple scattering can be 
simplified by the simple scattering when the space 
between inclusions is large enough. But the prediction of 
the far-field scattering does not follow this rule.  
5. CONCLUSION 

The flexural wave scattered by multiple circular 
inclusions in a thin plate was successively solved by 
using the multipole Trefftz method with the aid of the 
addition theorem. The DMCF as well as the scattered 
far-field amplitude is theoretically derived and nume- 
rically determined in this paper. By using the addition 
theorem, the Trefftz method can be extended to deal with 
multiply scattering problems. The proposed algorithm is 
general and easily applicable to problems with multiple 
inclusions which are not easily solved by using the 
traditional analytical method. An analytical model for the 
multiple scattering of the plate problem can be derived as 
a coupled infinite system of simultaneous equations. 
Numerical examples in a truncated system are presented. 
The magnitude of DMCF of two inclusions is larger than 
that of one when the space of inclusions is small. In 
general, the magnitude of DMCF increases as h/h0
decreases. However, it is noted that for some azimuthal 
coordinates it increases when both h/h0 and ka increase. 
The effect of the space between inclusions on the 
near-field DMCF is different from that on the far-field 
scattering amplitude. It is helpful to further study the 
multiple scattering of flexural wave. 
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Figure 2 Distribution of DMCF on the circular 
boundary (ka=0.005, h/h0=0.0005) 

Figure 3 Distribution of DMCF on the circular 
boundary at different thicknesses of flexible 
inclusion, solid line for h/h0 = 0.0005, dashed 
line for h/h0 = 0.5 and dotted line for h/h0 =
0.75, and at different incident wave number 
(a) ka=0.5, (b) ka=1.0 and (c) ka=3.0

(a) ka=0.5 

(b) ka=1.0

(c) ka=3.0 
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Figure 4 Far-field backscattering amplitude versus the 
dimensionless wave number at different 
thicknesses of flexible inclusion, solid line for 
h/h0 = 0.0005, dashed line for h/h0 = 0.5 and 
dotted line for h/h0 = 0.75 

Figure 5 An infinite thin plate with two circular 
inclusions subject to an incident flexural wave 

Figure 6 Distribution of DMCF on the first circular 
boundary B1 at different thicknesses of flexible 
inclusion, solid line for h/h0 = 0.0005, dashed 
line for h/h0 = 0.5 and dotted line for h/h0 =
0.75, and at different incident wave number (a) 
ka=0.5, (b) ka=1.0 and (c) ka=3.0 (L/a=2.1) 

Figure 7 Far-field backscattering amplitude versus the 
dimensionless wave number at different 
thicknesses of flexible inclusion, solid line for 
h/h0 = 0.0005, dashed line for h/h0 = 0.5 and 
dotted line for h/h0 = 0.75 (L/a=2.1)

(a) ka=0.5 

(b) ka=1.0

(c) ka=3.0 
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Figure 8 Distribution of DMCF on the first circular 
boundary B1 at different thicknesses of flexible 
inclusion, solid line for h/h0 = 0.0005, dashed 
line for h/h0 = 0.5 and dotted line for h/h0 =
0.75, and at different incident wave number (a) 
ka=0.5, (b) ka=1.0 and (c) ka=3.0 (L/a=4.0) 

Figure 9 Far-field backscattering amplitude versus the 
dimensionless wave number at different 
thicknesses of flexible inclusion, solid line for 
h/h0 = 0.0005, dashed line for h/h0 = 0.5 and 
dotted line for h/h0 = 0.75 (L/a=4.0)
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(b) ka=1.0

(c) ka=3.0 


