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On the equivalence of method of fundamental solutions
and Trefftz method for Laplace equation

Chin-Shen Wu', Sheng-Yih Lin', Sue-Ray Lin® and Jeng-Tzong Chen®

Abstract

In this paper, it is proved that the two approaches for Laplace problems, known in the literature
as the method of fundamental solution (MFS) and the Trefftz method, are mathematically equivalent
in spite of their essentially minor and apparent differences in the formulation. It is interesting to find
that the T-complete set in the Trefftz method for the interior and exterior problems are imbedded in
the degenerate kernels of MFS. By designing a circular-domain problem, the unknown coefficients of
each method correlate by a mapping matrix after considering the degenerate kernels for the
fundamental solutions in the MFS and the T-complete function in the Trefftz method. The mapping
matrix is composed of a rotation matrix and a geometric matrix which depends on the source location.
The degenerate scale for the Laplace equation appears using the MFS when the geometric matrix is
singular. The ill-posed problem in MFS also stems from the geometric matrix when the fictitious
source is distributed far away from the real boundary. Finally, the efficiency of MFS is compared with
the Trefftz method under the same number of degrees of freedom.
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Since 1926, Trefftz first presented the Trefftz method
the

superposition of the functions satisfying the governing

for solving boundary value problem by
equation, although various versions of Trefftz method,
eg., direct formulation and indirect formulation
methods have been developed. The unknown
coefficients are determined so that the approximate



solution satisfies the boundary condition. Many

applications to Helmholtz equation [3], Navier
equation [7,14] and biharmonic equation [8] were
done. Until recent years, the ill-posed nature in the
method was noticed [1].

In potential theory, it is well known that the
method of fundamental solution (MFS) can solve
potential problems when a fundamental solution is
known. This method was attributed to Kupradze (1964)
[14] in Russia, extensive applications in solving a
broad range of problems such as potential problems
[3,9], acoustics [11], biharmonic problems [8] have
been found. The MFS can be reviewed as an indirect
boundary element method. The initial idea is to
approximate the solution by a linear combination of
fundamental solution with source located outside the
domain of the problem. Moreover, it has certain
advantages over BEM, eg., no singularity and no
boundary integrals. It can also be applied to acoustics
[3], elasticity [7,14] and plate problems [8].

However, the link between the Trefftz method
and the MFS was not discussed in detail to the authors
best knowledge. A similar case to link the DRBEM
and the method of particular integral was done by
Polyzos et al. [12]. In this paper, we will design a
circular domain problem for the Laplace equation and
prove the mathematical equivalence of the Trefftz
method and MFS. Two mathematical
required. One is degenerate kernels for the expansion

tools are

of the closed-form fundamental solution, the other is
the Fourier series expansion for the boundary density.
The degenerate scale and the ill-posed behavior of the
MFS will be addressed. Also, the efficiency between
the Trefftz method and MFS will be compared with
under the same number of degrees of freedom.

2. Connection between the Trefftz
method and the MFS for Laplace
equation

Consider atwo-dimensional Laplace problem with a
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ciucular domain of radius p asshowninFig.1

Fig.1 Definition sketch of polar coordinate for
Laplace equation in the circular domain
( isthe source location of the MFS)

the governing equation of the boundary value problem
isthe Laplace equation,
Vau(x)=0, xeD 1
where V? denotes the Laplacian operator and
u(x) is the potential function. The boundary condition
is given by the Dirichlet type
)
By using the Fourier series expansion, the boundary
condition u(x) can be expressed as

u(x):ﬁ xeB

— N — N —
u(p, ) = ac+ Y ancos(ng) + > bnsin(ng) 3
n=1 n=1
where ao, an, b, are the Fourier coefficients with
respect to Fourier bases, cos(ng) and sin(ng) , and
¢ isthe angle aong the circular boundary.

2.1 Trefftz method

In the Trefftz method, the field solution u(x) is
superimposed by the T-complete functions, u;(x) as
follows:

2Np +1

u(x) = Z{W,-U, (& 4

where 2N, +1 isthe number of complete functions,

w; is the unknown coefficient, is the

u; (X)

complementary set  which satisfies the Laplace

equation. Then, we choose r"sin(ng) and

r" cos(ng) to be the bases of the complementary set in

two-dimensional problem. Eq.(4) can be expressed by



N Ny
u(r,g)=ag + y_a,r"cos(ng)+ > byr'sin(ng),0<r<p  (5)

n=1 n=1
By matching the boundary condition a r=p, we

have
Ny Ny
u(p,¢) =a, + ) a,p"cos(ng)+ Y b.p"sin(ng).  (6)

After comparing the Eq.(3) with Eq.(6), we obtain

a, = 2, @)

a, =22 n=12.N ®
Vel

b, = b”n n=12..N, ©)
P

2.2 Method of fundamental solution

In the method of fundamental solution, the field

solution u(x) is superimposed by U(xs,) as
follows:
Nm
u(x)=>cU(xs), s eD° (10)
j=1

where N,, is the number of source points in the

MFS, c; istheunknown coefficient, s and x are

the source point and collocation point, respectively,
D° is the complementary domain and U(x,s,) is
the fundamental solution with symmetry property

U(xs)=U(s;,X) (11)

In order to match the boundary condition, we have

u(x) = %cju (s,%), s, D" (12)

The fundamental solution can be expressed by the

VR0, .9)
U'RO.p8) = INRI- 3~ (2)" cokm(0- ), R>p (13)

IR =) -3 eostmie ). R<p

where the superscripts“ i " and“ e " denote the
interior expression ( R>p ) and the exterior

expression (R<p), s=(R#) and x=(p,¢) ae
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the polar coordinates of s and X, respectively.

Eq.(12) reduces to
U(p.8) = Yo, In(R) - X, = (£)" cos(m(6, - 4))] (14)

By employing the property of trigonometric function,
Eq.(14) can be rewritten as

u(p,4) = Zmlc,- In(R)

Ny

13 e L2y
- mZ:l[Z c m(R) cos(mé; )] cos(mg)

1

(15

=
E3

_il[

After comparing the Eq.(3) with Eq.(15) by truncating

ci i(ﬁ)msin(mHJ )]sin(mg)
T mR

]

the higher order terms, we have

a = iZ:Mlcj In(R) (16)
a W11,

o :_EC"F(E) cos(ng), n=12..N, (17)
by W11,

o :—JZ:;C;F(E) sn(nd,), n=12..N, (18

where 0, = j'i—”. Therefore, we can compare the
M

coefficients with Eqgs.(7)-(9) in the Trefftz method and
Eqs.(16)-(18) in the MFS. The relationship between
the coefficients in Trefftz method and MFS can be
written as

2N+1

3= 2.¢In(R) (19)

2N+1 1

a,=-y cjﬁ(%)"cos(nej), n=12.2N+1 (20)
=1

2N+1 1 l .
b,=-> ¢, =(=)"sin(nd,), n=12.2N+1 (21)
i1 nR
by setting N; =N, =2N+1 under the request of
the same number of degrees of freedom. After
comparing the two solutions, Egs.(7)-(9) for the

Trefftz method and Eqgs.(16)-(18) for the MFS, we



have

pj=[K v 22)

. @
Y:{Cl C; G G G - Gy CZN+1}
(w)
(we)
K=l (24)
<W2N*1> (2N+1)x(2N+1)
in which
(wg) =In(R[L 1.......1],
W) = () L0000, CO%0,)-., cosOan ),
(ws) = (’?1) [Sin(61), Sin(@2).... Sin(@an+1)],
. (29)

{(Won ) = =2 5)" [cos(NG), cOsNG).., cos(Ny 1)

{(Wan 1) = == ()" [Sn(NGy), S(NG).. Sn(NGzy 1),
The relation of EQ.(22) was obtained to connect the
Trefftz method and the MFS. We can decompose the
matrix [K] into two parts, one former matrix, T,
depends on the radius of the fictitious source

distribution; the other latter matrix, T,, depends on

the angle of the source point (Fig.1), asfollows:

[K]=[TlIT,] (26)
where
[InRy 0 o 0 0 0
o X o 0 0 0
R
o 0o X o ;
R

: : : ;l(i)z : :
MTel=| L 2 .R -1,1 . . (27)

R :

R : ) . 0

0 0 0 W(E) 0

0 0 o0 0 ;1(1)“

N R JoNgyx(2n+1)
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1 1 1
cos(01)  cos(d) e e e cOS(Oania)
sin(éy) Sin(@) - e e e e SiN(@aN41)
_|cos2y) cos(2) o e e e cOS(202N41)
[Tol= SN(20y)  Sin(20p) - e e e e SN(20pN11) (28
cos(NGy) Cos(NB) -+ - o - coS(NOaN1)
Sn(NOY)  Sin(NOR) oo woe oo SONONA) | o oy
In Eq.(27), it isinteresting to find
1
N+—
dar) - 2D 2 (29

2

due to the orthogona property (Appendix 1) as

follows:
2N+1 0 0
o 2N+1 0
T 2N +1
[T =) o == (30)
: 0
0 0 0 2N +1

2 JaN+Dx(2N+D)

In the T, matrix, it becomes singular at radius of
one (In1=0) which results in a degenerate scale in
the MFS. When the radius of fictitious boundary R and
the number of the source points N,, become large,
the condition number of [K] matrix deteriorates. This
is the reason why the ill-posed behavior is inherent in
the MFS. If the exact solution is

u(r,6) = r*°cos(106), (31)
the Trefftz method needs at least 21 termsof N, =10.
However, the MFS needs only a fewer terms than the
Trefftz method since any one fundamental solution can
be expanded to the degenerate kernels with bases
cos(100) . It is found that the MFS can approach the
exact solution more efficiently than the Trefftz method

under the same number of degrees of freedom.

3. Concluding remarks
In this paper, the proof of the mathematical

equivalence between the Treffz method and MFS for

Laplace equation was derived. The T-complete set



functions in the Trefftz method for interior and
exterior problems are imbedded in the degenerate
kernels of the fundamental solutions as shown in Table
1for 1-D, 2-D and 3-D Laplace problems. The sources
of degenerate scale and ill-posed behavior in the MFS
are easily found in the present formulation. It is found
that MFS can approach the exact solution more
efficiently than the Trefftz method under the same

number of degrees of freedom.

Appendix 1
Using the property of a geometric series, we have
2N 1- e|(2N+1)¢m
gm=""o -0, mz0
nzo 1-¢€¥n
2mrz

where ¢, =mAf = . Also, we have
2N +1

0, m=0

2,005(00y) = {ZN +1, m=0

%Sin(m’ﬁm) =0, m=012..2N
n=0

St cos(ug sin(2,) = 2 cos(na)Sn(ni) =,
&, =NnA0 = ng,

2N 0 Azp
2,Sin(ug, ) sin(24,) = %(ZN +1), A=u

0, A+ u
2N
S cos(ug, ) cos(ig,) = %(ZN 41, A=pu#0
" 2N+l A=u=0

where 1=012..N and x=012..N
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Table 1 Equivalence of the bases between the Trefftz method and the MFS for L aplace problem

Method of Fundamental Solution (MFS) Trefftz Method
Fumdamental solution Degener ate kernel Interior basis Exterior basis
1 2
SXaMh(s), x>s
r U(x,8) = 1'? 1, X 1, X
1-D — = s)hb(x), x<s
> 2;«1( )b (X)
VU (X,s) = §(x - 8) Viu(x)=0
i — 1 m n =
o u (x,s):lnp—za(g) om0 -0, p<p
m=1 = y m m o 1 1 .

= U(x )= ol ~ X_(p 0 plcosme |, p"sinmg p"oosmy |, p"sinmp
3 |20 In(r) U9 =Inp-3Y = )" cosm(@ -0), p>p "=
® m=1M p
&
@
_§’ VU (X,8) = 225 (X - S) Viu(p,9p) =0
©
8
2
o © n
= iy "1 (n—m)! _Z\pm Y N
§ " U'(x,9) = > nZ;mio(m_m)!oos[m(aﬁ #)1P"(cos@)P,"(cos) St (.57 p"Pn"‘(COS@) cos(mg) p—(n+1) P"(cos6) cos(mg)
= X,S) = U

— o N —n — npm : -(n+l) pm G
% 3D _1 Ue(x,s):_—l—z (n—m):Cos[m(¢_a)]an(Cosg)an(Cosg) i x=(p.0,9) p"B"(cosd) sin(mg) ) P"(cos) sin(mg)
= p et (n+m)! P

VU (X,8) = 476 (X — S) Viu(p,0,4)=0

where P" isthe associated Legendre function; m=0,123,... and n=0123,...
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