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and Trefftz method for Laplace equation 
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Abstract 

In this paper, it is proved that the two approaches for Laplace problems, known in the literature 
as the method of fundamental solution (MFS) and the Trefftz method, are mathematically equivalent 
in spite of their essentially minor and apparent differences in the formulation. It is interesting to find 
that the T-complete set in the Trefftz method for the interior and exterior problems are imbedded in 
the degenerate kernels of MFS. By designing a circular-domain problem, the unknown coefficients of 
each method correlate by a mapping matrix after considering the degenerate kernels for the 
fundamental solutions in the MFS and the T-complete function in the Trefftz method. The mapping 
matrix is composed of a rotation matrix and a geometric matrix which depends on the source location. 
The degenerate scale for the Laplace equation appears using the MFS when the geometric matrix is 
singular. The ill-posed problem in MFS also stems from the geometric matrix when the fictitious 
source is distributed far away from the real boundary. Finally, the efficiency of MFS is compared with 
the Trefftz method under the same number of degrees of freedom. 

Trefftz法與基本解法之等效性－以拉普拉
斯方程為例 

吳清森 1, 林盛益 1, 林書睿 2, 陳正宗 3 

摘要 

本文主要以 Trefftz 法與基本解法來探討兩者在數學上之等效性， 並由文中可得知 Trefftz

的完整解集合不論是在內域問題或外域問題皆可由基本解法中的退化核函數中求得。文中設計

一個圓形範例做說明，利用退化核函數展開基本解所得到之係數矩陣與 Trefftz 法中所得到之

係數矩陣相互比較後，可產生一映射矩陣。此映射矩陣根據源點的位置分佈所構成並可分解為

一旋轉矩陣與幾何矩陣。在拉普拉斯問題中，我們可藉由幾何矩陣之奇異性說明在基本解法中

退化尺度問題所產生的機制，並且當虛擬源點與實際邊界相差甚遠時所發生矩陣病態行為，亦

可由此看出。最後，本文在相同自由度數目的情況下，對於兩者的收斂速率的優劣亦作探討。  

                         

1. Introduction 
1 Graduate Student, Department of Harbor and River 

Engineering, National Taiwan Ocean University, Keelung, 

Taiwan 

2 Lecture, Department of Civil Engineering, Chung Yuan 

Christian University, Chung-Li, Taiwan. 
3 Professor, Department of Harbor and River Engineering, 

National Taiwan Ocean University, Keelung, Taiwan 

Since 1926, Trefftz first presented the Trefftz method 

for solving boundary value problem by the 

superposition of the functions satisfying the governing 

equation, although various versions of Trefftz method, 

e.g., direct formulation and indirect formulation 

methods have been developed. The unknown 

coefficients are determined so that the approximate 
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solution satisfies the boundary condition. Many 

applications to Helmholtz equation [3], Navier 

equation [7,14] and biharmonic equation [8] were 

done. Until recent years, the ill-posed nature in the 

method was noticed [1].   φ

),θR

=xρθ              ),( φρ  
R

              
Dxxu ∈=∇ ,0)(2               

B B’                     

In potential theory, it is well known that the 

method of fundamental solution (MFS) can solve 

potential problems when a fundamental solution is 

known. This method was attributed to Kupradze (1964) 

[14] in Russia, extensive applications in solving a 

broad range of problems such as potential problems 

[3,9], acoustics [11], biharmonic problems [8] have 

been found. The MFS can be reviewed as an indirect 

boundary element method. The initial idea is to 

approximate the solution by a linear combination of 

fundamental solution with source located outside the 

domain of the problem. Moreover, it has certain 

advantages over BEM, e.g., no singularity and no 

boundary integrals. It can also be applied to acoustics 

[3], elasticity [7,14] and plate problems [8]. 

 However, the link between the Trefftz method 

and the MFS was not discussed in detail to the authors’ 

best knowledge. A similar case to link the DRBEM 

and the method of particular integral was done by 

Polyzos et al. [12]. In this paper, we will design a 

circular domain problem for the Laplace equation and 

prove the mathematical equivalence of the Trefftz 

method and MFS. Two mathematical tools are 

required. One is degenerate kernels for the expansion 

of the closed-form fundamental solution, the other is 

the Fourier series expansion for the boundary density. 

The degenerate scale and the ill-posed behavior of the 

MFS will be addressed. Also, the efficiency between 

the Trefftz method and MFS will be compared with 

under the same number of degrees of freedom. 

 

2. Connection between the Trefftz 
method and the MFS for Laplace 

equation 
Consider a two-dimensional Laplace problem with a 

ciucular domain of radius ρ  as shown in Fig.1 

 

(s =   

  
Fig.1 Definition sketch of polar coordinate for 

Laplace equation in the circular domain 
(＋ is the source location of the MFS) 

 
the governing equation of the boundary value problem 
is the Laplace equation,  

Dxxu ∈=∇ ,0)(2  (1)

where  denotes the Laplacian operator and 
is the potential function. The boundary condition 

is given by the Dirichlet type 

2∇
)(xu
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By using the Fourier series expansion, the boundary 
condition can be expressed as )(xu
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N

n
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n
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where nn baa ,,0  are the Fourier coefficients with 
respect to Fourier bases, )cos( φn  and )sin( φn , and 
φ  is the angle along the circular boundary. 

 
2.1 Trefftz method 
In the Trefftz method, the field solution  is 
superimposed by the T-complete functions,  as 
follows: 

)(xu
)(xu j

∑
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1
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where 12 +TN

)φn

 is the number of complete functions, 

 is the unknown coefficient,  is the 

complementary set  which satisfies the Laplace 

equation. Then, we choose r  and 

to be the bases of the complementary set in 

two-dimensional problem. Eq.(4) can be expressed by 

jw

rn

)(xu j
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By matching the boundary condition at ρ=r , we 

have 
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After comparing the Eq.(3) with Eq.(6), we obtain  

,00 aa =  (7)

         Tn

n
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n
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2.2 Method of fundamental solution 
In the method of fundamental solution, the field 

solution is superimposed by U  as 

follows: 
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where  is the number of source points in the 

MFS,  is the unknown coefficient, 

MN

jc s  and x  are 

the source point and collocation point, respectively, 

 is the complementary domain and U  is 

the fundamental solution with symmetry property 

eD ), js(x
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In order to match the boundary condition, we have 
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The fundamental solution can be expressed by the 
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where the superscripts “  ” and “ e  ” denote  the 

interior expression (

i

ρ>R ) and the exterior 

expression ( ρ<R ), ),( θRs =  and ),( φρ=x  are 

the polar coordinates of s  and x , respectively. 

Eq.(12) reduces to 
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By employing the property of trigonometric function, 

Eq.(14) can be rewritten as 
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After comparing the Eq.(3) with Eq.(15) by truncating 

the higher order terms, we have 

∑
=

=
MN

j
j Rca

1
0 )ln(  (16)

M

N

j

n
jn

n Nnn
Rn

ca M

,...2,)cos()1(1
1

−= ∑
=ρ

 (17)

M

N

j

n
jn

n Nnn
Rn

cb M

,...,sin()1(1
1

−= ∑
=ρ

 (18)

where 
M

j N
j πθ 2

= . Therefore, we can compare the 

coefficients with Eqs.(7)-(9) in the Trefftz method and 

Eqs.(16)-(18) in the MFS. The relationship between 

the coefficients in Trefftz method and MFS can be 

written as 
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by setting 2== NNN MT  under the request of 

the same number of degrees of freedom. After 

comparing the two solutions, Eqs.(7)-(9) for the 

Trefftz method and Eqs.(16)-(18) for the MFS, we 
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The relation of Eq.(22) was obtained to connect the 

Trefftz method and the MFS. We can decompose the 

matrix [K] into two parts, one former matrix, , 

depends on the radius of the fictitious source 

distribution; the other latter matrix, T , depends on 

the angle of the source point (Fig.1), as follows: 
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In Eq.(27), it is interesting to find 
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due to the orthogonal property (Appendix 1) as 

follows: 
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  In the T  matrix, it becomes singular at radius of 

one (

R

01ln = ) which results in a degenerate scale in 

the MFS. When the radius of fictitious boundary R and 

the number of the source points  become large, 

the condition number of [K] matrix deteriorates. This 

is the reason why the ill-posed behavior is inherent in 

the MFS. If the exact solution is 

MN

),10cos(),( 10 θθ rru =  (31)

the Trefftz method needs at least 21 terms of 10=TN . 

However, the MFS needs only a fewer terms than the 

Trefftz method since any one fundamental solution can 

be expanded to the degenerate kernels with bases 

)10cos( θ . It is found that the MFS can approach the 

exact solution more efficiently than the Trefftz method 

under the same number of degrees of freedom. 

 

3. Concluding remarks 
In this paper, the proof of the mathematical 

equivalence between the Treffz method and MFS for 

Laplace equation was derived. The T-complete set 
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functions in the Trefftz method for interior and 

exterior problems are imbedded in the degenerate 

kernels of the fundamental solutions as shown in Table 

1 for 1-D, 2-D and 3-D Laplace problems. The sources 

of degenerate scale and ill-posed behavior in the MFS 

are easily found in the present formulation. It is found 

that MFS can approach the exact solution more 

efficiently than the Trefftz method under the same 

number of degrees of freedom. 
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 where N....2,1,0=λ  and N....2,1,0=µ  
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Table 1 Equivalence of the bases between the Trefftz method and the MFS for Laplace problem 
 

Method of Fundamental Solution (MFS) Trefftz Method    
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